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Fig. 1: Capturing global human and camera motion from a dynamic camera presents
unique challenges. In the input video, a person is riding a skateboard – while the
local body motion may remain relatively constant, the global position of the indi-
vidual changes significantly. Current state-of-the-art methods such as PACE [41] and
WHAM [81] fail catastrophically on such out-of-distribution motions. Our approach,
COIN, gracefully handles such challenging cases, owing to our control-inpainting mo-
tion diffusion prior and novel human-scene relation loss.

Abstract. Estimating global human motion from moving cameras is
challenging due to the entanglement of human and camera motions. To
mitigate the ambiguity, existing methods leverage learned human mo-
tion priors, which however often result in oversmoothed motions with
misaligned 2D projections. To tackle this problem, we propose COIN, a
control-inpainting motion diffusion prior that enables fine-grained control
to disentangle human and camera motions. Although pre-trained motion
diffusion models encode rich motion priors, we find it non-trivial to lever-
age such knowledge to guide global motion estimation from RGB videos.
COIN introduces a novel control-inpainting score distillation sampling
method to ensure well-aligned, consistent, and high-quality motion from
the diffusion prior within a joint optimization framework. Furthermore,
we introduce a new human-scene relation loss to alleviate the scale am-
biguity by enforcing consistency among the humans, camera, and scene.
Experiments on three challenging benchmarks demonstrate the effective-
ness of COIN, which outperforms the state-of-the-art methods in terms
of global human motion estimation and camera motion estimation. As
an illustrative example, COIN outperforms the state-of-the-art method
by 33% in world joint position error (W-MPJPE) on the RICH dataset.

https://nvlabs.github.io/COIN/
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1 Introduction

Recovering global human and camera motion from dynamic RGB videos is an
important problem with many applications, such as animation, human-computer
interaction, mixed reality, and robotics. However, it is a very challenging problem
due to the entanglement of human and camera motion.

There are only a few works [41,81,99,100] that try to address this problem.
Earlier methods [47,100] only focus on human motion and ignore the camera mo-
tion. Their core insight is that the global body motion is highly correlated with
the local motion. Thus, they can use the local body movements to estimate the
global orientation and trajectory with a regression model [100] or by combining
them with physics constraints [47]. However, these regression models ignore the
camera movements, so they fail to maintain consistency with the input video,
whereas physics-based methods fail to model complex in-the-wild environments
so are limited to controlled scenarios. Recent works [41, 99] try to jointly esti-
mate the human and camera motion by exploiting learned motion priors [21,76]
and SLAM [66,89, 90]. They try to constrain the human body motion in a low-
dimensional latent space of a motion prior model, which results in reconstructed
motions that are overly smooth and do not align well with video observations.
Moreover, the optimization of the camera motion is only based on the global
human motion from the motion prior. Hence, they fail catastrophically if the
initial human motion predictions are significantly incorrect (as shown in Fig. 1).

More recently, Denoising Diffusion Models [24,91] have emerged as a powerful
family of generative models that can model high-quality data priors. Nonetheless,
effectively leveraging the learned priors remains an ongoing challenge. Score
Distillation Sampling (SDS) is commonly employed for this purpose [74], but
we find that naive application of SDS also results in inconsistencies with the
available observations (see Sec. 4.2). The root cause of this problem lies in the
inconsistency of randomly sampled motions during SDS optimization. Without
constraints, these motions may not align with observed evidence, leading to
overly smoothed results that lack detail due to the mode-averaging effect.

In this work, we propose COIN, a hybrid COntrol-INpainting score distilla-
tion sampling method to address the aforementioned limitations of vanilla SDS.
First, we use the partially observed human motion from the video as control sig-
nals to guide motion sampling. To tackle noisy observations which may be out of
distribution for the prior, we propose a dynamic controlled sampling technique
that iteratively refines the observed motions and updates the control signals to
ensure effective distillation from the motion prior. Second, to further improve
the consistency of the sampled motions, we also develop a novel soft inpaint-
ing strategy. We automatically identify the high-confidence regions of the initial
predicted global motion from the video and use them as soft constraints during
optimization. Concretely, we sample less confident regions from scratch using the
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motion model, while the confident regions are only slightly refined. This ensures
that the reconstructed motions do not deviate from the available observations.
Our new SDS formulation is used to jointly optimize the human and camera
motion by finding the most plausible solution that explains the observed evi-
dence. Finally, to prevent catastrophic failure in cases where the initial body
motion fails significantly, we propose a human-scene relation loss to consider the
human-scene depth relations. This novel loss provides complementary informa-
tion to the human motion prior by using local motion and scene features. It
regularizes the camera scale by enforcing consistency among the human motion,
camera motion, and scene features.

We benchmark our approach on the synthetic HCM [41] dataset and the
real-world RICH [25] and EMDB [37] datasets. We demonstrate that our ap-
proach significantly outperforms the state-of-the-art methods in terms of human
motion estimation and camera motion estimation. Overall, the contributions of
this paper can be summarized as follows:

– We propose a novel control-inpainting motion prior specifically designed for
global human motion estimation, which enhances score distillation sampling
with dynamic control and soft inpainting to reconstruct well-aligned, consis-
tent, and high-quality motions from video observations.

– We propose a new human-scene relation loss to resolve the scale ambiguity
of the camera motion by enforcing consistency among the human motion,
camera motion, and scene features.

– Our approach significantly outperforms the state-of-the-art methods in terms
of human motion estimation and camera motion estimation on both synthetic
and real-world datasets. In terms of global human motion estimation in world
space, we outperform the state-of-the-art method PACE [41] by 44% and 33%
on the HCM [41] and RICH [25] datasets, respectively. We also compare with
the contemporary work WHAM [81] and outperform it by 49% and 7% on
the RICH and EMDB datasets, respectively.

2 Related Work

Camera-Space Human Pose Estimation. Most existing works focus on
root-relative local human pose estimation to bypass the difficulty in monocular
depth estimation [1, 4, 6–8, 16, 32–34, 39, 42–46, 51, 54, 63, 64, 67, 68, 70, 76, 78, 84,
85,88,94,97,106,110,116,118]. These methods ignore the position of the person
in the camera coordinates. To overcome this limitation, recent methods estimate
camera-space human poses by regression [28,31,48,52,62,72,75,80,93,95,107,107,
109, 111] or optimization [59–61, 77, 108]. Physics-based constraints are widely
used to ensure the plausibility of the estimated poses [10,13,27,29,80,95,105]. In
addition to direct regression, heatmap-based representations have also been used
to predict the absolute depths of multiple people [11, 87, 117]. A few methods
improve absolution depth estimation by using predicted camera parameters [40,
49, 109] instead of the predefined focal length. Despite the promising results
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for camera-space pose estimation, how to decouple the camera movement and
estimate global human motions is still an open problem.

Monocular Global Human Pose Estimation. Recovering the global human
motion from a monocular moving camera is challenging due to the entanglement
of human and camera motions. To disentangle the camera movement, several
methods use IMU sensors or pre-scanned environments to recover global hu-
man motions [17,20,57,69], which is impractical for large-scale adoption. Recent
works use human motion priors [100] or physics-based constraints [47,55] to re-
cover human motions from monocular videos, but do not consider background
scene features, which limits performance on in-the-wild videos. Sun et al . [86]
use optical flow as a motion cue to estimate the global motions. A contempo-
rary work, WHAM [81], uses a lifting network to estimate global human motions
from 2D keypoints and camera angular velocities. While these works can esti-
mate accurate global human motions, they do not recover camera motions. To
explicitly recover the camera motion, Liu et al . [52] use SLAM and convert the
local pose from the camera to global coordinates. BodySLAM [22] jointly opti-
mizes the human and camera motion using features of both humans and scenes.
Along this line, SLAHMR [99] and PACE [41] use SLAM to initialize camera
motions and optimize the camera using human motion priors [21, 76]. However,
these methods rely on the human motion priors to regularize the camera motion,
which may lead to inaccurate camera motion when the human motion is not well
initialized (as shown in Fig. 1). Such wrong camera trajectories will further af-
fect the optimization of human motions. In contrast, our approach relies on the
consistency among the local human motion, scene features, and the camera for
optimization, which provides information that complements the human motion
priors and enables accurate estimation of both human and camera motions.

Human Motion Priors. There are a significant amount of approaches pro-
posed to study 3D human dynamics for motion prediction and synthesis [2, 3,
5, 12, 15, 18, 19, 23, 30, 36, 38, 50, 58, 71, 73, 92, 98, 101–103]. These learned human
motion priors are used to help resolve pose ambiguity [21, 39, 76, 115] in human
pose estimation. Recently, diffusion models [82] have also been used as priors for
motion synthesis and infilling [26, 35, 91, 104, 113]. RoHM [114], adopts motion
diffusion model to recover human motions from noisy and occluded input data.
Xie et al . [96] use spatial control signals to guide motion generation. They focus
on generating realistic human motion given clean spatial constraints. Müller et
al . [65] build a diffusion model to learn the joint distribution over the poses of
two people. They use the SDS loss to guide the generation of static poses. In
contrast, we focus on dynamic human motions. We find adopting SDS directly
for temporal human motions encounters the inconsistency issue. Therefore, to
distill knowledge from the motion diffusion model, we propose a novel control-
inpainting SDS to generate high-quality and consistent motion that aligns with
observed evidence.
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Fig. 2: Overview. Given a video with a moving camera, we recover the global human
motion H and camera motion C using an iterative optimization framework. We propose
a novel Control-Inpainting SDS loss (LCOIN-SDS) to leverage motion diffusion models
as a prior. COIN-SDS is designed such that the sampled motions from the motion prior
are consistent with video observations. We achieve this by controlling and constraining
the sampling process of the motion diffusion model through novel control and soft-
inpainting branches. We also propose a novel human-scene relation loss (LHSR) to
encourage consistency among the human motion, camera motion, and scene features.

3 Method

The overall framework of COIN is illustrated in Fig. 2. Given an in-the-wild RGB
video with T frames captured by a dynamic camera, our goal is to estimate both
the global human motion H = {h(1),h(2), . . . ,h(T )} and the camera motion
C = {c(1), c(2), . . . , c(T )} in a global world coordinate system. We use off-the-
shelf 3D human pose and shape estimation method HybrIK [48] to obtain per-
frame initial SMPL parameters in the camera space and DROID-SLAM [89] to
obtain the initial per-frame camera-to-world transforms. We convert the local
human motion to the world coordinates with the estimated camera. However,
because the camera trajectories from SLAM are up to an unknown scale, the
initial global human motion will abnormally drift and float in the world space. To
resolve the scale ambiguity and place the person in the correct global position,
we jointly optimize the human and camera motion to minimize the discrepancy
between the observed evidence and the estimated motion, while maintaining the
plausibility of the human motion with a diffusion prior through the proposed
control-inpainting SDS.

Motion Representation. The camera motion is represented by the trajectory
C = {(R(i), t(i))}Ti=1, where [R(i), t(i)] is the camera pose at the i-th frame,
consisting of the rotation matrix R(i) ∈ R3×3 and the translation vector t(i) ∈
R3. The human motion is represented by the human trajectory H = {h(i)}Ti=1,
where h(i) = [τ (i), Φ(i), θ(i), f (i), β] is the human pose at the i-th frame, consisting
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of the global translation τ (i) ∈ R3, global orientation Φ(i) ∈ R3, body pose
parameters θ(i) ∈ R23×3, foot contact labels f ∈ {0, 1}4, and the body shape
parameters β ∈ R10. We use the SMPL model [53] to represent the human pose
and shape. Before introducing our approach, we first revisit the formulation and
drawbacks of SDS in Sec. 3.1. Then we introduce the proposed control-inpainting
SDS in Sec. 3.2. Finally, we present the global optimization pipeline with the
proposed human-scene interaction loss in Sec. 3.3.

3.1 Revisiting SDS

Score Distillation Sampling (SDS) was first introduced to distill 3D assets from
pre-trained 2D text-to-image diffusion models [74]. It exploits the knowledge
from the diffusion models by seeking modes for the conditional distribution in
the DDPM latent space to optimize the 3D scene representation. Similarly, we
can optimize global human motion by distilling knowledge from a pre-trained
motion diffusion model.

Given an global human motion H, the marginal distribution of noisy latent
Ht at timestep t ∈ U(0, 1) is defined as:

q(Ht|H) = N (Ht;
√
ᾱtH, (1− ᾱt)I), (1)

where ᾱt ∈ (0, 1) is a hyperparameter controlled by the variance schedule of
the diffusion model. SDS adopts the pre-trained diffusion model Dϕ(Ht, t, y),
which takes in Ht and is used to model the conditional density of the human
motion, where ϕ are the parameters of the diffusion model and y is the condition.
Then, SDS aims to distill global human motion H via seeking modes of the
learned conditional density, which can be achieved by a weighted denoising score
matching objective:

min
H

LSDS := Et,ϵ

[
ω(t)∥ϵtϕ − ϵ∥22

]
, (2)

where ϵtϕ is the predicted denoising direction from the diffusion model, Ht ∼
q(Ht|H) is sampled using the reparameterization trick, ϵ is the corresponding
sampled noise, and ω(t) is a weighting function that depends on the timestep t.

To clearly review the effect of SDS, we can reparameterize Eq. 2 as:

min
H

LSDS := Et

[
ω(t)

√
ᾱt√

1− ᾱt

∥∥∥H− Ĥt
0

∥∥∥2
2

]
, (3)

where

Ĥt
0 =

Ht −
√
1− ᾱtϵ

t
ϕ√

ᾱt
. (4)

Based on this reparameterization, we can see that the SDS objective is to mini-
mize the discrepancy between global human motion H and the denoised global
human motion Ĥt

0 from the motion diffusion model in a single step. The denoised
motion Ĥt

0 serves as the pseudo ground truth. However, at each optimization
step, we randomly sample t and ϵ to generate the noisy latent Ht, and we found
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the pre-trained diffusion model is sensitive to the input. Minor fluctuations in
the input latent would substantially change the denoised motion, which leads to
inconsistency in Ĥt

0 across different time steps.
Although randomness can help generate diverse plausible motions to infer

occluded regions and unknown information, we do not need it for well-observed
regions, such as simple body poses in a clean background. Such randomness in
the denoising steps makes the generated Ĥt

0 difficult to align with the local 2D
observations and results in wrong global human motion. Moreover, this pseudo
ground truth Ĥt

0 is generated from only a single denoising step, where the diffu-
sion models may not produce high-quality motions, resulting in foot sliding and
floating. Although sampling with a smaller timestep t can alleviate these issues,
the initial motion is usually inaccurate and the denoiser is not able to remove
artifacts with a small t. To exploit the knowledge of the motion diffusion model
and denoise the initial motion, we must allow the SDS to sample with a larger
timestep t while maintaining high quality, consistency, and alignment with the
local 2D observations.

3.2 Control-Inpainting SDS

The limitations of SDS originate from the randomness and inconsistency of the
denoised motion Ĥt

0, which serves as the pseudo ground truth in the objective
function. To overcome this issue, we propose a novel COntrol-INpainting SDS
(COIN-SDS) to generate high-quality and consistent pseudo-ground-truth mo-
tions. Our solution has three key ingredients (shown in Alg. 1). First, to achieve
high-quality motions, we seek to produce the pseudo ground truth with multiple
DDIM denoising steps. Second, to encourage consistent motions, we propose to
use partially observed evidence from the video as a control signal to dynamically
guide the diffusion model and align the generated motions with the observations.
Third, to further align the motion with observed regions, we propose a soft in-
painting strategy within the denoising process.

Multiple Denoising Steps. Intuitively, to obtain high-quality pseudo ground
truth for SDS, we can replace the single-step denoised motion Ĥt

0 with a multi-
step one H̃t

0 := H̃0, following the multi-step DDIM denoising process [83]:

H̃t−∆t =
√
ᾱt−∆t · Ĥt

0 +
√
1− ᾱt−∆t · ϵtϕ, (5)

until H̃0 = H̃t−∆t is obtained. By replacing Ĥt
0 in Eq. 3 with H̃0, we can obtain

a new objective for SDS:

min
H

LSDS := Et

[
ω(t)

√
ᾱt√

1− ᾱt

∥∥∥H− H̃0

∥∥∥2
2

]
. (6)

Although the multi-step denoising process can produce high-quality pseudo ground
truth, it is computationally expensive to perform multiple denoising steps during
optimization, which limits the practicality of increasing the number of denoising
steps. In our experiments, we find that using 10 denoising steps is sufficient to
produce high-quality pseudo ground truth.
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Algorithm 1: COIN-SDS
Input: Latest human motion H, confidence score S, visible mask M
Output: LCOIN-SDS

1 Sample: H̃t ∼ N (Ht;
√
ᾱtH, (1− ᾱt)I), t ∼ U(0, 1);

2 for t̄ = [t, t−∆t, . . . ,∆t] do // multi-step DDIM denoising
3 H̃t̄,known

0 ← H;
4 H̃t̄,unknown

0 ← Dϕ,ϕc(H̃t̄, t̄,H⊙M) ; // controlled denoising
5 M̃← w(t̄) ∗ S⊙M;
6 H̃t̄

0 ← M̃⊙ H̃t̄,known
0 + (1− M̃)⊙ H̃t̄,unknown

0 ; // soft inpainting

7 ϵt̄ϕ ←
H̃t̄−

√
ᾱt̄H̃

t̄
0√

1−ᾱt̄

;

8 H̃t̄−∆t ←
√
ᾱt̄−∆t · H̃t̄

0 +
√
1− ᾱt̄−∆t · ϵt̄ϕ ; // update latent motion

9 LCOIN-SDS = ω(t)
√
ᾱt√

1−ᾱt

∥∥∥H− H̃0

∥∥∥2

2

Dynamic Controlled Sampling. To generate consistent motions that are
aligned with the observed evidence, we propose to attach a control branch ϕc

to the pre-trained diffusion model Dϕ to guide the motion generation. Given a
latent motion H̃t, control signal c, and the visible mask M, we train a controlled
denoiser Dϕ,ϕc to generate intermediate denoised motion H̃t

0 for DDIM denoising:

H̃t
0 = Dϕ,ϕc

(H̃t, t, c⊙M), (7)

where c and M are the same size as the motion, M is a binary mask with ones
in observed pose dimensions, and ⊙ denotes the element-wise multiplication.
During training, we synthesize noise and occlusions by randomly adding Gaus-
sian noise to the control signal c and randomly masking the pose and trajectory
dimensions in M. Details are provided in the supplementary document.

When using the denoiser in the optimization stage, instead of always using
the initial noisy estimation from HybrIK [48] as the fixed control signal, we
propose to use a dynamic control strategy. Specifically, we use the optimized
human motion from the previous iteration as the control signal, i.e., c = H. This
strategy prevents performance degradation due to inaccurate initializations. A
better control signal can guide the model to generate a more plausible pseudo
motion, which in turn helps to optimize the global human motion and provides a
control signal that better aligns with the input videos. Such self-evolving control
signals can help to generate well-aligned global human motions.

The pre-trained motion diffusion model adopts a transformer encoder struc-
ture like [91]. We follow ControlNet [112] to encode the control signals and guide
the denoiser output. We create a trainable copy of 4 encoding blocks of the pre-
trained motion diffusion model followed with zero convolutions. The input to the
control branch is the concatenation of the latent and the control signals. The
AMASS [56] dataset is used to train the motion diffusion model. The finetun-
ing of the controlled denoiser is computationally efficient since the pre-trained
branch is frozen and only the control branch is trained. See the supplementary
document for more details on the architecture and training settings.
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Soft Inpainting. While guiding motion generation encourages outputs to align
with the conditions, it is often not strong enough. We further seek to improve the
consistency by masking the known regions and inpainting the unknown regions.
Given a binary mask M that indicates the observed and unobserved regions, we
can use the diffusion model to generate the inpainted motion H̃t

0 following the
DDIM denoising process:

H̃t,known
0 = H, (8a)

H̃t,unknown
0 = Dϕ,ϕc

(H̃t, t,H⊙M), (8b)

H̃t
0 = M⊙ H̃t,known

0 + (1−M)⊙ H̃t,unknown
0 . (8c)

Thus, the known regions are overwritten with the observations, while the un-
known regions are sampled from the diffusion model. However, the above for-
mulation keeps the observed parts unchanged during the denoising process. In
practice, the observed parts can be noisy and not perfect. We still want the
diffusion model to refine the observed parts but not change them significantly.

Here, we present a soft inpainting strategy to infill the unobserved regions
while refining the observed regions by dynamically reweighting the denoised
direction from the diffusion model. Specifically, instead of using a binary mask,
we adopt a continuous mask M̃ depending on both the confidence score of the
observations S and the denoising time step t:

M̃ = w(t) ∗ S⊙M, (9)

where we set w(t) = max(0, t−0.5
0.5 ) to linearly decrease the weight of the ob-

servations as the denoising time step decreases. As the time step decreases, the
denoising process will be more deterministic and the model will be more certain
of the generated motions.

Combining the three components of our solution, the final objective for
COIN-SDS is formulated as:

min
H

LCOIN-SDS := Et

[
ω(t)

√
ᾱt√

1− ᾱt

∥∥∥H− H̃0(H,M,S, t)
∥∥∥2
2

]
. (10)

We summarize COIN in Alg. 1.

3.3 Global Optimization

Here we present the overall optimization pipeline for the joint estimation of
global human and camera motion with the proposed COIN-SDS loss. Note that
we use SLAM to initialize the camera poses, which is scale-ambiguous. Therefore,
we need to jointly optimize the camera scale s with the human and camera
motions. Furthermore, the SLAM method assumes the camera in the first frame
to be at the origin. To put the human motion in the correct positions, we follow
PACE [41] and also optimize the camera height h0 and the orientation R0 for
the first frame. The global human motions are initialized by the estimated local
motions and the camera poses. The overall optimization objective is:

min
H,C,s,h0,R0,β

Lbody + LCOIN-SDS + LHSR, (11)
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where
Lbody = L2D + L3D + Lβ + Lsmooth + Lcontact. (12)

L2D measures the 2D reprojection error between the projected 2D body joints of
the estimated human motion and the detected 2D keypoints from an off-the-shelf
2D joint detector [9]. L3D measures the distance between the estimated local 3D
joints and the detected 3D joints from an off-the-shelf 3D joint detector [79].
Lβ is the shape regularization loss. Lsmooth is the temporal smoothness loss.
Lcontact is the foot contact loss to encourage zero velocities for contact joints.
The contact labels are obtained from the pseudo ground truth motion from
COIN-SDS. Please refer to the supplementary document for more details.
Human-scene Relation Loss. The camera trajectories recovered from SLAM
are scale-ambiguous. Previous works [41, 99] optimize the camera scale by pro-
jecting the global human motion to the camera space using the camera poses
and minimizing the reprojection error. However, such a method entirely relies on
the global human motions, which is in turn affected by the camera scale. If the
human motion is not initialized well, the camera scale will also be inaccurate.
To solve this problem, instead of the global human motions, we propose a new
human-scene relation loss that uses the depth relation between the human and
scene in the camera space, which disentangles the effect of the camera itself.

Specifically, we use the point cloud of the scene recovered by SLAM as a
constraint. First of all, the scale of the scene point cloud is the same as the
camera scale, so optimizing the scene scale is equivalent to optimizing the camera
scale. Second, the scene points that are projected onto the visible vertices of the
body mesh should be occluded by the person. Otherwise, the corresponding body
parts are invisible. Therefore, we can constrain the depth of the occluded scene
points to be larger than the depth of the human body vertices. While finding the
corresponding body vertices for each scene point is time-consuming, we propose
to use the depth of its nearest body joint as a proxy. Given the scene point cloud
P and the camera scale s, the human-scene relation loss is formulated as:

LHSR = − 1

|P|

T∑
i=1

∑
p∈P∗

min(0, T (i)(p)z − j(i)(p)z) · 1(T (i)(p) is invisible), (13)

where P∗ = P ∗ s is the scaled point cloud of the scene, T (i)(p) = R(i)p+ t(i) is
the transformed point in the i-th frame, j(i)(p) is body joint that has the nearest
2D projection to the scene point p in the i-th frame, and z denotes the depth of
a given point. If the depth order is correct, i.e., T (i)(p)z − j(i)(p)z > 0, the loss
is zero. The proposed human-scene relation loss uses the relation between the
local motions and the scene to alleviate the scale ambiguity. The depth relation
regularizes consistency among humans, cameras, and scenes.

4 Experiments
Datasets. We perform experiments on three human motion datasets. First is the
real-world dataset RICH [25]. We follow previous works [41,81,100] to assess the
performance of global human motion estimation using this dataset. The second
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Table 1: Global human motion estimation on the RICH dataset.
Method PA-MPJPE ↓ W-MPJPE ↓ WA-MPJPE ↓ W-RJE ↓ ACCEL ↓

HybrIK [48] + SLAM [89] 46.7 1073.1 404.4 1166.2 20.2
GLAMR [100] 79.9 653.7 365.1 646.6 107.7
SLAHMR [99] 52.5 571.6 323.7 400.5 9.4
WHAM [81] 46.2 497.6 272.7 478.2 6.7
PACE [41] 49.3 380.0 197.2 370.8 8.8

Guided Sampling 132.8 1384.6 502.2 1440.9 24.2
Noise Optimization 66.7 414.8 195.3 429.2 8.4
Vanilla SDS 78.8 1453.5 497.2 1458.0 12.7

COIN w/o Controlled Sampling 44.0 825.0 291.8 848.5 10.8
COIN w/o Dynamic Control 49.5 293.8 180.6 299.1 8.6
COIN w/o Soft Inpainting 47.6 325.8 196.0 324.9 9.6
COIN w/o LHSR 43.6 273.0 176.3 281.1 8.2

COIN 42.9 254.5 169.5 249.9 7.5

one is EMDB [37]. We follow previous works [81] to evaluate on a subset of EMDB
for which they provide ground truth global motion with dynamic cameras. The
third dataset is HCM [41], a synthetic dataset. Compared to real-world datasets,
HCM contains more challenging camera motions. We follow previous work [41]
to evaluate the global human motion and the camera motion using this dataset.

Metrics. We report various metrics for both human and camera motion. For
human motion, standard metrics W-MPJPE and WA-MPJPE are used to evalu-
ate global motion, while PA-MPJPE evaluates local motion. We also include an
ACCEL metric to measure the joint acceleration error. For evaluation on EMDB,
we follow previous work [81] to split sequences into smaller chunks of 100 frames
and align each output segment with the ground-truth data using the first two
frames W-MPJPE100 or the entire segment WA-MPJPE100. Root Orientation
Error (ROE in deg) and Root Translation Error (RTE in m) evaluate the error
over the entire trajectory after aligning with the initial camera pose.

For camera motion, we report the average translation error after scale align-
ment (ATE), without scale alignment (ATE-S), and the camera acceleration er-
ror (CAM ACCEL). ATE-S more accurately reflects inaccuracies in the captured
scale of the camera.

Baselines. As discussed in Sec. 2, there are different ways to use the pre-trained
motion diffusion model as a motion prior. Here, we summarize the three main
solutions and compare them with COIN in Sec. 4.2. (1) Guided Sampling, which
embeds analytical guidance within the denoising procedure using objective func-
tions, such as 2D projection and foot contact consistency. This does not suit our
task because the camera trajectories are also unknown and guided gradients from
the wrong camera will lead to unrealistic human motions. We need to optimize
the human motion and camera motion simultaneously. (2) Noise Optimization,
which represents the motion as latent noise and directly optimizes it. This is
similar to other motion priors such as VAE [21]. At each optimization step, we
need to calculate the gradients of the latent w.r.t. the generated motion, which is
computationally expensive and we find the performance is not good enough. (3)
Vanilla SDS, which removes our design and directly uses SDS for optimization.
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Table 2: Global human motion estimation on the EMDB dataset.

Method PA-MPJPE ↓ W-MPJPE100 ↓ WA-MPJPE100 ↓ RTE ↓ ROE ↓

HMR2.0 [14] + DPVO [90] 49.6 2320.9 662.9 17.5 44.4
GLAMR [100] 56.0 756.1 286.2 16.7 74.9
TRACE [86] 58.0 2244.9 544.1 18.9 72.7
SLAHMR [99] 61.5 807.4 336.9 13.8 67.9
WHAM [81] 41.9 439.2 166.1 8.4 36.3

COIN 32.7 407.3 152.8 3.5 34.1

Table 3: Global human motion estimation on the HCM dataset.

Method PA-MPJPE ↓ W-MPJPE ↓ WA-MPJPE ↓ W-RJE ↓ ACCEL ↓

HybrIK [48] + SLAM [89] 67.6 1137.3 780.3 1100.9 51.3
GLAMR [100] 86.0 1977.6 653.8 1958.0 33.4
SLAHMR [99] 69.9 888.9 483.5 862.2 14.9
PACE [41] 65.3 861.2 478.3 839.5 16.7
WHAM [81] 47.9 588.9 279.3 579.2 13.1

COIN 45.5 479.9 212.1 470.7 10.1

4.1 Comparison with State-of-the-Art Methods

Human Motion Estimation. We compare COIN against state-of-the-art meth-
ods on the RICH, EMDB, and HCM datasets. Quantitative results are shown
in Tabs. 1, 2, and 3. We observe that COIN significantly outperforms the state-
of-the-art methods on all datasets. On the RICH dataset, COIN outperforms
the state-of-the-art method, PACE [41], by 125.5 mm in terms of W-MPJPE,
showing 33.0% relative improvement. On the EMDB and HCM datasets, COIN
shows 29.1 mm and 109.0 mm improvement in terms of W-MPJPE, respec-
tively. Qualitative comparisons with state-of-the-art methods, PACE [41] and
WHAM [81], are shown in Figs. 1 and 3. More qualitative results are shown in
the supplementary video.

COIN not only improves global motion, but also improves local body motion.
In terms of PA-MPJPE, COIN shows 3.3 mm, 9.2 mm, and 19.8 mm improve-
ment on the RICH, EMDB, and HCM datasets, respectively. This demonstrates
that COIN is able to distill high-quality motion priors from the diffusion model
and help both local and global motion estimation. Regarding the joint acceler-
ation error, COIN is 0.8 mm/s2 higher than WHAM [81]. Note that the joint
acceleration error reflects the smoothness. Human motion can be over-smoothed
but not accurate, hence it is important to look at acceleration error in conjunc-
tion with other metrics.

Camera Motion Estimation. We further evaluate the performance of COIN
on camera motion estimation on the HCM dataset. Quantitative results are
shown in Tab. 4. COIN substantially surpasses the state-of-the-art camera mo-
tion estimation methods. Specifically, COIN reduces the absolute camera trans-
lation error, ATE-S by 73.8 mm. This demonstrates that COIN is able to disen-
tangle human and camera motions and accurately estimate the camera motion.
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Table 4: Camera motion estimation on the HCM dataset.

Method ATE ↓ ATE-S ↓ CAM ACCEL ↓

HybrIK [48] + SLAM [89] 155.8 1670.7 17.1
GLAMR [100] 1295.2 1714.6 282.9
SLAHMR [99] 155.8 506.5 17.6
PACE [41] 137.5 459.7 16.2

Guided Sampling 335.6 992.4 15.6
Noise Optimization 206.0 500.9 12.3
Vanilla SDS 306.4 656.4 13.7

COIN w/o Controlled Sampling 299.6 553.8 14.0
COIN w/o Dynamic Control 149.8 397.7 11.3
COIN w/o Soft Inpainting 167.7 423.8 11.4
COIN w/o LHSR 147.8 402.1 12.0

COIN 135.3 385.9 11.3

4.2 Ablation Study

In this section, we conduct ablation studies on the RICH and HCM datasets to
evaluate the impact of each component on human and camera motions, respec-
tively. More comparisons on other datasets are provided in the supplementary
document.

Baselines with Motion Diffusion Model. We first compare the aforemen-
tioned baselines with COIN. To use guided sampling in our tasks, we jointly
update the camera poses using the gradients from the objective function dur-
ing denoising. Quantitative results of human and camera motion estimation are
shown in Tabs. 1 and 4, respectively. We observe that COIN outperforms all the
baselines in terms of all metrics. As expected, guided sampling shows a terrible
performance because it is not able to accurately estimate the camera trajecto-
ries. Noise optimization is better than vanilla SDS but worse than COIN, which
generates consistent motion priors. Vanilla SDS is replacing LCOIN with the SDS
loss and keeping the rest of the settings the same. These results demonstrate the
effectiveness of COIN over other motion diffusion baselines.

Impact of Dynamic Controlled Sampling. To study the effectiveness of
controlled sampling, we compare COIN with and without using the controlled
denoiser. Quantitative results are shown in Tabs. 1 and 4. We observe that con-
trolled sampling significantly improves the performance of COIN. Specifically,
COIN with controlled sampling reduces the W-MPJPE and ATE-S by 570.5 mm
and 167.9 mm, showing 69.3% and 30.3% relative improvement, respectively.
This demonstrates that controlled sampling is able to generate high-quality mo-
tion priors that align with the observed evidence and help improve human and
camera motion estimation.

Impact of Soft Inpainting. We further study the effectiveness of soft in-
painting. Quantitative comparisons are shown in Tabs. 1 and 4. We observe that
while soft inpainting also improves W-MPJPE, it is much more effective than
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Fig. 3: Qualitative comparisons with state-of-the-art methods. PACE [41] fails
to recover a correct trajectory (left). WHAM [81] estimates the wrong walking direction
of the person (right). Our approach, COIN, recovers the human and camera motion
accurately in both scenarios.

controlled sampling in terms of local body motions. Specifically, COIN with soft
inpainting reduces the PA-MPJPE by 4.7 mm.

5 Conclusion

In this paper, we propose COIN, a diffusion-based optimization framework for
global human and camera motion estimation from dynamic cameras. We iden-
tify the inconsistency problem of distilling knowledge from the diffusion model
with conventional SDS loss. To address this issue, COIN uses a controlled de-
noiser combined with soft inpainting to distill a high-quality, well-aligned, and
consistent motion prior. To further address the scale ambiguity of the camera
trajectory, we develop a novel human-scene relation loss that imposes consistency
among the human motion, camera motion, and scene features. Comprehensive
experiments on challenging synthetic and real-world datasets demonstrate the
effectiveness of COIN, which outperforms the SOTA by a large margin in recov-
ering accurate global human motion and camera motion.

Limitations and Future Works: While COIN is able to jointly optimize
camera trajectories and global human motions, it requires initialization from
SLAM. If the SLAM method fails catastrophically, COIN may not be effective.
Additionally, we found COIN fails under severe occlusions where there are sev-
eral unseen frames and the diffusion model cannot provide consistent guidance.
Another limitation is that COIN is an optimization framework, so it is unsuitable
for real-time applications. Since the denoising diffusion models have shown their
power to model data distributions in many different domains, looking forward
we can learn the joint distribution of humans and cameras with the diffusion
model to additionally denoise the artifacts in camera motions. Such a joint dis-
tribution model also holds the potential of real-time human and camera motion
estimation via guided sampling with few DDIM denoising steps.
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