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Abstract. Despite the recent progress in text-to-video generation, ex-
isting studies usually overlook the issue that only spatial contents but
not temporal motions in synthesized videos are under the control of text.
Towards such a challenge, this work presents a practical system, named
LivePhoto, which allows users to animate an image of their interest with
text descriptions. We first establish a strong baseline that helps a well-
learned text-to-image generator (i.e., Stable Diffusion) take an image as
a further input. We then equip the improved generator with a motion
module for temporal modeling and propose a carefully designed training
pipeline to better link texts and motions. In particular, considering the
facts that (1) text can only describe motions roughly (e.g., regardless of
the moving speed) and (2) text may include both content and motion
descriptions, we introduce a motion intensity estimation module as well
as a text re-weighting module to reduce the ambiguity of text-to-motion
mapping. Empirical evidence suggests that our approach is capable of
well decoding motion-related textual instructions into videos, such as
actions, camera movements, or even conjuring new contents from thin
air (e.g., pouring water into an empty glass). Interestingly, thanks to
the proposed intensity learning mechanism, our system offers users an
additional control signal (i.e., the motion intensity) besides text for video
customization. Project page is xavierchen34.github.io/LivePhoto-Page.
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1 Introduction

Image and video content synthesis has become a burgeoning topic with significant
attention and broad real-world applications. Fueled by the diffusion model and
extensive training data, image generation has witnessed notable advancements
through powerful text-to-image models [4,35,37,48] and controllable downstream
applications [6, 18, 23, 24, 28, 36, 51]. In the realm of video generation, a more
complex task requiring spatial and temporal modeling, text-to-video has steadily
improved [2, 10, 19, 40, 49]. Various works [3, 8, 22, 43, 45] also explore enhancing
controllability with sequential inputs like optical flows, motion vectors, etc.
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“A Shiba Inu is running fast.”Reference Image “A Shiba Inu is wagging its tail.”Reference Image

“Lightning and thunder in the night sky.”Reference ImageReference Image “Pouring water into the glass.”

“This man gives a thumbs-up.” Intensity: 3 “This man gives a thumbs-up.” Intensity: 7Reference Image Reference Image

“Scenery of the Louvre, camera zooms in.”Reference Image“Kung Fu Panda is practicing Tai Chi.”Reference Image

Fig. 1: Zero-shot real image animation with text control. Besides adequately
decoding motion descriptions like actions and camera movements (row 1), LivePhoto
could also conjure new contents from thin air (row 2). Meanwhile, LivePhoto is
highly controllable, supporting users to customize the animation by inputting various
texts (row 3) and adjusting the degree of motion intensity (row 4).

This work explores utilizing a real image as the initial frame to guide the
“content” and employ the text to control the “motion” of the video. This topic
holds promising potential for a wide range of applications, including meme
generation, production advertisement, film making, etc. Previous image-to-video
methods [5,15,17,25,41,50,52] mainly focus on specific subjects like humans or
could only animate synthetic images. GEN-2 [34] and Pikalabs [33] animate real
images with optional text input, however, an issue is that the text could only
enhance the content but exerts limited control for the motions.

Facing this challenge, we propose LivePhoto, an image animation framework
that truly listens to the text instructions. We first establish a powerful image-
to-video baseline. The initial step is to equip a text-to-image model (i,e., Stable
Diffusion) with the ability to refer to a real image. Specifically, we concatenate
the image latent with input noise to provide pixel-level guidance. In addition, a
content encoder is employed to extract image patch tokens, which are injected via
cross-attention to guide the global identity. During inference, a noise inversion
of the reference image is introduced to offer content priors. Afterward, following
the contemporary methods [2,10,45], we freeze stable diffusion models and insert
trainable motion layers to model the inter-frame temporal relations.

Although the text branch is maintained in this strong image-to-video base-
line, the model seldom listens to the text instructions. The generated videos
usually remain nearly static, or sometimes exhibit overly intense movements,



LivePhoto 3

deviating from the text. We identify two key issues for the problem: firstly, the
text is not sufficient to describe the desired motion. Phrases like “shaking the
head” or “camera zooms in” lack important information like moving speed or
action magnitude. Thus, a starting frame and a text may correspond to diverse
motions with varying intensities. This ambiguity leads to difficulties in linking
text and motion. Facing this challenge, we parameterize the motion intensity
using a single coefficient, offering a supplementary condition. This approach eases
the optimization, significantly improves the motion quality, and allows users
to adjust motion intensity during inference conveniently. Another issue arises
from the fact that the text contains both content and motion descriptions. The
content descriptions translated by stable diffusion may not perfectly align with
the desired video, while the reference image is prioritized for content control.
Consequently, when the content descriptions are learned to be suppressed to
mitigate conflicts, motion descriptions are simultaneously under-weighted. To
address this concern, we design a prompt adapter, which learns to accentuate
the motion descriptions, enabling the text to work compatibly with the image
for better motion control.

As shown in Fig. 1, equipped with motion intensity guidance and prompt
adapter, LivePhoto demonstrates impressive abilities for text-guided motion
control. LivePhoto is able to deal with real images from versatile domains and
subjects, and adequately decodes the motion descriptions like actions and camera
movements. Besides, it shows fantastic capacities of conjuring new contents from
thin air, like “pouring water into a glass” or simulating “lightning and thunder”. In
addition, with motion intensity guidance, LivePhoto supports users to customize
the motion with the desired intensity.

2 Related Work

Image animation. To realize content controllable video synthesis, image an-
imation takes a reference image as content guidance. Most of the previous
works [7, 38, 39, 54, 55] depend on another video as a source of motion, trans-
ferring the motion to the image with the same subject. Other works focus
on specific categories like fluide [13, 26, 29] or nature objects [16, 21]. Make-
it-Move [15] uses text control but it only manipulates simple geometries like
cones and cubes. Recently, human pose transfer methods [5, 17, 42, 50] convert
the human images to videos with extra controls like dense poses, depth maps,
etc. VideoComposer [43] could take image and text as controls, however, the text
shows limited controllability for the motion and it usually requires more controls
like sketches and motion vectors. In general, existing work either requires more
controls than text or focuses on a specific subject. In this work, we explore
constructing a generalizable framework for universal domains and use the most
flexible control (text) to customize the generated video.
Text-to-video generation. Assisted by the diffusion model [11], the field
of text-to-video has progressed rapidly. Early attempts [12, 40, 49] train the
entire parameters, making the task resource-intensive. Recently, researchers have
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Fig. 2: Overall pipeline of LivePhoto. Besides taking the reference image and text
as input, LivePhoto leverages the motion intensity as a supplementary condition. The
image and the motion intensity (from level 1 to 10) are obtained from the ground
truth video during training and customized by users during inference. The reference
latent is first extracted as local content guidance. We concatenate it with the noise
latent, a frame embedding, and the intensity embedding. This 10-channel tensor is fed
into the UNet for denoising. During inference, we use the inversion of the reference
latent instead of the pure Gaussian to provide content priors. At the top, a content
encoder extracts the visual tokens to provide global content guidance. At the bottom,
we introduce the prompt adapter, which learns to emphasize the motion-related part
of the text embedding for better text-motion mapping. The visual and textual tokens
are injected into the UNet via cross-attention. For the UNet, we freeze the pre-trained
stable diffusion and insert motion modules to capture the inter-frame relations. Symbols
of flames and snowflakes denote trainable and frozen parameters respectively.

turned to leveraging the frozen weights of pre-trained text-to-image models
tapping into robust priors. Tune-A-Video [45] inflates the text-to-video model
and tuning attention modules to construct an inter-frame relationship with a
one-shot setting. Align-Your-Lantens [2] inserts newly designed temporal layers
into frozen text-to-image models to make video generation. AnimateDiff [10]
proposes to freeze the stable diffusion [35] blocks and add learnable motion
modules, enabling the model to incorporate with subject-specific LoRAs [14]
to make customized generation. A common issue is that the text could only
control the spatial content of the video but exert limited effect for controlling
the motions.

3 Method

We first give a brief introduction to the preliminary knowledge for diffusion-
based image generation in Sec. 3.1. Following that, our comprehensive pipeline
is outlined in Sec. 3.2. Afterward, Sec. 3.3 delves into image content guidance to
make the model refer to the image. In Sec. 3.4 and Sec. 3.5, we elaborate on the
novel designs of motion intensity guidance and prompt adapter to better align
the text conditions with the video motion.
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3.1 Preliminaries

Text-to-image with diffusion models. Diffusion models [11] show promising
abilities for both image and video generation. In this work, we opt for the
widely used Stable Diffusion [35] as the base model, which adapts the denoising
procedure in the latent space with lower computations. It initially employs VQ-
VAE [20] as the latent encoder to transform an image x0 into the latent space:
z0 = E(x0). During training, Stable Diffusion transforms the latent into Gaussian
noise as follows:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where the noise ϵ ∼ U([0, 1]), and ᾱt is a cumulative products of the noise
coefficient αt at each step. Afterward, it learns to predict the added noise as:

Ez,c,ϵ,t(∥ϵθ(zt, c, t)− ϵ∥22). (2)

t is the diffusion timestep, c is the condition of text prompts. During inference,
Stable Diffusion is able to recover an image from Gaussian noise step by step
by predicting the noise added for each step. The denoising results are fed into
a latent decoder to recover the colored images from latent representations as
x̂0 = D(ẑ0).

3.2 Overall Pipeline

The framework of LivePhoto is demonstrated in Fig. 2. The model takes a
reference image, a text, and the motion intensity as input to synthesize the
desired video. When the ground truth video is provided during training, the
reference image is picked from the first frame, and the motion intensity is
estimated from the video. During inference, users could customize the motion
intensity or directly use the default level. LivePhoto utilizes a 4-channel tensor
of zB×F×C×H×W to represent the noise latent of the video, where the dimensions
mean batch, frame, channel, height, and width, respectively. The reference latent
is extracted by VAE encoder [20] to provide local content guidance. Meanwhile,
the motion intensity is transformed to a 1-channel intensity embedding. We
concatenate the noise latent, the reference latent, the intensity embedding, and
a frame embedding to form a 10-channel tensor for the input of UNet. At the
same time, we use a content encoder to extract the visual tokens of the reference
image and inject them via cross-attention. A prompt adapter is added after
the text encoder [32], which learns to assign different weights to each part of the
text to accentuate the motion descriptions of the text. Following modern text-to-
video models [2,10]. We freeze the stable diffusion [35] blocks and add learnable
motion modules [10] at each stage to capture the inter-frame relationships. To
generate high-quality results, we follow previous works [40, 52] to add a spatial
upscaler to recover the fine details.
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3.3 Image Content Guidance

The most essential step is enabling LivePhoto to keep the identity of the refer-
ence image. Thus, we collect local guidance by concatenating the reference latent
at the input. Moreover, we employ a content encoder to extract image tokens
for global guidance. Additionally, we introduce the image inversion in the initial
noise to offer content priors.
Reference latent. We extract the reference latent and incorporate it at the
UNet input to provide pixel-level guidance. Simultaneously, a frame embedding
is introduced to impart temporal awareness to each frame. Thus, the first frame
could totally trust the reference latent as it is required to re-generate the given
reference image. Subsequent frames make degenerative references and exhibit
distinct behavior. The frame embedding is represented as a 1-channel map, with
values linearly interpolated from zero (first frame) to one (last frame).
Content encoder. The reference latent effectively guides the initial frames
due to their higher pixel similarities. However, as content evolves in subsequent
frames, understanding the image and providing high-level guidance becomes
crucial. Drawing inspiration from [6], we employ a frozen DINOv2 [30] to extract
patch tokens from the reference image. We add a learnable linear layer after
DINOv2 to project these tokens, which are then injected into the UNet through
newly added cross-attention layers.
Prior inversion. Previous methods [19, 25, 27, 41, 45] prove that using an in-
verted noise of the reference image, rather than a pure Gaussian noise, could
effectively provide appearance priors. During inference, we add the inversion of
the reference latent r0 to the noise latent znT of frame n at the initial denoising
step (T), following Eq. (3).

z̃nT = αn · Inv(r0) + (1− αn) · znT , (3)

where αn is a descending coefficient from the first frame to the last frame. We
set αn as a linear interpolation from 0.033 to 0.016 by default.

3.4 Motion Intensity Guidance

It is challenging to align the motion coherently with the text. We analyze the
core issue is that the text lacks descriptions for the motion speed and magnitude.
Thus, the same text leads to various motion intensities, creating ambiguity in
the optimization process. To address this, we leverage the motion intensity as
an additional condition. We parameterize the motion intensity using a single
coefficient. Thus, the users could adjust the intensity conveniently by sliding a
bar or directly using the default value.

In our pursuit of parameterizing motion intensity, we experimented with
various methods, such as calculating optical flow magnitude, computing mean
square error between adjacent frames, and leveraging CLIP/DINO similarity
between frames. Ultimately, we found that Structural Similarity (SSIM) [44]
produces results the most aligned with human perceptions. Concretely, given
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a training video clip Xn with n frames, we determine its motion intensity I by
computing the average value for the SSIM [44] between each adjacent frame. The
structure similarity considers the luminance, contrast, and structure differences
between two images.

We compute the motion intensity on the training data to determine the
overall distribution and categorize the values into 10 levels. We create a 1-channel
map filled with the level numbers and concatenate it with the input of UNet.
During inference, users can utilize level 5 as the default intensity or adjust it
between levels 1 to 10. Throughout this paper, unless specified, we use level 5 as
the default. The motion intensity guidance simplifies the learning of text-motion
alignment and brings significantly better motion quality.

3.5 Prompt Adapter

Another challenge in instructing video motions arises from the fact that the text
prompt encompasses both “content descriptions” and “motion descriptions”. The
“content descriptions”, translated by the frozen Stable Diffusion, often fail to
perfectly align with the ground truth videos. The text descriptions could only
guide the semantic and color consistency, but hard to depict the identity and fine-
grained layouts. This issue commonly exists in the training data. Considering
that the text-to-image model is frozen, these content conflicts could not be solved
by training. In image-to-video generation, as the reference image provides more
consistent content guidance compared with the text, the model learns to trust
the reference image. Thus, the whole text tends to be overlooked.

The problem of content conflicts also exists in text-to-video generation, freez-
ing the text-to-image modules causes inferior performance. To alleviate the
conflict, AnimateDiff adds a domain adapter in the frozen Stable Diffusion.
This solution eases the optimzation, but the trained model always requires an
additional Lora to control the content.

Instead of adding adapters in the frozen Stable Diffusion module, we explore
manipulating the CLIP text embeddings to suppress the content description and
accentuate the motion descriptions. Recognizing that directly tuning the text
encoder on limited samples might impact generalization, we investigate adjusting
the weights of each embedding without disrupting the CLIP feature space.
Concretely, we add three trainable transformer layers and a linear projection
layer after the CLIP text embeddings. Afterward, the predicted weights are
normed from 0 to 1 with a sigmoid function. These weights are then multiplied
with the corresponding text embeddings, thereby providing guidance that focuses
on directing the motions. The comprehensive structure of the prompt adapter
and actual examples are depicted in Fig. 3. The numerical results prove that the
module successfully learns to emphasize the “motion descriptions”. This allows
signals from images and texts to integrate more effectively, resulting in stronger
text-to-motion control.
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A Shiba Inu is sitting down on the ground.
0.52 0.65 0.82 0.86 0.82 0.59 0.62 0.61

The hair of the woman flies in the wind.
0.50 0.69 0.60 0.55 0.59 0.73 0.69 0.58 0.72

The little boy in red opens his mouth.
0.52 0.51 0.60 0.59 0.70 0.78 0.70 0.76

Scene of the snow mountain, snow flakes is failing down from the sky, the camera moves from far to near.
0.60 0.58 0.57 0.66 0.67 0.68 0.64 0.73 0.77 0.82 0.79 0.62 0.70 0.55 0.71 0.87 0.83 0.79 0.75 0.70

Fig. 3: Demonstrations for the structure of prompt adapter. We use three
transformer encoder layers and a frame-specific linear layer to predict the weight of each
text token. Examples are given on the right. In cases where multiple tokens correspond
to a single word, we calculate the average weight for better visualization. The words
with the maximum weight are underlined.

4 Experiments

4.1 Implementation Details

Detailed configurations. We implement LivePhoto based on the frozen Stable
Diffusion v1.5 [35]. The structure of our Motion Module aligns with Animate-
Diff [10]. Our model is trained on the WebVID [1] dataset employing 8 A100
GPUs. We sample training videos with 16 frames, perform center-cropping, and
resize each frame to 256 × 256 pixels. A commonly used MSE loss is leveraged
to train the model. During inference, the default output resolution aligns with
previous works [43,46] as 256×256, we also provide an option for users to upscale
the video into 1024× 1024 using the 4×upscaler provided by Stable Diffusion.
Evaluation protocols. We conduct user studies to compare our approach with
previous methods and analyze our newly designed modules. To validate the
generalization ability, we gather images from various domains encompassing real
images and cartoons including humans, animals, still objects, natural sceneries,
etc. For quantitative assessment, we utilize the validation set of WebVID [1] and
MSR-VTT [47]. The first frame and prompt are used as controls to generate
videos. Following image customization methods [6, 9, 36], we assess the ID-
preserving ability using DINO similarities between the reference frames and
each generated frame. Motion intensity is evaluated using SSIM as introduced in
Sec. 3.4. We measure the average CLIP similarity [32] between adjacent frames
to evaluate the frame consistency following previous works [8, 43].

4.2 Ablation Studies

In this section, we thoroughly analyze each of our proposed modules to substan-
tiate their effectiveness. We first analyze how to add content guidance with the
reference image, which is an essential part of our framework. Following that, we
delve into the specifics of our newly introduced motion intensity guidance and
prompt adapter.
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“The man is smiling.”

Reference Latent
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++ Prior Inversion
Ref Image

Reference Latent
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“The otter is surfing.”Ref Image

Fig. 4: Ablations for the image content guidance. Only concatenating the
reference latent with the model input meets challenges in preserving the identity. The
content encoder and prior inversion gradually enhance the performance.

Table 1: Quatitative analysis for image content guidance on WebVID [1]. We
assess the ID preservation ability, the motion intensity, and the frame consistency.
Each module brings improvements in ID-preserving and frame consistency. The motion
intensity decreases because of the suppression of collapse and distortions.

Method ID Preservation Motion Intensity Frame Consistency

Reference Latent 64.1 47.8 91.7
+ Content Encoder 77.0 29.5 93.2
++ Prior Inversion 81.2 24.4 95.2

Image content guidance. As introduced in Sec. 3.2, we concatenate the
reference latent with the input as the pixel-wise guidance and use a content
encoder to provide the holistic identity information. Besides, the prior inversion
further assists the generation of details. In Fig. 4, we illustrate the step-by-step
integration of these elements. In row 1, the reference latent could only keep
the identity for the starting frames as the contents are similar to the reference
image. After adding the content encoder in row 2, the identity for the subsequent
frames could be better preserved but the generation quality for the details is
not satisfactory. With the inclusion of prior inversion, the overall quality sees
further improvement. The quantitative results in Tab. 1 consistently confirm the
effectiveness of each module. The motion intensity decreases because of fewer
collapses and distortions. These three strategies serve as the core of our strong
baseline for real image animation.
Motion intensity guidance. As introduced in Sec. 3.4, we parameterize the
motion intensity as a coefficient, and use it to indicate the motion speed and
ranges. We carry out ablation studies in Fig. 5. The absence of motion intensity
guidance often leads to static or erratic video outputs, as depicted in the first
row. However, with the introduction of intensity guidance, the subsequent rows
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w/o  Motion Intensity Guidance Ref Image w/o Motion Intensity Guidance Ref Image

Motion Intensity Level: 2 Motion Intensity Level: 5 Ref Image Ref Image

Motion Intensity Level:  7 Motion Intensity Level: 10 Ref Image Ref Image

Fig. 5: Illustrations of motion intensity guidance. The prompt is “The bear is
dancing”. Without intensity guidance, the generated video tends to either keep still or
quickly become blurry. With the option to set varying intensity levels, users can finely
control the motion range and speed. It should be noted that excessively high-intensity
levels might induce motion blur, as observed in the last case.

Ref Image

w/o Prompt Adapter. Becomes a “baby”.

w/o Prompt Adapter. Becomes a “dinosaur”.

w/ Prompt Adapter. Emphasizes “waving its hand.”

The little yellow baby dinosaur is waving its hand.
0.49 0.50 0.57 0.65 0.70 0.82 0.87 0.57 0.86

w/o Prompt Adapter. Does not follow the text.

Fig. 6: Ablation for prompt adapter. Without the prompt adapter, the model
tends to either disregard the text entirely or fixate on content-related descriptions
like “baby dinosaur”. When re-weighting is applied, content descriptions are suppressed
while motion-related details like “waving its hand” gain emphasis. The predicted weights
of the prompt adapter are marked at the bottom.

display varying motion levels, allowing for the production of high-quality videos
with different motion ranges. Notably, lower levels like level 2 generate almost
static videos, while higher levels like 10 occasionally produce overly vigorous
motions. Users could directly use the default value (level 5) or tailor the inten-
sity according to specific preferences. The motion intensity guidance eases the
learning of motion, significantly improves the motion quality, and thus sets a
basis for aligning the motion with the text instructions.
Prompt adapter. In Fig. 6, we demonstrate the efficacy of prompt adapter.
In the given examples, the content description “baby dinosaur” would conflict
with the desired content depicted by the reference image. In the first three rows,
without the assistance of prompt adapter, the frozen Stabel Diffusion tends to
synthesize the content through its understanding of the text. Thus, the produced
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Table 2: Quatitative analysis for novel components on WebVID [1]. We evaluate
the ability of ID preservation, motion intensity, and frame consistency. The results show
that our newly designed modules bring consistent improvements.

Method ID-Preservation Motion Intensity Frame Consistency

Baseline (w/ Image Content Guidance ) 75.1 15.3 93.1
Baseline + Prompt Adapter 77.5 18.8 94.8
Baseline + Motion Intensity Guidance 79.1 21.4 93.9
LivePhoto-Full 81.2 24.7 95.2

Table 3: Qualitative comparisons with previous works on MSR-VTT [47].
LivePhoto demonstrates superior results compared with previous methods. We leverage
an extended version of AnimateDiff [41] supporting image-to-video.

Method FVD (↓) ID-Preservation Motion Intensity Frame Consistency

AnimateDiff* [41] 687 65.4 55.4 81.6
VideoComposer 356 73.2 25.8 90.5
LivePhoto 289 80.2 26.7 93.1

video tends to ignore the text and follow the reference image as in row 1. In
other cases, it has risks of becoming a “baby” (row 2) or a “dinosaur” (row 3).
As visualized in the bottom of Fig. 6, the prompt adapter elevates emphasis on
motion descriptions like “waving its hand”. Prompt adapter enables our model
to faithfully follow text-based instructions for motion details while upholding
image-consistent content with the reference image.
Quantitative results. The numerical results are listed in Tab. 2. As the motion
intensity guidance significantly increases the motion quality, reducing the rate
of collapse and distortion, it brings consistent gains for all three metrics. The
prompt adapter contributes to a more precise prompt-following ability. It also
leads to all-sided improvements.

4.3 Comparisons with Existing Alternatives

We compare LivePhoto with other works that support image animation with
text control. VideoComposer [43] is a strong compositional generator cover-
ing various conditions including image and text. GEN-2 [34] and Pikalabs [33]
are famous products that support image and text input. AnimateDiff-I2V [25]
and Talesofai [41] are open-source projects claiming similar abilities. I2VGEN-
XL [52], PIA [53], and DynamiCrafter [46] are concurrent works.
Qualitative analysis. In Fig. 7, we compare LivePhoto with VideoComposer [43],
Pikalabs [33], and GEN-2 [34] with representative examples. The selected ex-
amples cover animals, humans, cartoons, and natural scenarios. To reduce the
randomness, we ran each method 8 times to select the best result for more fair
comparisons. VideoComposer demonstrates proficiency in creating videos with
significant motion. However, as not specifically designed for photo animation, the
identity-keeping ability is not satisfactory. The identities of the reference images
are lost, especially for less commonly seen subjects. Additionally, it shows a
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Fig. 7: Comparison results with other methods. We compare our LivePhoto
with VideoComposer [43], Pikalabs [33], and GEN-2 [34]. We select representative cases
covering animal, human, cartoon, and natural scenery. To ensure a fair evaluation, we
executed each method 8 times, presenting the most optimal outcomes for comparison.
In each example, the reference image is displayed on the left, accompanied by the text
prompt indicated at the bottom. LivePhoto demonstrates a superior prompt-following
ability while finely preserving the identity.

lack of adherence to the provided text instructions. Pikalabs [33] and GEN-
2 [34] produce high-quality videos. However, as a trade-off, the generated videos
own limited motion ranges. Although they support text as supplementary, the
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Fig. 8: Comparisons with concurrent works or open-source projects.
I2VGEN-XL [52], AnimateDiff-I2V [25], and Talesofai [41] also support image anima-
tion. I2VGEN-XL generates “relevant” content with the reference image. The produced
videos of AnimateDiff-I2V rarely move. Talesofai struggles for real photos. PIA [53] and
DynamiCrafter [46] also struggle for keeping the consistent identities.

text descriptions seldom work. The motions are generally estimated from the
content of the reference image. In contrast, LivePhoto adeptly preserves the
identity of the reference image and generates consistent motions with the text in-
structions. It performs admirably across various domains, encompassing animals,
humans, cartoon characters, and natural sceneries. It not only animates specific
actions (examples 1-4) but also conjures new effects from thin air (examples 5-6).

We also compare LivePhoto with the open-sourced project and concurrent
works in Fig. 8. I2VGEN-XL [52], Talsofai [41], PIA [53], and DynamiCrafter [46]
suffer from the limited ID-preservation ability. AnimateDiff-I2V [25] keeps the
image identity but exhibits very limited motion intensity.
User studies. The qualitative metrics have limitations in thoroughly evaluating
the model, especially for the motion quality and prompt-following ability.Thus,
we carry out user studies. We ask the annotators to rate the generated videos
from 4 perspectives: Text consistency measures whether the motion follows
the text descriptions. Motion quality assesses the reasonableness of generated
motion, encompassing aspects such as speed and deformation. Image consistency
evaluates the identity-keeping ability of the reference image. Content quality
considers the general quality of videos like the smoothness, the resolution, etc.

We construct a benchmark with five tracks: humans, animals, cartoon char-
acters, still objects, and natural sceneries. We collect 10 reference images per
track and manually write 2 prompts per image. Considering the variations that
commonly exist in video generation, each method is required to predict 8 re-
sults. Thus, we get 800 samples for each method. We ask 10 annotators to rate
the predictions according to the aforementioned four perspectives. We compare
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Table 4: Results of user study. We let annotators rate from four perspectives:
Text consistency (Ctext) measures the adherence to the text prompt in directing
motion. Motion quality (Qmot) evaluates appropriateness of motions. Image consis-
tency (Cimage) evaluates the capability to maintain the identity of the reference image.
Content quality (Qcont) focuses on the inter-frame coherence and resolutions.

Ctext (↑) Qmot (↑) Cimage (↑) Qcont (↑)

VideoComposr [43] 2.9 3.1 2.5 3.1
Pikalabs [33] 2.5 2.9 3.8 4.3
GEN-2 [34] 2.4 3.0 3.6 4.6

Baseline (w/ Image Content Guidance) 2.0 2.5 2.9 3.5
+ Motion Intensity Guidance 3.2 3.3 3.1 3.7
++ Prompt Adapter 3.9 3.5 3.3 3.8

LivePhoto with VideoComposer [43], GEN-2 [34], and Pikalabs [33]. To compare
GEN-2 and Pika, we leverage an upscaled version of LivePhoto as introduced in
Sec. 4.1 with high-resolution outputs.

Results are reported in Tab. 4. Compared with VideoComposer [43], our
I2V-Baseline shows better ID-preserving ability (Cimage) and inferior prompt-
following ability (Ctext) as a trade-off. From this baseline, the motion inten-
sity guidance and prompt adapter bring steady improvements for the prompt-
following ability and generation quality. At the same time, with improvements
in motion, the collapse and distortion cases decrease. Thus the image-related
quality (Cimage, Qcontent) also improves.

GEN-2 and Pika are commercial products that investigate more training
data and larger models. Compared with them, LivePhoto shows significantly
better text consistency and motion quality. GEN-2 and Pika show better ID-
preservation ability (Cimage), however, their generated video seldom moves as a
trade-off. We admit that GEN-2 and Pikalabs own superior smoothness and
resolution. We infer that they might collect much better training data and
training with higher resolutions. However, as an academic method, LivePhoto
shows distinguishing advantages over mature products in certain aspects. We
have reasons to believe its potential for future applications.

5 Conclusion

We introduce LivePhoto, a novel framework for photo animation with text
control. We propose a strong baseline that gathers the image content guidance
from the given image and utilizes motion intensity as a supplementary to better
capture the desired motions. Besides, we propose a prompt adapter to accentuate
the motion descriptions. The whole pipeline illustrates impressive performance.
Limitation and potential effects. LivePhoto is implemented on SD-1.5 and
trained limited data (WebVID [1]). We believe that with more training data
and stronger models like SD-XL [31] or even transformer-based larger diffusion
models, the overall performance could be further improved significantly.
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