
Supplementary Material for Distill Gold from
Massive Ores: Bi-level Data Pruning towards

Efficient Dataset Distillation

We provide the following details and analyses in the supplementary:
Sec. 1: Relation between Loss and Its Derivative.
Sec. 2: Error of ITE Estimation.
Sec. 3: Comparison to Coreset Selection Methods.
Sec. 4: Overfitting Analysis.
Sec. 5: Model Generalization.
Sec. 6: Implementation Details.
Sec. 7: More Visualizations.
Sec. 8: Licenses.

1 Relation between Loss and Its Derivative

In BiLP, we use ℓ(ur, yr) as preemptive selection criterion since it is monotonous
concerning ∥∂ℓ(ur,yr)

∂ur
∥ for common loss functions like Mean Squared Error (MSE)

or cross-entropy, or say ℓ(ur, yr) and ∥∂ℓ(ur,yr)
∂ur

∥ are positive correlated. Let’s
consider the two common loss functions mentioned:

1. Mean Squared Error (MSE): The MSE loss function is defined as ℓ(u, y) =
1
2 (u− y)2, where u is the predicted value and y is the actual value. The gra-
dient of the MSE with respect to u is ∂ℓ

∂u = u−y. The gradient norm is then
∥ ∂ℓ
∂u∥ = |u− y|. Thus, larger ∥ ∂ℓ

∂u∥ leads to largerℓ(u, y).
2. Cross-Entropy: The cross-entropy loss function for binary classification

is defined as ℓ(u, y) = − log(uy), where u is the predicted logits of the
N class and each component ui > 0, and y is the actual class. The gra-
dient of the cross-entropy with respect to each component ui is ∂ℓ

∂ui
={

− 1
uy

, if i = y

0, otherwise
. The gradient norm is ∥ ∂ℓ

∂u∥ = 1
uy

√
N

. So larger ∥ ∂ℓ
∂u∥

indicating a small uy and therefore the ℓ(u, y) is large.

Overall, for these two loss functions, ∥ ∂ℓ
∂ur

∥ and ℓ(ur, yr) are positively cor-
related.

2 Error of ITE Estimation

In BiLP, we have implemented the Taylor approximation technique to enhance
the efficiency of ITE value computations. To quantitatively assess the error of
the Taylor approximation, we conducted an experiment where both the original
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Fig. 1: Visualization of the original and the Taylor-approximated ITE rankings for
CIFAR10 [11] with IPC=10. An ideal approximation would reveal a 45-degree diagonal
line.

Table 1: Comparison to coreset selection on CIFAR10, IPC=1 and DC algorithm.

Selection
Criterion

Pruning Ratio

99% 97% 95% 90% 80% 70% 0% (Full dataset)

Random 25.6±0.6 27.6±0.8 27.6±0.6 28.2±0.3 28.5±0.4 28.7±0.3

28.3±0.5
Loss (remove large) 29.7±0.1 29.7±0.0 30.0±0.1 30.0±0.2 30.2±0.1 30.2±0.2

Coreset: CRAIG [17] 25.4±0.6 27.8±0.2 28.8±0.5 28.6±0.4 29.0±0.1 29.0±0.2
Coreset: GradMatch [8] 26.5±0.5 28.0±0.3 28.7±0.5 28.4±0.3 28.9±0.2 29.4±0.3
Coreset: GLISTER [9] 23.8±0.5 26.9±0.2 23.5±0.1 21.3±0.6 24.0±0.9 24.9±0.8

and the Taylor-approximated ITE values were calculated within a mini-batch
consisting of N samples. The samples were then sorted based on their ITE
values, resulting in rankings represented by ri and r′i for each ith sample within
the range of [1, N ]. To evaluate the discrepancy between the two sets of rankings,
we utilized the average relative error metric, defined as 1

N(N−1)

∑N
i=1 |ri − r′i|,

with a range of [0, 1). Experimenting on the CIFAR10 dataset with an IPC of 10,
our analysis revealed an average error rate of 2.7%, which is considered negligible
for pruning.

Furthermore, to provide a more intuitive understanding of our approxima-
tion’s performance, we visualize the rankings in Fig. 1. The x-axis corresponds to
the original ITE rankings, while the y-axis depicts the rankings derived from the
Taylor approximation, with each of the 10 classes distinctly plotted. The closer
the distribution of points to a 45-degree diagonal line, the higher the similarity
between the two computation methods. The figure demonstrates that our Taylor
approximation closely mirrors the original ITE rankings, thereby validating its
efficacy.
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Table 2: Comparison to coreset selection on CIFAR10, IPC=50 and DC algorithm.

Selection
Criterion

Pruning Ratio

70% 60% 50% 30% 0% (Full)

Random 53.0±0.2 53.6±0.3 54.0±0.5 54.2±0.3

54.1±0.3
Loss (remove large) 54.1±0.2 54.9±0.3 55.3±0.3 56.0±0.2

Coreset: CRAIG [17] 48.8±0.4 48.8±0.2 49.0±0.4 49.1±0.4
Coreset: GradMatch [8] 49.0±0.3 49.1±0.3 49.1±0.4 49.1±0.5
Coreset: GLISTER [9] 41.9±0.4 43.9±0.5 44.0±0.5 47.0±0.5

Table 3: Maximum pruning ra-
tio on more distillation algo-
rithms.

Dataset IPC CAFE [22] LinBa [4] IDC [10]

CIFAR10 [11] 1 85% 30% 50%
10 89% 70% 90%

SVHN [18] 1 70% 50% 40%
10 40% 40% 70%

MNIST [14] 1 90% 70% 99.5%
10 1% 60% 60%

Table 4: Maximum
pruning ratio of various
initializations on CI-
FAR10 [11].

IPC Init DC [27] DM [26]

1
Noise 90% 90%
Real 90% 85%
Herd 90% 85%

10
Noise 70% 70%
Real 70% 60%
Herd 70% 70%

Table 5: Maximum prun-
ing ratio of various net-
works on CIFAR10 [11].

IPC Net DC [27] DM [26]

1

Conv [23] 90% 85%
MLP 97% 95%
ResNet [6] 95% 85%
VGG [20] 90% 95%
AlexNet [12] 95% 95%

10 Conv [23] 70% 60%
MLP 60% 60%

3 Comparison to Coreset Selection Methods

The existing coreset selection methods can also be exploited as sample selection
criteria. So we conduct a comparison with recent coreset selection methods on
CIFAR10 [11] and DC [27] algorithm, including CRAIG [17], GradMatch [8] and
GLISTER [9]. We adopt these methods as a preemptive pruning criterion. We
use the algorithms implemented by the CORDS package. The results are shown
in Tab. 1 and 2. CRAIG and GradMatch coreset selection can achieve a 97%
maximum pruning ratio when IPC=1, though still worse than the loss criterion.
The GLISTER algorithm does not perform well on dataset distillation and is
worse than random selection. Thus, on the data pruning for dataset distillation,
our loss indicator can surpass some sophisticated selection algorithms.

3.1 Data Redundancy on Various Architectures and Initialization

In the main paper, we examine the real data redundancy in dataset distillation
by randomly removing some real samples before the training. Here we present
more results in Tabs. 3 to 5 with more algorithms and various initialization and
network architectures, which exhibit large pruning ratios and indicate significant
data redundancy.
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Fig. 2: Train and test loss curves for different pruning rates.

4 Overfitting Analysis

We compare the train and test loss curve on distilled data with different pruning
rates in Figure 2 on CIFAR10 and IPC=1 (5 repeats). The test loss curves do not
drastically increase after the convergence of training, and all the loss curves are
similar, showing that a large pruning rate does not enhance overfitting problems.
This is consistent with the explanation in Sec. 4.1: due to the limited capacity of
the synthetic dataset, removing some unimportant or outlier data samples does
not harm the distillation process.

5 Model Generalization

5.1 Cross-Architecture Generalization of Preemptive Pruning

We conducted a cross-architecture evaluation to verify whether the data pruning
harms the generalization ability. We first follow DC [27] to experiment on MNIST
and IPC=1. We remove the training samples with the largest loss values and we
compare the training subsets with 100% (full data, original setting in DC paper),
10%, 5%, and 3%. The results are shown in Tab. 6 in the rebuttal PDF file,
showing that pruning the training dataset does not damage the generalization
ability of the distilled data. On the contrary, in most slots (28/36), data pruning
can even enhance the generalization ability.

We also conduct experiments on larger IPCs with DC [27] and MTT [2]. The
results are shown in Tab. 7 and 8. On larger IPCs, pruning the training dataset
still does not damage the generalization ability of the distilled data.

5.2 Cross-Architecture Generalization of Full BiLP

In this study, we present a cross-architecture evaluation that demonstrates the
efficacy of synthetic data trained on the ConvNet-D3 architecture while be-
ing assessed across different neural network architectures including ResNet [6],
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Table 6: Cross-architecture generalization on CIFAR10 [11] and IPC=1 with DC [27]
algorithm. Best results are marked in bold green. The generalization ability of pruned
data is superior or comparable to the originals.

Evaluate
Network

Pruning
Ratio

Distill Network
MLP ConvNet LeNet AlexNet VGG ResNet

MLP

0% (Full) 24.3±1.8 26.5±0.2 24.1±0.4 26.5±0.1 25.1±0.3 24.9±0.4
60% 23.0±1.4 26.6±0.3 24.2±0.5 26.6±0.1 25.1±0.1 25.1±0.1
80% 23.7±0.9 26.5±0.4 24.3±0.7 26.6±0.1 25.2±0.1 24.6±0.3
95% 25.1±1.4 26.8±0.2 24.3±0.2 26.6±0.2 25.3±0.3 24.8±0.4

ConvNet [23]

0% (Full) 22.7±1.1 28.8±0.4 21.8±0.2 27.0±0.5 25.8±0.4 26.2±0.3
60% 23.0±1.7 28.7±0.1 22.1±0.3 26.9±0.2 25.8±0.3 26.2±0.2
80% 23.4±0.9 28.8±0.2 22.2±0.3 26.8±0.3 25.6±0.2 26.2±0.2
95% 23.7±0.8 29.1±0.2 22.3±0.3 26.9±0.4 25.8±0.1 26.1±0.3

LeNet [14]

0% (Full) 16.0±2.6 17.9±0.8 14.9±1.1 15.7±1.5 18.2±1.3 16.6±1.1
60% 16.8±1.9 17.6±0.8 15.6±0.2 16.1±0.7 18.8±0.4 16.4±1.1
80% 18.9±1.5 17.3±0.6 14.0±0.6 16.2±1.1 19.3±0.6 15.8±0.9
95% 17.9±1.0 17.9±1.2 15.1±0.7 15.6±0.6 19.1±0.8 16.8±1.2

AlexNet [12]

0% (Full) 20.8±0.5 22.9±0.3 22.7±0.6 21.1±0.2 22.7±0.2 22.3±0.2
60% 19.4±1.2 22.7±0.4 23.0±0.4 21.1±0.4 22.7±0.1 22.3±0.2
80% 21.2±0.6 23.0±0.3 23.1±0.7 20.6±0.1 22.6±0.1 22.2±0.3
95% 21.3±0.4 22.9±0.2 23.1±0.4 21.2±0.5 22.8±0.2 22.3±0.2

VGG [20]

0% (Full) 20.3±3.1 15.7±0.6 20.4±0.8 23.6±0.7 18.0±0.8 18.5±0.4
60% 20.2±1.6 15.8±0.4 20.3±0.5 24.0±0.6 18.6±0.4 18.1±0.3
80% 19.9±2.2 15.3±0.8 20.6±0.8 23.6±0.6 18.1±0.7 18.2±0.7
95% 20.4±1.7 15.3±0.7 20.4±0.8 23.0±0.8 18.0±0.9 18.2±0.7

ResNet [6]

0% (Full) 18.3±1.6 16.7±0.9 15.1±0.8 17.5±0.5 16.0±0.7 18.1±1.1
60% 18.9±1.8 17.2±1.0 15.2±0.5 17.8±0.6 15.6±1.0 18.5±0.6
80% 17.0±1.1 16.3±0.7 13.9±1.0 17.6±1.3 15.2±0.6 19.2±0.8
95% 18.8±1.4 16.7±0.6 14.3±0.7 17.0±1.4 15.0±0.4 18.3±0.7

EfficientNet [21], and DenseNet [7]. The experiments are conducted using the
CIFAR10 dataset at three IPC levels 1, 10, and 50. As shown in Tab. 9, the
synthetic data generalize well when applied to other network architectures, e.g .
at IPC=50, all three model types achieve performance that is on par with those
obtained from the in-situ evaluation using ConvNet-D3. This indicates that the
synthetic data is capable of maintaining its predictive accuracy across diverse
architectures. Furthermore, our comparative analysis reveals that the BiLP con-
sistently outperforms IDC in the majority of the conducted experiments.

5.3 Generalization to Larger Data

We add experiments on larger dataset (e.g . ImageNet) and larger IPC (we adopt
DATM [5] algorithm). We re-implement DATM with TESLA for efficiency and
compare BiLP (preemptive pruning 10% data) to the reproduced DATM results.
As shown in Table 10, BiLP could enhance DATM on small IPCs and is compa-
rable at large IPCs, and could also achieve lossless performance at IPC=1000.
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Table 7: Cross-architecture generalization on CIFAR10 [11] and IPC=50 with DC [27]
algorithm.

Sample Ratio Evaluate Network
MLP ConvNet LeNet AlexNet VGG ResNet

0% (Full) 28.01±0.40 54.02±0.51 28.12±2.16 29.48±0.58 39.44±0.67 22.72±1.08
30% 29.48±0.28 55.96±0.40 30.83±1.51 29.54±2.60 41.99±0.47 24.35±0.42
50% 30.40±0.28 55.25±0.32 31.15±1.25 30.53±2.21 43.09±0.41 25.81±1.04
70% 30.15±0.21 54.77±0.47 31.44±0.72 33.45±1.18 43.35±0.60 25.48±0.53

Table 8: Cross-architecture generalization on CIFAR10 [11] and IPC=10 with MTT [2]
algorithm.

Sample Ratio Evaluate Network
ConvNet AlexNet VGG ResNet

0% (Full) 64.3±0.7 34.2±2.6 50.3±0.8 46.4±0.6
10% 64.6±0.4 34.3±2.4 51.1±1.1 48.6±0.4

We also conduct experiment of SRe2L [24] in Table 11. BiLP could enhance the
performance with less data, e.g., BiLP with only 50% data could significantly
enhance SRe2L.

6 Implementation Details

6.1 Datasets and Metric

Our experiments are conducted on the following datasets and we report the top-1
accuracy as the metric, most of which are widely adopted in dataset distillation.

– CIFAR10 [11]: image dataset of common objects with 10 classes and 50,000
image samples. The images are 32x32 with 3 channels.

– CIFAR100 [11]: image dataset of common objects with 100 classes and 50,000
samples. The images are 32x32 with 3 channels.

– SVHN [18]: street digit dataset with 10 classes and 73,257 samples. The
images are 32x32 with 3 channels.

– TinyImageNet [13]: a subset of ImageNet with 200 classes and 100,000 im-
ages. The images are 64x64 with 3 channels.

– ImageNet [3]: image datasets of common objects with 1000 classes and
1,281,167 samples. We resize the images to 64x64 with 3 channels follow-
ing the previous setting [29].

– Kinetics-400 [1]: human action video dataset with 400 classes and 215,617
video samples. The videos are resampled to 8 frames per clip and resized to
64x64.
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Table 9: Cross-architecture evaluation of synthetic data trained on ConvNet-D3 with
BiLP, on CIFAR10 [11].

Architecture Method IPC
1 10 50

ConvNet-D3 [23] IDC 50.6±0.4 67.5±0.5 74.5±0.1
BiLP+IDC 51.5±0.3 69.4±0.5 75.4±0.2

ResNet [6] IDC 42.8±1.2 64.8±0.9 71.9±1.3
BiLP+IDC 43.3±0.6 65.5±1.0 72.8±0.4

EfficientNet [21] IDC 38.5±1.0 42.2±0.8 71.4±1.5
BiLP+IDC 38.5±0.6 43.7±2.5 71.9±1.0

DenseNet [7] IDC 37.9±0.6 64.8±0.8 70.4±0.5
BiLP+IDC 38.3±0.5 64.6±0.4 70.7±0.7

Table 10: DATM [5] and BiLP perfor-
mance on CIFAR10. Full=84.8%.

IPC 1 10 50 500 1000

DATM 47.0 65.7 72.9 81.3 84.8
DATM+BiLP 47.4 66.1 74.0 81.3 84.6

Table 11: SRe2L [24] and BiLP perfor-
mance on large dataset ImageNet [3].

IPC 1 10

SRe2L 1.2 21.3
SRe2L+BiLP (50% data) 1.6 27.0

6.2 Network Architectures

Following the previous work, in most of the experiments, we adopt ConvNetD3
as the network to probe the data. This network consists of 3 convolutional layers
with a 3x3 filter, each of which has 128 channels and is followed by a ReLU
non-linearity and an InstaceNorm layer. The average pooling layer aggregates
the feature map to a 128d vector and produces the logit with a linear layer.

We also adopt other architectures, including MLP (three linear layers with
hidden layer size 128), AlexNet [12], ResNet18 [6] (ResNet18+BatchNorm with
average pooling for DC algorithm), and VGG11 [20] (we use VGG11+BatchNorm
for DC algorithm).

6.3 Experiments of Random or Loss Selection

In Tab. 1-3 in the main paper, we extensively study the critical sample ratio by
random or loss value. We mainly follow the default experiment settings given by
each algorithm. The experiments are conducted on RTX 4090 GPU. We list the
experiment details:

1. For DC [27] and DSA [25], on all datasets, we run the distillation for 1000
iterations with SGD optimizer and momentum 0.5. The number of inner
loop and outer loop are (1, 1) for IPC=1, (10, 50) for IPC=10, (50, 10)
for IPC=50. The learning rate of synthetic image and network are 0.1 and
0.01. The batch size for each class is 256 and when the sample ratio is
low, we half the batch size until it is less than twice the largest class size.
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We use color, crop, cutout, scale, rotate DSA augmentation on all
datasets and additional flip on the non-digit datasets. By default, noise
initialization is used.

2. For DM [26], we run the distillation for 10000 iterations on TinyImageNet
and 20000 iterations for the others with SGD optimizer and momentum 0.5.
The learning rate of synthetic image and network are 1.0 and 0.01. The
batch size for each class is 256 and when the sample ratio is low, we half the
batch size until it is less than twice the largest class size. The same Siamese
augmentation strategy is used as in the DSA experiments. By default, real
initialization is used (the initial images are drawn after dropping).

3. For MTT [2], we drop the same data samples for buffering and distillation.
The expert trajectories are trained for 50 epochs for 100 repeats and we run
the distillation for 10000 iterations. We appreciate and follow the detailed
hyper-parameters provided by the authors.

4. For CAFE [22], as default, we run the distillation for 2000 iterations. The
initial learning rate is 0.1 and decays by 0.5 at 1,200, 1,600, and 1,800 itera-
tions. The weight of the inner layer matching loss is 0.01 and an additional
loss weight of 0.1 is put on the matching loss of the third and fourth layers.
Noise initialization is used.

5. For LinBa [4], we run distillation for 5000 iterations with SGD optimizer
with momentum 0.9. The inner steps of BPTT are 150 and the number of
bases is 16. The learning rate of synthetic image and network is 0.1 and 0.01.

6. For IDC [10], we use the “reproduce” setting of the opened source code, which
automatically sets up the tuned hyper-parameters. We use multi-formation
factor 2.

7. For KIP [19], we test on the finite-width model (KIP-NN) and use label
learning. We use longer training steps for converged results.

8. For FRePo [29], we use the official PyTorch implementation and the default
parameters, except the learning rate of 0.001 and we run the distillation for
500,000 steps.

9. For HaBa [15], we follow the official instructions and adopt the parameters
from MTT. And for the exclusive parameters for HaBa, we use the values
given in the code.

10. For RFAD [16], we test on the finite-width model (ConvNet) and load the
training hyperparameters for finite training results in the paper. The choice
of label learning follows the remarks in the paper.

11. For IDM [28], we thank the authors and we directly adopt the official running
commands.

The removal of data samples is class-wise. Each experiment is repeated
5 times for mean µ and standard deviation σ and we regard the experiment
performance as comparable to the experiment on full data if its mean accuracy
is within the [µ− σ, µ+ σ] of full data performance.

https://user-images.githubusercontent.com/18726777/184226412-7bd0d577-225b-487c-8c9c-23f6462ca7d0.png
https://user-images.githubusercontent.com/18726777/184226412-7bd0d577-225b-487c-8c9c-23f6462ca7d0.png
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Table 12: Hyper-parameters of BiLP in different experiments.

Dataset CIFAR10 [11] CIFAR100 [11] SVHN [18]
IPC 1 10 50 1 10 1 10 50

Preemptive pruning rate α 0.1 0.3 0.1 0.6 0.4 0.2 0.3 0.3
Adaptive pruning rate β 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2
Data update frequency (lazy selection) 10 5 5 10 10 10 5 5

6.4 Computation of Empirical Loss Criterion

The parameters and settings of the empirical loss criterion for the preemptive
pruning are as follows: We train the ConvNetD3 model on each dataset (Con-
vNetD3+GRU for Kinetics-400) for multiple trials for the loss indicator. We take
the average loss curve of multiple trials. By default, we use a Gaussian filter with
σ = 3 to smooth the loss curve and take the loss value at the last epoch, which
is approximately equivalent to the weighted mean loss value of the last 8
epochs. The training details are:

– CIFAR10: 50 trials for 100 epochs with learning rate 3.0e-3 and batch size
512.

– CIFAR100: 50 trials for 250 epochs with learning rate 5.0e-3 and batch size
512.

– MNIST: 50 trials for 50 epochs with learning rate 3.0e-4 and batch size 512.
– SVHN: 50 trials for 100 epochs with learning rate 1.0e-3 and batch size 512.
– TinyImageNet: 50 trials for 100 epochs with learning rate 5.0e-3 and batch

size 512.
– ImageNet: 30 trials for 20 epochs with learning rate 3.0e-3 and batch size

256 (early stop).
– Kinetics-400: 10 trials for 20 epochs with learning rate 1.0e-2 and batch size

128 (early stop).

Note that considering the conclusion in Sec. 5.5, we have adopted an early
stop on large-scale datasets to reduce the training cost.

6.5 Experiments of BiLP

We use 3-layer ConvNet for CIFAR and SVHN datasets, and 4-layer ConvNet
for TinyImageNet. For BiLP, the momentum for running stats of ITE is set to
0.1 and we set β = 30% by default. The other hyperparameters vary among
different datasets and please refer to the supplementary. We take the mean and
standard deviation of the accuracy of 5 random trials. Specifically, we show the
hyper-parameters of different experiment settings in Tab. 12. We use the same
parameters for multi-formation factor 2 or 3 for IDC.
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6.6 Experiments on the Large-scale Datasets

We apply our selection paradigm on larger-scale datasets in Sec. 5.2 in the main
paper. The experiments are conducted on at most 4 RTX 3090 GPUs and the
details are as follows:

– ImageNet, DC: the training of DC exceeds the usual GPU capacity so in
compromise we separate the 1000 classes into ten 100 class splits, which will
slightly decrease the accuracy. The other hyper-parameters are the same as
the previous experiments. For our paradigm, we prune 50% samples and
early stop at 800 iterations due to its faster convergence.

– ImageNet, DM: the DM algorithm is safe for class-separate training so we
separate the classes into 4 splits at IPC=1, 8 splits at IPC=10, and 20 splits
at IPC=50. We run the distillation for 5000 iterations with a learning rate
of 5.0. For our paradigm, we prune 50% samples and early stop at 2,000,
3,000, and 3,000 iterations for IPC=1/10/50 respectively.

– ImageNet, MTT: the expert trajectory is too expensive to compute so we
only run MTT with our selection method. We prune 90% samples which
reduces 84% of the trajectory training time. We train 60 trajectories for 50
epochs. MTT also requires large GPU memory due to the unrolling of back-
propagation, so we use synthetic steps=5, expert epochs=2, and maximum
start epoch=5. We run the distillation for 5000 iterations with an image
learning rate of 30,000 and a step size learning rate of 1.0e-6.

– Kinetics-400, DM: on Kinetics, we run DM for 5000 iterations with a learning
rate of 5.0 and batch size of 128. We separate the classes into 8 splits at
IPC=1 and 20 splits at IPC=10. For our paradigm, we prune 50% samples
and early stop at 4000 iterations. We do not use DSA augmentation for
Kinetics.

– Kinetics-400, MTT: we prune 90% samples and train 40 trajectories for 50
epochs with batch size 128. We use synthetic steps=5, expert epochs=2, and
maximum start epoch=5. We run the distillation for 5000 iterations with an
image learning rate of 30,000, step size learning rate of 1.0e-6, real batch
size 128, and synthetic batch size 64. We do not use DSA augmentation for
Kinetics.

7 More Visualizations

In this section, we present some data samples at different loss levels to qualita-
tively visualize the selection criterion.

We first stratify various datasets into 10 layers according to per-sample loss
values and visualize some samples in the layer with the smallest or largest utility
in Fig. 3, including the large-scale datasets (ImageNet and Kinetics-400). As
shown in the figure, the samples with small loss are noisy and usually hard and
corner cases, e.g . only part of the birds are shown, some dogs are acting in
strange poses, or the images of ships are captured with unusual viewing angles.
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Meanwhile, the samples with large losses are easy cases that have ideal saliency,
viewing angle, and clean background.

The digit datasets (MNIST, SVHN) show significantly more diversity vanish-
ing than the rest of the realistic datasets. Moreover, the diversity vanishing issue
is mild for large-scale datasets such as ImageNet since the intra-class discrepancy
is large such that any subset is diversified enough.

To extend our discussion on the data diversity (Sec. 5.4 in the main paper), we
give some more examples to compare the diversity for data strata with different
loss values in Fig. 4 on MNIST. The groups with large loss values are mainly
corner cases. Furthermore, as the loss value decreases (S7 or S10), the diversity
significantly drops as shown in Fig. 4 (c, d, g, h).

8 Licenses

Here are the source and license of the assets involved in our work. We sincerely
appreciate and thank the authors and creators.
Datasets:

– CIFAR10, CIFAR100 [11]: URL, unknown license.
– MNIST [14]: URL, MIT License.
– SVHN [18]: URL, unknown license.
– Tiny-ImageNet [13]: URL, unknown license.
– ImageNet [3]: URL, custom license, research, non-commercial.
– Kinetics-400 [1]: URL, Creative Commons Attribution 4.0 International Li-

cense.

Code:

– DC [27], DSA [25], DM [26]: URL, MIT License.
– MTT [2]: URL, MIT License.
– CAFE [22]: URL, no license.
– LinBa [4]: URL, no license.
– IDC [10]: URL, MIT License.
– KIP [19]: URL, no license.
– FRePo [29]: URL, no license.
– HaBa [15]: URL, Apache-2.0 License.
– IDM [28]: URL, no license.
– RFAD [16]: URL, no license.
– CORDS: URL, MIT license.

https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
https://www.kaggle.com/competitions/tiny-imagenet/
https://www.image-net.org
https://www.deepmind.com/open-source/kinetics
https://github.com/VICO-UoE/DatasetCondensation
https://github.com/GeorgeCazenavette/mtt-distillation
https://github.com/kaiwang960112/CAFE
https://github.com/princetonvisualai/RememberThePast-DatasetDistillation
https://github.com/snu-mllab/Efficient-Dataset-Condensation/
https://colab.research.google.com/github/google-research/google-research/blob/master/kip/KIP.ipynb
https://github.com/yongchao97/FRePo
https://github.com/Huage001/DatasetFactorization
https://github.com/uitrbn/idm
https://github.com/yolky/RFAD
https://github.com/decile-team/cords
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(a) CIFAR100, loss indicator, small utility (b) CIFAR100, loss indicator, large utility

(c) MNIST, loss indicator, small utility (d) MNIST, loss indicator, large utility

(e) SVHN, loss indicator, small utility (f) SVHN, loss indicator, large utility

(g) ImageNet, loss indicator, small utility (h) ImageNet, loss indicator, large utility

(i) Kinetics-400, loss indicator, small utility (j) Kinetics-400, loss indicator, large utility

Fig. 3: Qualitative comparison of multiple datasets. We conduct stratified experiments
with loss indicators and show samples in the layers with the smallest utility (left col-
umn) or largest utility (right column). We show three classes for each dataset.
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(a) Class “1”, S1 (b) Class “1”, S4 (c) Class “1”, S7 (d) Class “1”, S10

(e) Class “7”, S1 (f) Class “7”, S4 (g) Class “7”, S7 (h) Class “7”, S10

Fig. 4: More examples of different strata in the MNIST dataset. The data are stratified
by classification loss. The samples in S1 have the lowest loss values and those in S10
have the largest loss. The diversity significantly drops when the sample loss decreases
(e.g . S7, S10).
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