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Abstract. Evaluating the performance of autonomous vehicle planning
algorithms necessitates simulating long-tail safety-critical traffic scenarios.
However, traditional methods for generating such scenarios often fall short
in terms of controllability and realism; they also neglect the dynamics of
agent interactions. To address these limitations, we introduce Safe-Sim,
a novel diffusion-based controllable closed-loop safety-critical simulation
framework. Our approach yields two distinct advantages: 1) generating
realistic long-tail safety-critical scenarios that closely reflect real-world
conditions, and 2) providing controllable adversarial behavior for more
comprehensive and interactive evaluations. We develop a novel approach
to simulate safety-critical scenarios through an adversarial term in the
denoising process of diffusion models, which allows an adversarial agent to
challenge a planner with plausible maneuvers while all agents in the scene
exhibit reactive and realistic behaviors. Furthermore, we propose novel
guidance objectives and a partial diffusion process that enables users to
control key aspects of the scenarios, such as the collision type and aggres-
siveness of the adversarial agent, while maintaining the realism of the
behavior. We validate our framework empirically using the nuScenes and
nuPlan datasets across multiple planners, demonstrating improvements in
both realism and controllability. These findings affirm that diffusion mod-
els provide a robust and versatile foundation for safety-critical, interactive
traffic simulation, extending their utility across the broader autonomous
driving landscape. Project website: https://safe-sim.github.io/.

1 Introduction

A key safety feature of autonomous vehicles (AVs) is their ability to navigate
near-collision events in real-world scenarios. However, these events rarely occur
on roads and testing AVs in such high-risk situations on public roads is unsafe.
Therefore, simulation is indispensable in the development and assessment of AVs,
providing a safe and reliable means to study their safety and dependability. A
critical aspect of simulation is modeling the behavior of other road users, since
AVs must learn to interact with them safely.

A common method of safety-critical testing of AVs involves manually designing
scenarios that could potentially lead to failures, such as collisions. While this
approach allows for targeted testing, it is inherently limited in scalability and

https://safe-sim.github.io/
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Method Safety-
Critical Controllable Controllable

Adversary
Evaluate
Planner

Closed-
Loop

Real-
World

CTG [39] × ✓ × × ✓ ✓
CTG++ [38] × ✓ × × ✓ ✓
STRIVE [26] ✓ × × ✓ ✓ ✓
DiffScene [34] ✓ ✓ × ✓ × ×
Safe-Sim (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of methods. Our contribution is the development of a frame-
work for (a) safety-critical (b) closed-loop (c) controllable adversarial simulations. These
aspects are not concurrently present in previous frameworks. We formulate a novel
partial diffusion with novel guidance functions for stable long-term simulation and are
the first to enable an ego planner to be tested against controllable adversaries with
varied behavior patterns.

lacks the comprehensiveness required for thorough evaluation [7, 8, 33]. Some
recent works focus on automatically generating challenging scenarios that cause
planners to fail, but their emphasis has been mostly on static scenario generation
rather than dynamic, closed-loop simulations. This results in a critical gap: the
behavior of other agents often does not adapt or respond to the planner’s actions,
which is essential for a comprehensive safety evaluation. Furthermore, the results
from these simulations often lack controllability, typically producing only a single
adversarial outcome per scenario without the flexibility to explore a range of
conditions and responses.

In this work, we introduce Safe-Sim, a closed-loop simulation framework for
generating safety-critical scenarios, with a particular emphasis on controllability
and realism for the behavior of agents, which allows simulations over a long-
horizon as needed to evaluate AV planning algorithms (Fig. 1). Different from
prior works [26,34,38,39] that primarily adhere to rule-constraint satisfaction,
our approach enhances controllability by modulating adversarial vehicle behaviors
within identical scenarios, thereby facilitating a broader exploration of potential
outcomes. See Tab. 1 for a comprehensive comparison of these approaches.

Our approach builds upon recent developments in controllable diffusion models
[18, 25, 39]. Specifically, we adopt a test-time guidance to direct the denoising
phase of the diffusion process, using the gradients from differentiable objectives to
enhance scenario generation, enabling generation of adversarial scenarios in which
and adversarial agent collides with the ego agent behaving according to specific
planning policy. Additionally, we develop an novel approach, which we refer to as
Partial Diffusion that introduces trajectory proposals into the diffusion process
to provide a high degree of controllability over the type of collision scenario.
Overall, our balanced integration of adversarial objectives with regularization
during the guidance phase combined with Partial Diffusion allows for refined
control over the conditions of the generated scenarios, ensuring both their realism
and relevance to safety-critical testing.

In our study, we use the nuScenes [2] and nuPlan [3] datasets to evaluate
the efficacy of our method in generating safety-critical closed-loop simulations.
Our results demonstrate a marked improvement in the controllability and real-
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Fig. 1: Overview of Safe-Sim Framework for Controllable Safety-Critical
Closed-Loop Simulation. This framework evaluates a planner within scenarios
featuring multiple controllable reactive agents. These agents have two distinct roles:
adversarial agents, which actively challenge the planner by exhibiting controllable
adversarial behaviors such as specific collision types and levels of aggressiveness, and
non-adversarial agents, which follow normal driving behavior to maintain the realism of
the entire scene. Such a setup facilitates the generation of various realistic, interactive,
and safety-critical scenarios, providing a thorough evaluation of the planner’s capabilities.

ism of scenarios compared to previous adversarial scenario generation methods.
Furthermore, we showcase the advantage of our proposed framework in varying
the safety-criticality and collision types of scenarios. These attributes make our
approach particularly well-suited for the closed-loop simulation of AVs, providing
a more reliable and comprehensive framework for safety evaluation.

2 Related Work

2.1 Traffic Simulation

Traffic simulation can broadly be categorized into two main groups: heuristic-based
and learning-based methods. In heuristic-based methods, agents are controlled
by human-specified rules, such as the Intelligent Driver Model (IDM) [30] to
follow a leading vehicle while maintaining a safe following distance. However,
these methods have modeling capacity issues and may not reflect the real traffic
distribution; a large domain gap limits its usage for planning evaluation. To
close the gap, data-driven approaches learn from real driving datasets to imitate
real-world behavior [23,28,29,35]. TrafficSim [28] utilizes a trained variational
autoencoder for scene-level traffic simulation, while BITS [35] combines high-
level goal inference with low-level driving behavior imitation to enhance the
realism of simulated driving behavior. Recently, the Waymo SimAgents challenge
has focused on whether simulators can accurately represent real-world driving
distributions [20]. However, little work has specifically focused on behavior
simulation for generating safety-critical, long-tail scenarios.

Diffusion models [27, 31, 32] have shown significant promise for synthetic
image generation. One of the key advantages of diffusion models is controllability,
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which can take the form of classifier [6], classifier-free [15], and reconstruction [13]
guidance. Recently, controllable diffusion models have been employed for planning
and traffic simulation [25, 38, 39] via guidance. We adopt trajectory diffusion
models to develop a novel approach for generate safety-critical realistic traffic
simulations in which an adversarial agent collides with an ego planner agent. Other
works [19, 24] use diffusion with guidance or conditioning to achieve controllable
scene initialization. In contrast, we emphasize closed-loop, controllable adversarial
behavior simulation based on real-world data initialization rather than scene
initialization.

2.2 Safety-Critical Traffic Simulation

Safety-critical traffic generation plays a crucial role in training and evaluating AV
systems, enhancing their capability to navigate diverse real-world scenarios and
enhancing robustness. Gradient-based methods that leverage back-propagation
to create safety-critical scenarios have been proposed to evaluate AV prediction
and planning models [4,11]. Hanselmann et al. use kinematic gradients to modify
vehicle trajectories, with the goal of improving the robustness of imitation
learning planners [11]. Cao et al. have developed a model with differentiable
dynamics, enabling the generation of realistic adversarial trajectories for trajectory
prediction models through backpropagation techniques [4]. Black-box optimization
approaches include perturbing actions based on kinematic bicycle models [33]
and using Bayesian Optimization to create adversarial self-driving scenarios that
escalate collision risks with simulated entities [1]. Zhang et al. target trajectory
prediction models via white- and black-box attacks that adversarially perturb
real driving trajectories [37]. For an extensive review of this topic, we direct
readers to Ding et al. [9].

The field has recently seen advancements in data-driven methods for safety-
critical scenario generation [26,34,36]. For instance, Xu et al. introduce a diffusion-
based approach in CARLA, applying various adversarial optimization objectives
to guide the diffusion process for safety-critical scenario generation [34]. Rempe
et al. proposed STRIVE to utilize gradient-based adversarial optimization on
the latent space, constrained by a graph-based CVAE traffic motion model, to
generate realistic safety-critical scenarios for rule-based planners [26]. However, a
common limitation in these approaches is the absence of closed-loop interaction,
essential for accurately simulating interactive real-world driving.

3 Problem Formulation

We consider a simulated interactive traffic scenario consisting of N agents; one is
the ego vehicle controlled by the planner π, and the remaining N − 1 are reactive
agents modeled by a function g. Our objective is to create a safety-critical closed-
loop collision simulation, where reactive agents demonstrate realistic, controllable
behavior. Of the N−1 reactive agents, one or a subset is considered the adversarial
agents (denoted as agent a), meant to collide with the ego vehicle.
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The adversarial agent, formulated within the reactive agent model g, is gov-
erned by an adversarial term designed (detailed in Sec. 5) to be both controllable
and adversarial to the planner π. This setup allows the adversarial agent to pose
direct challenges to π, testing its resilience in complex scenarios. Concurrently,
the other non-adversarial agents, also controlled by g with varying parameters,
emulate authentic, reactive behaviors, thus enriching the simulation scenario with
realistic and diverse traffic conditions. The dual role of the adversarial agent and
non-adversarial agents ensures that while it challenges π, the overall simulation
environment plausibly represents real-world driving conditions.

At any given timestep t, the states of the N vehicles are represented as
st = [s1t , . . . , s

N
t ], where sit = (xit, y

i
t, v

i
t, θ

i
t) indicates the 2D position, speed, and

yaw of vehicle i. The corresponding actions for each vehicle are at = [a1t , . . . , a
N
t ],

with ai
t = (v̇it, θ̇

i
t) representing the acceleration and yaw rate. To predict the

state at the next timestep t+ 1, a transition function f is used, which computes
st+1 = f(st,at) based on current state and action. We adopt unicycle dynamics
as the transition function.

Each agent’s decision context is cit, which includes the agent-centric map Ii
and the Thist historical states of neighboring vehicles from time t − Thist to t,
defined as st−Thist:t = {st−Thist , . . . , st}. In closed-loop traffic simulation, each
agent continuously generates and updates its trajectory based on the current
decision context cit. After generating a trajectory, the simulation executes the
first few steps of the planned actions before updating cit and re-planning. See
Sec. 6.2 for more implementation details.

Planner π The planner π determines the ego vehicle’s future trajectory over a
time horizon t to t+T . The planned state sequence is denoted by s1t:t+T = π(c1t ),
where π(c1t ) processes the historical states and map data within c1t to plan future
states based on the current scene context.

Reactive Agents g The reactive agent model g, parameterized by θ, is designed
to simulate the behavior of the N − 1 non-ego vehicles, represented by the set
{sit:t+T }Ni=2. Each vehicle’s state sequence, sit:t+T , is generated by gθ(cit, ψi), which
incorporates the decision context cit and a set of control parameters ψi unique to
each agent. These parameters ψi enable the fine-tuning of individual behaviors
within the simulation. In our approach, we train the model g on real-world driving
data to ensure the trajectories it produces are not only controllable, supporting
the generation of various safety-critical scenarios, but also realistic.

4 Diffusion Models for Traffic Simulation

For closed-loop safety-critical traffic simulation, the reactive agents, especially
the adversarial agent, should be 1) controllable, and 2) realistic. With recent
advances in controllable diffusion models [18,25,39], we adopt trajectory diffusion
models to generate realistic simulations.

We define the model’s operational trajectory as τ , which comprises both action
and state sequences: τ := [τa, τs]. Specifically, τa := [a0, . . . , aT−1] represents the
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sequence of actions, while τs := [s1, . . . , sT ] denotes the corresponding sequence
of states. Following the approach described in [39], our model predicts the action
sequence τa, and the state sequence τs can be derived starting from the initial
state s0 and dynamic model f .

A diffusion model generates a trajectory by reversing a process that incre-
mentally adds noise. Starting with an actual trajectory τ0 sampled from the data
distribution q(τ0), a sequence of increasingly noisy trajectories (τ1, τ2, . . . , τK) is
produced via a forward noising process. Each trajectory τk at step k is generated
by adding Gaussian noise parameterized by a predefined variance schedule βk [14]:

q(τ1:K |τ0) :=
K∏

k=1

q(τk|τk−1), (1)

q(τk|τk−1) := N (τk;
√
1− βkτk−1, βkI). (2)

The noising process gradually obscures the data, where the final noisy version
q(τK) approaches N (τK ;0, I). The trajectory generation process is then achieved
by learning the reverse of this noising process. Given a noisy trajectory τK , the
model learns to denoise it back to τ0 through a sequence of reverse steps. Each
reverse step is modeled as:

pθ(τk−1|τk, c) := N (τk−1;µθ(τk, k, c), Σk), (3)

where θ are learned functions that predict the mean µ of the reverse step, and Σk

is a fixed schedule. By iteratively applying the reverse process, the model learns
a trajectory distribution, effectively generating a plausible future trajectory from
a noisy start.

During the trajectory prediction phase, the model estimates the final clean
trajectory denoted by τ̂0. This estimated trajectory is used to compute the mean
µ as described in [21]. For more details, see supplementary material Sec. D.

5 Diffusion Models for Safety-Critical Traffic Simulation

The diffusion model, once trained on realistic trajectory data, inherently reflects
the behavioral patterns present in its training distribution. However, to effec-
tively simulate and analyze safety-critical scenarios, there is a crucial need for a
mechanism that allows for the controlled manipulation of agent behaviors [18,39].
This is particularly important for generating adversarial behaviors and ensuring
scene consistency in simulations.

5.1 Guiding Reactive Agents

Our approach specifically introduces guidance to the sampled trajectories at
each denoising step, aligning them with predefined objectives J(τ). The concept
of guidance involves using the gradient of J to subtly perturb the predicted
mean of the model at each denoising step. This process enables the generation



Safety-Critical Closed-Loop Traffic Simulation with Controllable Adversaries 7

Denoising
Process

𝐽"#$

Scenario

𝐽!"#

Non-Adv

Ego

Adv

𝜏!

𝜏#

Adv. Car Guided Diffusion

𝜏#$%

𝜏&

Guidances 𝐽

𝐽!"#
𝐽%&'()&*𝐽%&**

Collision 
Distance

Relative 
Speed

Time to 
Collision

𝐽$%&

Gaussian 
Distance 

𝐽$+𝐽"&,(#
Lane 

Margin

Guidance Functions

Fig. 2: Guided Diffusion Process for the Adversarial Agent. This process
optimizes the adversarial agent’s trajectory using the adversarial cost function Jadv to
the ego vehicle. In particular, we introduce Jcontrol to vary the adversarial behavior.
Simultaneously, it applies regularization through Jreg for maintaining realism.

of trajectories that not only reflect realistic behavior but also cater to specific
simulation needs, such as adversarial testing and maintaining scene consistency
over extended periods. We adopt the reconstruction guidance (clean guidance)
introduced from [16,25]:

τ̃0 = τ̂0 − αΣk∇τkJ(τ̂0) (4)

This strategy improves guidance robustness, yielding smoother, more stable
trajectories without the usual numerical issues from noisy data.

In practice, diversifying the behavior of adversarial agents within the same
scenarios is crucial for a thorough assessment of AVs. Despite the significance of
this challenge, it remains largely unexplored in previous works [26,39]

The loss function for the non-reactive agents, J(τ), consists of a collision
term Jcoll, which encourages collisions between the adversarial agent and the ego
agent, two control terms Jv and Jttc, which control the relative speed and time-
to-collision between the ego and adversarial agent respectively, a regularization
term JGauss, which discourages collisions between the reactive agents, and a route
guidance term Jroute, which discourages the reactive agents from going outside
the road:

J(τ) = ρ (Jcoll + Jv + Jttc)︸ ︷︷ ︸
Jadv(τ)

+ Jroute + JGauss︸ ︷︷ ︸
Jreg(τ)

, (5)

where ρ denotes a scalar weight that determines whether a reactive agent behaves
adversarially towards the ego agent, i.e., whether it attempts to collide with the
ego agent.

Collision with Planner We define Jcoll to encourage the collision between the
adversarial agent and the ego agent, given by:

Jcoll = −
T∑

t=1

d(t), (6)
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where d(t) represents the distance between the ego and the adversarial agent at
each time step of the planning horizon T . The adversarial agent is either pre-
selected based on lane proximity or dynamically selected based on the distance
to the ego agent. Details are in the supplementary Sec. D.4.

Safety Criticality of Collisions We control the relative speed Jv between
the ego and adversary at each time step (v1t and vat ), and the time-to-collision
(TTC) cost Jttc [22] to control the safety criticality of potential collisions, with
the latter given by:

Jttc =

T∑
t=1

− exp

(
−
t̃2col(t)

2λt
−
d̃2col(t)

2λd

)
, (7)

where t̃col(t) is the time to collision at time t, d̃col(t) is the distance to collision
and λt and λd are bandwidth parameters for time and distance. This formula
uses a constant velocity assumption. Intuitively, the time-to-collision cost favors
scenarios with high relative speeds and challenging collision angles for the ego
vehicle to avoid. For details of Jv and Jttc, see supplementary Sec. C.2.

Route Guidance Given an agent’s trajectory τ and the corresponding route
r—the predefined path on a lane graph from its starting point to its destina-
tion—we compute the normal distance of each point τt on the trajectory to the
route at each timestep. We then penalize deviations from the route that exceed
a predefined margin d. This process is captured by the following route guidance
cost function:

Jroute(τ, r) =

T∑
t=1

max(0, |dn(τt, r)− dm|), (8)

where dn(τn, r) denotes the normal distance from the point τt on the trajectory to
the nearest point on the route r at timestep t, and dm represents the acceptable
deviation margin from the route. In contrast to the off-road loss in prior studies
[39], our proposed route guidance system more effectively indicates each agent’s
intended path, improving adherence to traffic rules as demonstrated in Sec. 6.
The flexibility of route guidance supports diverse agent interactions, such as
modifying routes to encourage lane changes among reactive agents [29].

Gaussian Collision Guidance Given the trajectories of agents, we calculate
the Gaussian distance for each pair of agents (i, j) at each timestep t from 1 to T .
The Gaussian distance between the agents takes into account both the tangential
(dt) and normal (dn) components of the projected distances. The aggregated
Gaussian distance is:

JGauss =

T∑
t=1

N∑
i,j

exp

(
− 1

2σ2

(
λ · dijt (t)2 + dijn (t)

2
))

(9)
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Fig. 3: Framework for Partial Diffusion. We generate proposals based on domain
knowledge (e.g., collision types). Users can adjust noise levels to balance between user
control and the model’s data distribution.

where dijt (t) and dijn (t) represent the tangential and normal distances from
agent j’s trajectory point at time t to agent i’s heading axis, respectively, and σ
is the standard deviation for these distances. In this formulation, λ is a scaling
factor applied to the tangential distance dijt (t). This approach contrasts with the
disk approximation method, which primarily penalizes the Euclidean distance
between agents. By accounting for both tangential and normal components, the
Gaussian collision distance method significantly reduces collision rate, which we
discuss in Sec. 6.

5.2 Partial Diffusion: Controlling Collision Types

We introduce a novel approach through a partial diffusion process, utilizing
trajectory proposals to initiate the diffusion process. This methodology enables
the variation in collision types by the adversarial agent within the diffusion,
tailoring the adversarial outcomes to specific evaluation needs, the results are
discussed in Sec. 6.6.

Figure 3 illustrates our framework, which is divided into three main steps
to generate trajectory proposals for various collision scenarios. First, we create
initial trajectory proposals (τ0) aimed at capturing different types of collisions.
The next critical step involves setting the partial diffusion ratio γ, which defines
the specific point in the process, kp = γ ·K, at which we start modifying the
trajectory. Starting from step kp, we adjust the trajectory by adding a precise
level of Gaussian noise ϵ ∼ N(0, I): τ̂kp =

√
ᾱkpτ0 +

√
1− ᾱkpϵ. The final stages

include removing noise and using guided diffusion for the rest of the kp steps to
refine the trajectory into a realistic path that suits our collision scenario goals.

To generate the trajectory proposals, we develop a rule-based approach in
which we first identify the centerlines of the ego and adversarial agent and
then search for potential intersections of their respective centerlines. If such an
intersection exists, we generate the proposals by selecting an acceleration value
and lateral offset from the centerline that is likely to cause the desired collision
type based on the projected plan of the ego agent. Note that the trajectory
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Fig. 4: Partial Diffusion Results of Rule-Based Planner on NuScenes Dataset.
The safety-critical scenarios show the framework’s ability to create realistic and chal-
lenging situations, varying collision types based on different trajectory proposals. The
gradient lines reflects the planned trajectories in the next 3.2 seconds.

proposals are updated in a closed-loop manner to account for the interaction
between the ego and the adversarial agent.

This method allows for precise control over the diffusion trajectory, enabling
adversarial agents to create customized collision scenarios. Users can adjust γ
to fine-tune the balance between explicit control and the model’s trained data
distribution.

6 Experiments

We validate the efficacy of our proposed framework via experiments with real-
world driving data. Our results demonstrate that the framework can generate
realistic and controllable adversarial behavior to challenge the planner.

6.1 Dataset

We conduct our experiments on two large-scale real-world driving datasets:
nuScenes [2], which consists of 5.5 hours of driving data from two cities, and
nuPlan, which consists of 1500 hours of driving data from four cities. We train
the model on scenes from the nuScenes train split and evaluate it on the scenes
from the nuScenes validation splits and nuPlan mini validation splits. We focus
on vehicle-to-vehicle interactions.

6.2 Implementation Details

Baselines. We compare our approach against STRIVE [26] using their open-
source implementation and our re-implementation of DiffScene [34]. STRIVE is
recognized for its proficiency in generating adversarial safety-critical scenarios
using a learned traffic model and adversarial optimization in the latent space.

Planner. Our experiments utilize a range of different planners: 1) A rule-
based planner, as implemented in STRIVE [26], which operates on the lane graph

https://github.com/nv-tlabs/STRIVE
https://github.com/nv-tlabs/STRIVE
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and employs the constant velocity model to predict future trajectories of non-ego
vehicles, generating multiple trajectory candidates and selecting the one least
likely to result in a collision; 2) a hybrid planner BITS [35]; 3) PDM-Closed [5],
the winner of the 2023 nuPlan Planning Challenge; 4) a deterministic a learning-
based Behavior Cloning (BC) planner, which utilizes a ResNet Encoder, followed
by an MLP decoder to generate future trajectories; and 5) an Intelligent Driver
Model (IDM) planner [30].

Diffusion Model. We follow the architecture described in [39]. We represent
the context using an agent-centric map and past trajectories on a rasterized
map. The traffic scene is encoded using a ResNet structure [12], while the input
trajectory is processed through a series of 1D temporal convolution blocks in an
UNet-like architecture, as detailed in [18]. The model uses K = 100 diffusion steps.
During the inference phase, we generate a sample of potential future trajectories
for each reactive agent in a given scene. From these, we select the trajectory that
yields the lowest guidance cost. This process is referred to as filtering.

Closed-loop Simulation. The simulation framework for our experiments is
built upon an open-source traffic behavior framework [35]. Within this framework,
both the planner and reactive agents update their plans at a frequency of 2Hz.

6.3 Evaluation Metrics

Our goal is to validate that the proposed method can generate safety-critical
scenarios that are both realistic and controllable. For realism assessment, in
accordance with [39], we compare statistical data between simulated trajectories
and actual ground trajectories. This involves calculating the Wasserstein distance
between their driving profiles’ normalized histograms, focusing on the mean of
mean values for three properties: longitudinal acceleration, latitudinal acceleration,
and jerk. To evaluate controllability, we measure metrics related to parameters
we can control, specifically relative speed and time-to-collision cost between
the ego and adversarial agents.

Our method aims to evaluate the extent of control over adversarial behaviors
within a single scenario. To do this, we focus on measuring collision diversity
—a metric that quantifies the range of differences in collision angles, relative
speeds, and collision points. By calculating the variance of these parameters
within the same scenario, we can determine how diverse and controllable the
adversarial behaviors are, ensuring the scenario’s realism and controllability.

For a more nuanced understanding of realism, we analyze the collision rate
– the average fractions of agents colliding, and the offroad rate – the percentage
of reactive agents going off-road, both of which are considered failure rates [35].
All metrics are averaged across scenarios. For detailed definitions and metrics,
see supplementary Sec. C.
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Dataset Method Collision
(%) ↑

Other
Offroad

(%)↓

Adv
Offroad

(%) ↓

Collision
Rel Speed

(m/s) ↓

Realism
↓

Time
(s) ↓

nuScenes
SAFE-SIM 43.2 1.8 11.4 -0.12 0.38 104.5± 17.7
STRIVE 36.4 2.2 11.4 5.52 0.85 427.2± 169.8
DiffScene 18.2 11.4 9.0 16.4 0.52 105.4± 22.5

nuPlan SAFE-SIM 80 9.4 11.7 6.75 0.27 173.4± 73.3
DiffScene 56.7 14.0 5.0 -2.81 0.42 176.7± 77.5

Table 2: Safety-critical Traffic Simulation. We compare our approach against
STRIVE [26] and DiffScene [34] for safety-critical traffic simulation with a rule-based
planner. Safe-Sim outperforms STRIVE on all metrics and demonstrates higher collision
rates and better realism than DiffScene.

Planner Ego-Adv Coll
(%) ↑

Ego-Other Coll
(%) ↑

Adv Offroad
(%) ↓

Coll Speed
(m/s) ↓

Ego Accel
(m/s2) ↓

Realism
↓

BC 38.8 37.3 9.0 2.47 0.54 0.79
IDM 49.3 58.2 3.0 -0.40 0.94 0.78
Lane-Graph 34.3 37.3 1.5 2.68 1.62 0.57
BITS 16.4 19.4 6.0 3.07 0.95 0.79
PDM-Closed 26.9 50.7 1.5 2.73 1.30 0.86

Table 3: Safety-Critical Simulation for Different Planners. Safe-Sim can
generate diverse safety-critical scenarios tailored to different planners, including rule-
based, learning-based, and hybrid planners.

6.4 Evaluation of Safety-Critical Traffic Simulation with Baseline
Methods

We compared our method with STRIVE [26] and DiffScene [34], utilizing the
Lane-graph-based planner from STRIVE. The evaluation focused on collision
rates between the ego and the adversarial agent (“Collision”), adversarial agent
off-road rates (“Adv Offroad”), other agents’ off-road rates (“Other Offroad”),
collision relative speed between the ego and adversary (“Collision Rel Speed”),
realism of all non-ego agents (“Realism”), and simulation time.

The results, presented in Tab. 2, demonstrate that our method excels in all
metrics compared to STRIVE, especially in collisions and realism. Compared
to DiffScene, Safe-Sim also exhibits a higher collision rate with better realism.
Note that we trained models on nuScenes and tested them in nuPlan without
additional fine-tuning. As illustrated in Figure 4, the qualitative examples from
the NuScenes dataset demonstrate how our framework can challenge the rule-
based planner with various driving situations. See supplementary Sec. A for more
qualitative examples.

6.5 Safety-Critical Simulation with Different Planners

In Tab. 3, we demonstrate our framework’s ability to generate collisions across
various planner types: rule-based, learning-based, and hybrid planners. Notably,
the IDM planner exhibits the highest Ego-Adv collision rate. This heightened rate
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TTC Cost TTC Coll Speed Coll Angle Coll Rate Realism
Weight Cost (m/s) (deg) (%) ↑ ↓

0.0 0.18 2.45 -7.43 48.2 0.76
1.0 0.21 2.30 0.43 53.6 0.79
2.0 0.26 3.78 -17.0 60.7 0.81

Table 4: Controlling Time to Collision (TTC). The table shows the impact of
different TTC Cost weights on collision scenarios. Increasing the TTC Cost weight
results in an increase in collision rate, suggesting a heightened challenge for the ego
vehicle in avoiding collisions.

Jadv Jreg
Partial

Diffusion

Collision Metrics Diversity

Collision Adv Realism Collision Collision Collision
Offroad Angle Var Rel Speed Var Point Var

(%) ↑ (%) ↓ ↓ (rad) ↑ (m/s) ↑ (m) ↑

✓ ✓ × 23.9 13.8 0.58 2.22 2.99 1.62
✓ ✓ ✓ 29.0 14.6 0.57 3.10 1.96 5.44
✓ × × 53.5 23.1 0.58 3.34 4.81 2.47

Table 5: Ablation Study on Controllability. This study examines each component
of our proposed method. Partial diffusion significantly increases the variance of the
collision point, resulting in a greater diversity of collision scenarios.

can be attributed to the IDM’s focus on vehicles near the same lane, potentially
overlooking other vehicles in the scene. Consequently, in scenarios with the IDM
planner, our framework can induce collisions at relatively lower speeds.

6.6 Evaluation: Controlling Safety-Criticality

A key feature of Safe-Sim is its ability to generate controllable adversarial
behaviors, offering variations not possible with previous methods.

Controlling Time-to-Collision. We control the orientation and relative
speed together using the time-to-collision (TTC) cost, as described in Sec. 5.
We manipulate the scenario’s safety-criticality by adjusting the relative weight
of the TTC cost. To assess the impact of these adjustments, we measure the
average TTC cost shortly before a collision occurs (0.5 seconds). Our observations,
detailed in Tab. 4, show that increasing the TTC weight raises the TTC cost.
Notably, while the relative collision speed remains fairly consistent, the collision
angle shifts, indicating a greater difficulty in avoiding ego-adversary collisions.
Additionally, our method can control other aspects, such as relative speed, as
detailed in supplementary Sec. F.1.

6.7 Ablation Study on Controllability

We performed an ablation study to assess the influence of different guidance
strategies in diffusion models on the quality of simulations. This study, detailed
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in Table 5, aimed to quantify collision diversity. We compare against our baseline
approach, consisting of regularized and adversarial objectives (Jreg + Jadv), by
predetermining the selection of adversarial agents and conducting experiments
with multiple seeds (three) in our framework to evaluate collision diversity. In
partial diffusion, we manipulated the trajectory proposal selection mechanism
across centerlines with normal offsets of -2.0, 0.0, and 2.0.

Effectiveness of Partial Diffusion. Table 5 reveals that partial diffusion
significantly enhances both the collision point and angle diversity in comparison
to the baseline approach. This underscores the capability of partial diffusion to
generate a wider array of collision scenarios through various trajectory proposals,
illustrating its potential to explore diverse collision dynamics effectively.

Impact of the Regularization Term (Jreg). Incorporating Jreg results in
a notable decrease in the adversarial-collision rate, highlighting the importance
of the regularization term in enhancing simulation realism. Without Jreg, the
collision rate between the adversarial agent and ego vehicle increases, but the
adversarial vehicle goes offroad more often, leading to scenarios that differ
significantly from realistic behavior.

6.8 Limitation and Failure Cases

We identified areas for improvement in Safe-Sim (see supp. Fig. A4). In certain
cases, the adversarial agent unrealistically collides with non-adversarial agents
before reaching the ego agent. Additionally, some scenarios result in collisions
where the ego planner is not at fault. While understanding how the ego planner
can avoid such cases is important, creating more scenarios where the ego is at
fault would be beneficial.

7 Conclusion

In this work, we present a closed-loop simulation framework utilizing guided
diffusion models for creating safety-critical scenarios to assess autonomous vehicle
(AV) algorithms. Our research is in line with the goals of SO-TIF, focusing on
how autonomous vehicles respond to dynamic scenarios like aggressive driving,
underscoring our dedication to safety across diverse and unforeseeable conditions.
Our framework introduces innovative guidance objectives tailored for controllable,
stable, long-term safety-critical simulations. A key aspect of our method lies in
its ability to vary the types of adversarial behavior within collision scenarios. By
integrating adversarial objectives and partial diffusion, we enable fine-grained
control over adversarial actions. This versatility enables our framework to produce
a broader range of realistic and manageable scenarios, setting a new standard in
adversarial scenario generation beyond the limitations of existing approaches.

Future directions for our research include: 1) exploring the application of
our framework in closed-loop policy training, and 2) developing automated
methods for adjusting controllable parameters. These methods aim to facilitate
the generation of diverse, long-tail scenarios. We believe this framework holds
significant promise for enhancing real-world AV safety.
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