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Abstract. While style transfer techniques have been well-developed
for 2D image stylization, the extension of these methods to 3D scenes
remains relatively unexplored. Existing approaches demonstrate profi-
ciency in transferring colors and textures but often struggle with replicat-
ing the geometry of the scenes. In our work, we leverage an explicit Gaus-
sian Scale (GS) representation and directly match the distributions of
Gaussians between style and content scenes using the Earth Mover’s Dis-
tance (EMD). By employing the entropy-regularized Wasserstein-2 dis-
tance, we ensure that the transformation maintains spatial smoothness.
Additionally, we decompose the scene stylization problem into smaller
chunks to enhance efficiency. This paradigm shift reframes stylization
from a pure generative process driven by latent space losses to an explicit
matching of distributions between two Gaussian representations. Our
method achieves high-resolution 3D stylization by faithfully transferring
details from 3D style scenes onto the content scene. Furthermore, WaSt-
3D consistently delivers results across diverse content and style scenes
without necessitating any training, as it relies solely on optimization-
based techniques. See our project page for additional results and source
code: https://compvis.github.io/wast3d/.

Keywords: 3D Stylization · 3D Gaussian Splatting · NeRF · Style
Transfer · Optimization

1 Introduction

Style transfer is a well researched method that allows to create artistic images,
which combines content from one input source and style from another. This
process has been widely used in 2D images to create visually appealing and
unique results. However, as virtual reality and 3D approaches become more
prevalent, there is a growing interest in adapting style transfer techniques to work
in the three-dimensional space. Incorporating style transfer into 3D visuals opens
⋆ Work done during an internship at Meta.
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Fig. 1: Our stylization of the hot dog scene using 2 different style scenes: pebbles
and grass. Our method accepts as an input two pretrained Gaussian splattings scenes
and merges them together by clustering content scene, selecting best style cluster and
finally minimizing Sinkhorn divergence between the pairs. High resolution 3D details
are depicted in the last column by rendering the same shape volume from two different
viewpoints.

up new possibilities for creating unique and engaging content. By merging the
artistic styles of different sources with the three-dimensional aspects of virtual
reality, creators can push the boundaries of what is possible in terms of visual
storytelling and design.

In computer graphics, stylized models serve as artistic interpretations of 3D
objects, often featuring exaggerated or simplified elements reminiscent of cartoon
characters, abstract shapes, or low-poly designs. This creative approach extends
to 3D game design, where various art styles shape the visual identity of virtual
worlds and gaming experiences. Realism and Fantasy Realism aim for lifelike
authenticity, while Low Poly art embraces a minimalist aesthetic with simpli-
fied geometric shapes, and Cartoon art infuses games with whimsical charm and
vibrant colors. These diverse styles utilize different textures and modeling tech-
niques to evoke specific emotions and atmospheres. While currently prevalent in
the movie and gaming industries, there is a growing need to democratize these
applications, making them easily accessible and usable for consumers.

Prior works in 3D have focused primarily on altering textures, such as ap-
plying the color palette or patterns of one object onto another [4,7,8,15,20,46].
Another application domain is video, where the main challenge is maintaining
temporal consistency across frames [11,49]. While this can create visually inter-



WaSt-3D 3

esting results, there is a need to explore how style transfer can be applied to
both textures and geometry in 3D visuals.

Throughout art history, the study of style has encompassed various elements
such as color, composition, and, notably, geometry and shape, which are con-
sidered crucial aspects in defining artistic identity [2, 9]. In art, the technique
of assemblage involves creating three-dimensional compositions on a defined
substrate, akin to collage in two dimensions. Often utilizing found objects, as-
semblage offers a multidimensional approach to artistic expression. An illustra-
tive example of this idea applied to oil paintings can be found in the works of
Giuseppe Arcimboldo, who crafted human portraits from seasonal fruits, grains,
and vegetables. Another example of this technique is the “Mandolin” sculpture
by Pablo Picasso assembling the object from the wood pieces, see Fig. 2. Draw-
ing inspiration from this approach, we propose a method where content object
is assembled from various elements of the style scene.

In style transfer, the relationship between content and style representation
is one of the central problems. The seminal work by Gatys et al . [8] emphasized
the optimization process that balances style and content loss to generate images,
laying the foundation for subsequent investigations in the field. This paper laid
the groundwork for subsequent explorations in the field, which have extended be-
yond two-dimensional texture transfer into three-dimensional shapes, facilitating
the transfer of spatial structures between scenes.

The conventional optimization-based 2D style transfer matches style and
content features distribution of the stylized image and style/content image re-
spectively. Following this approach, we initially represent the content and style
scenes as two-colored collections of particles using regularized Gaussian splat-
ting (refer to Sec. 4 for details). To smoothly align these distributions, various
methods can be used, but we choose to employ Sinkhorn divergence between
the distributions of points corresponding to style and content scenes. Sinkhorn
Divergence determins how the style scene should be adjusted to match the con-
tent scene. However, handling distributions with large sets of points becomes
challenging. Therefore, we first segment the content scene into compact shapes
and identify the best-fitting style segment. Then, we estimate the Sinkhorn di-
vergence between pairs of style and content clusters, optimizing the selected
style cluster to minimize the divergence between them. We opt for the Sinkhorn
Divergence since it acts as a “debiased” Wasserstein-2 distance and is easier to
tune.

In this study, we introduce a novel method for 3D scene style transfer, with
the goal of accurately reproducing the geometry of the style scene within the
content scene. Utilizing Sinkhorn divergence to adapt and integrate elements
from the style scene, we construct a stylized content scene that preserves high
visual fidelity and faithfully captures the geometric details of the style. Our qual-
itative experiments showcase that our approach outperforms existing methods,
particularly in terms of geometric stylization quality.
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(a) “Autumn” by Guiseppe Arcimboldo. (b) “Mandolin” by Pablo Picasso.

Fig. 2: Two illustrations of the assemblage principle in art. The coarse level content
can be constructed of local pieces of a style object of a different nature: vegetables and
various pieces of wood. We follow a similar idea in our approach.

2 Related Work

Style Transfer Style transfer aims at generating images with the aesthetic
style of the given style images while preserving their semantic content. Tradi-
tional methods use handcrafted features to simulate styles [14]. Gatys et al . [8]
introduced neural style transfer in which the content and style representations
are obtained as intermediate activations and the corresponding Gram matrices
of a pre-trained VGG network [43]. The resulting image is generated by itera-
tively updating a random input until its content and style representations match
the reference ones. Follow-up works [10,20,21,23,25,28,30,38] have explored al-
ternative style loss formulations to improve the quality of semantic consistency
and high-frequency style details. Rather than performing iterative optimization,
feed-forward approaches [1, 7, 13, 22, 27, 34, 39, 42, 52] train neural networks that
can capture the style information of the style image and transfer it to the input
image with a single forward pass. These methods are faster than optimization-
based techniques but often yield lower visual quality. Unlike neural style transfer
methods that encode statistics of style features with a single Gram matrix, an-
other line of work searches for nearest neighbors and minimizes distances between
features extracted from corresponding content and style patches [6, 19, 25, 28].
These methods achieve impressive 2D stylization quality when provided with
source and target images that share similar semantics [54].



WaSt-3D 5

2.1 3D style transfer

In recent years many papers tried to transfer 2D results in 3D dimensions. The
works can be generally split into two groups: with target style geometry and
without one.

With the access to the style target geometry Nerf-Tex [3] fills the content
scene with patches of the style example. A similar approach was adopted by [45],
where the style geometry is predefined using tessellation maps to articulate fine
details in 3D geometry. An alternative strategy involves leveraging depth maps
alongside the original style image [16]. However, these approaches encounter
challenges when generalizing across diverse and intricate scenes with full 360-
degree camera rotation, as the target depth is specified only for a single fixed
viewpoint.

Concurrently, a separate line of research focuses on modifying only the ge-
ometry of shapes without incorporating style textures [24,41,48].

For methods lacking access to style geometry, the transformation is attempted
based on 2D information using common 3D representations: point clouds [12],
meshes [26, 40], NeRFs [5, 29, 33, 47, 51, 54, 55] or Gaussian Splats(GS) [53]. An-
other approach to provide style information is by incorporating text prompt with
desirable changes. Method [5] works using a text prompt indicating name of the
artist in whose style the final image will be presented. However, methods that
take as an input image or text prompt barely change the geometry of the scenes.
In majority of cases such approaches only mimic the colors of the style scene
without altering the geometry.

3 Methodology

In this section, we describe the scene representation used throughout the pa-
per, namely regularized Gaussian splattings. Following this, we introduce the
Wasserstein-2 distance and its debiased counterpart, the Sinkhorn divergence,
to quantify the divergence between two sets of Gaussian splattings. Finally, we
outline WaSt-3D stylization algorithm, which is divided into three parts: a) clus-
ter the content scene into disjoint subsets, b) select the best-fitting style cluster
for each content cluster using the selection function D, and c) optimize style
clusters to align with corresponding content clusters by minimizing the Sinkhorn
divergence.

3.1 Background: Gaussian splatting representation

Neural Radiance Fields (NeRFs) [32] have widely been utilized over the past few
years as a neural network based representation that implicitly learns the scene
density and view-dependent color. This representation allows for high-quality
novel view synthesis once the NeRF model is optimized from a set of 2D input
images. More recently, 3D Gaussian Splatting (3DGS) [17] has emerged as a
powerful alternative that provides significant advantages in terms of optimization
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speed and real-time rendering while matching the state-of-the-art quality from
NeRF-based approaches. 3DGS achieves this by relying on explicit representation
based on 3D Gaussians in contrast to the implicit representation of NeRF. To
enable high-quality scene reconstruction, each Gaussian is characterized by a set
of learnable parameters such as position x ∈ R3, color c ∈ R3, covariance matrix
Σ ∈ SO(3) (shape and orientation), scaling S ∈ diag(R3

+) and opacity α. The
rendering equation for a typical point-based approach is defined as:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj). (1)

Here, N is the number of ordered points along the ray that are α-blended per
pixel and αi is the blending opacity obtained by evaluating the 2D Gaussian
projection at the pixel and multiplying it with the global opacity α.

3.2 Anisotropic Gaussian Splattings Representation

Default 3D Gaussian splattings possess several parameters beyond coordinate
and color, including scaling, rotation, and opacity. However, the objective of
the training regime is often pixelwise similarity between the rendered image
and the target image. This can inadvertently lead to individual Gaussians being
stretched, resulting in undesirable needle-shaped artifacts protruding from the
surface. This may result in unpleasant visual artifacts when we start splitting
scenes into subsets with function Di. To mitigate this effect, we introduce an
anisotropic regularization for the individual Gaussian splattings, aiming to force
them into spherical shapes. This is accomplished by minimizing the difference
between the largest and smallest scaling components gS of each Gaussian g ∈ G:

Laniso =
1

|G|
∑
g∈G

(
max

(
max(gS)
min(gS)

, r

)
− r

)
, (2)

where the scalar r determines how much can the largest and the smallest scaling
parameter differ. Additionally we want to have Gaussians to have similar scale
across the whole image.

Lunif =
1

|G|
∑
g∈G

∥gS − ĝS∥2, (3)

where ĝS = (s, s, s) ∈ R3
+ denotes target scale of Gaussians with s ∈ R+ being

a positive real value indicating equal scale in every dimension. Similar idea has
been introduced as a regularization technique in [50]. Moreover, effect of the
anisotropic regularization is discussed in the original paper on 3D Gaussian
splattings [17].
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3.3 3D Style Transfer with Gaussian Splatting

Wasserstein-2 distance. The goal of the style transfer is to blend the style and
content of two inputs across various domains such as images, audio, video, text,
and 3D scenes. In this paper, we focus on blending two 3D scenes represented
with 3D Gaussian splattings. We represent the style and content scenes by two
collections of 3D Gaussian splattings, denoted as Gstyle and Gcontent respectively.
The primary goal of stylization is to obtain a shape that locally resembles the
style scene while globally resembling the content scene.

From a probabilistic standpoint, we need to ensure that the distributions
of the style and content scenes are similar on a local scale. The distributions
pc and ps of the Gaussians Gcontent and Gstyle lie on a compact connected Rie-
mannian manifold M with geodesic distance d : M ×M → R+. We can use the
Wasserstein-2 distance to find the optimal transport between them π ∈ Π(ps, pc)

Π(ps, pc) :=
{
π ∈ Prob(M ×M) : π(·,M) = pc, π(M, ·) = ps

}
. (4)

W2(ps, pc) :=
[

inf
π∈Π(ps,pc)

∫∫
M×M

d(x, y)2dπ(x, y)
] 1

2

. (5)

This distance defines how dissimilar style and content distributions are. In prac-
tice, solving this problem is computationally intractable, necessitating regular-
ization to make it applicable to the domain of Gaussian splatting in 3D spaces.
One approach to encourage spread-out transportation plans π is by adding the
entropy term H(π) to the Wasserstein-2 distance in Eq. (5), resulting in an
entropy-regularized objective function:

W2
2,γ(ps, pc) :=

[
inf

π∈Π(ps,pc)

∫∫
M×M

d(x, y)2dπ(x, y)− γH(π)
]
. (6)

The entropy-regularized version of our objective function renders it strictly
convex and is commonly referred to as the “Schroedinger problem”. In practice,
this regularization smoothens the problem and prevents overfitting. Varying the
parameter γ allows us to control the smoothness of the transport plan between
the two distributions. A higher γ value results in a smoother transport plan,
where every Gaussian from the style scene is transported to every Gaussian
from the content domain, approximating an “average” Gaussian. Conversely, a
very small γ value leads to each Gaussian being transported to just one Gaussian
from the other domain, making the metric more specific.

We could have utilized Eq. (6) to compute the distance between two distri-
butions and perform gradient flow to map one distribution to another. However,
this is not a metric because W2

2,γ(ps, ps) ̸= 0 and W2
2,γ(pc, pc) ̸= 0. To address

this, we employ the debiased version of the entropy regularized Wasserstein-2
distance dubbed Sinkhorn divergence:

SD2
2,γ(ps, pc) := W2

2,γ(ps, pc)−W2
2,γ(ps, ps)−W2

2,γ(pc, pc). (7)
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For values γ → ∞ objective turns into 1
2MMD2(ps, pc) , γ → 0 objective

turns into W2
2 (ps, pc). See [35, 37], where MMD stands for the Maximum Mean

Discrepancy. This divergence between the distribution can be used to compute
gradients and update one of the distributions. To estimate this value we use the
Sinkhorn iterations method.

Scene partitioning. Estimating optimal transport between distributions con-
taining hundreds of thousands or millions of points is not feasible, even with ap-
proximation algorithms. Thus, we tackle this problem by dividing it into smaller
chunks and stylizing each part of the content scene separately. Although this
may seem limiting, this approach guarantees faithful representation of the con-
tent scene by substituting it with small pieces of the style scene. Essentially, we
want to ensure that our stylization locally resembles the style scene.

To achieve this, we divide the content scene Gcontent into a collection of clus-
ters C = ∪

i∈{1,..,N}
Ci, where each cluster consists of a collection of Gaussians

Ci = {g|g ∈ Gcontent}. Our objective is to transform these clusters while preserv-
ing the style and accurately representing the content scene. To achieve this, we
first determine which style cluster fits best with each content cluster Ci.

This correspondence function Di between content clusters and parts of the
style scene Gstyle is crucial for selecting the distributions ps and pc to be matched
using the optimal transport plan.

To identify content clusters C = ∪
i∈{1,..,N}

Ci, we perform K-Means cluster-

ing on the colored Gaussians. We then determine which style cluster should
be replaced with the best-fitting style cluster by formulating a constrained op-
timization task. We fit each content cluster Ci to the style scene, using only
translation ti ∈ R3, rotation Ri ∈ SO(3) (SO(3) is special orthogonal group of
order 3), and scaling Si ∈ diag(R3

+):

min
∑
g∈Ci

{min∥SiRi(gx − ti)− g′x∥2 | g′ ∈ Gstyle}

s.t. Ri ∈ SO(3),Si ∈ diag(R3
+), ti ∈ R3.

(8)

Thus, we minimize difference between coordinates gx of a cluster Ci mapped
using simple translation, rotation and scaling operation to the distribution of
coordinates of the style scene g′x. This constrained optimization problem can
efficiently partition the problem into a collection of smaller problems of mini-
mizing SD2

2,γ(Ci, C
′
i) between every content cluster Ci and assigned style cluster

C ′
i.

Finally, we can define a selection mapping Di that given optimized parame-
ters ti,Ri,Si selects Gaussians from the style scene Gstyle.

Di : Ci → Gstyle, Di(Ci) = ∪
g∈Ci

Nk(SiRi(gx − ti)), (9)

where Nk(g) denotes k nearest neighbors of the Gaussian g in the set of style
Gaussians Gstyle.
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Ultimate stylization objective. With those preliminary steps we have suc-
cessfully partitioned the problem into a collection of smaller OT problems that
we can solve computing the Sinkhorn divergence between the distributions:

Lopt =
∑

i∈{1,..,N}

SD2
2,γ(Ci, Di(Ci)). (10)

To elucidate the computation of the Sinkhorn Divergence on the set of Gaus-
sians, we utilize both the coordinate and brightness attributes. This alignment
ensures consistency not only in coordinates but also in the overall shading of
the image between content clusters and their respective style clusters. In the
experimental section we visualize different results obtained optimizing color
or brightness components. The optimization process outlined in Eq. (8) aims
to minimize the loss over a set of parameters {ti,Ri,Si | i ∈ 1, .., N}, while
Eq. (10) optimizes over the color and coordinate components of the Gaussians
{Di(Ci)) | i ∈ 1, .., N}.

4 Experiments

We conduct a comprehensive evaluation of WaSt-3D through a series of exper-
iments. This includes qualitative and quantitative comparisons in Sec. 4 and
further ablation studies in Sec. 4.1. For high resolution video results please refer
to the supplementary materials.

Implementation Details. Our model is implemented in PyTorch. Initially, we
pretrain content and style scenes using the standard Gaussian splatting training
code, with additional regularization applied to the style scenes as specified in
Sec. 3.2. All our experiments are conducted on a single A100 GPU, requiring
16GB of VRAM for the largest style scenes containing 8e6 Gaussians. On average
our optimized scene contains 1e6 − 4e6 Gaussians. The complete optimization
pipeline takes approximately 8 minutes given pretrained style and content scenes.

For Sinkhorn divergence computation, we utilize the GPU-optimized imple-
mentation available in the geomloss library, which relies on the pykeops library.
Detailed algorithm is provided in the supplementary materials.

By default, we partition the content scene into 400 clusters. In Fig. 7 we
show stylization results using fewer clusters. Prior to this partitioning, we sample
points on the surface of the content scene to ensure that Gaussians are fitted only
to the surface, mitigating issues stemming from the default Gaussian splatting
fitting algorithm. This process is described in in the supplementary materials.

An additional step we need to perform is adjusting the scaling S of individual
Gaussians after they have been optimized with the loss defined in Eq. (10). We
adjust their scale based on the changes in the average distance to the nearest
neighbors. Further details are provided in the supplementary materials.
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Table 1: Quantitative Comparison. WaSt-3D surpasses other methods in both CLIP
high-level details similarity and human preference score. Our model also takes less
time to stylize a scene. Although it requires slightly more memory, this is a reasonable
tradeo-ff considering the significant increase in stylization quality.

Method CLIP high-level
details similarity ↑

Human
preference ↑

Time ↓ VRAM ↓

ARF 74.79 % 12.5% 11 min 9GB
Style-RF 74.94 % 1.5 % 18 min 6GB
SNeRF 76.99 % 10.5 % 30 min 8GB

Ours 84.40 % 75.5 % 8 min 16GB

Datasets. For our research, we need two type of 3D scenes: style and content. As
content examples we used three publicly available datasets. NeRF Synthetic [32]
is synthetic dataset of 3D objects with realistic non-Lambertian materials. For
every scene it provides a set of 360 views and exact camera parameters. We also
evaluated our dataset on real-world datasets with complex geometry LLFF [31]
and Tanks&Temples [18]. Local Light Field Fusion(LLFF) is a bounded real
world dataset captured with a handheld cellphone. Tank&Temples is a real world
360 scene dataset. The selected scenes exhibit diverse capture styles, includ-
ing both bounded and unbounded settings. For style examples, we used scenes
sourced from BlenderKit. All scenes are linked on the project page, and some
are showcased in the supplementary material.

Qualitative comparison. We compare WaSt-3D with three recent styliza-
tion approaches: ARF [54], StyleRF [29] and reimplemented by Ref-NPR [55]
SNeRF [33]. As illustrated in Fig. 3, our method excels in both high-quality styl-
ization and preserving the essential features of content scenes. Demonstrating
robustness, WaSt-3D outperforms other methods across diverse content scenes
and varying numbers of style scenes. Other methods fail to adequately preserve
style details. For instance, when applied to a grass style scene, only our method
successfully maintains the intricate texture of the grass, showcasing the supe-
rior detail preservation achieved by our approach. More results are presented
in Fig. 4, supplementary materials and on the project page.

Quantitative comparison. As demonstrated in Tab. 1, WaSt-3D performance
was evaluated using the CLIP [36] similarity score. We extracted crops from the
stylized scenes and compared them with crops from the original style scene to
evaluate ability of each method to preserve fine details. The results presented in
Table 1 demonstrate that our method outperforms other methods in this regard.

Furthermore, to evaluate the stylization quality from a human perception
standpoint, we conducted a user study. Participants were tasked with selecting
the most appropriate and appealing stylization for pairs of content and style
scenes. As shown in Tab. 1, WaSt-3D achieved the highest scores in the user
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Ours                  ARF Style-RF

Does not support 
T&T

Content 
& Style

SNeRF

Does not support 
T&T

Fig. 3: Comparison of WaSt-3D against three different approaches: ARF [54], SNeRF
[33], and StyleRF [29]. We conducted the comparisons on three NeRF Synthetic scenes:
hotdog, lego, and chair ; one scene, truck, from the Tanks&Temples dataset [18]; and
the scene horns from the LLFF dataset [31]. Style scenes are named grass, pebbles,
wicker basket, bouquet, and stones; examples of these style scenes are provided in the
supplementary materials. For each image, we provide a close-up of the same fragment
across different methods. It is important to note that while overall stylization seems
comparable for small images, our method delivers favorable results for high-resolution
images. Moreover, our method preserves the 3D geometry of the style scene. Please
refer to the project page for video renderings of the scenes in high resolution.
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Fig. 4: Additional visual results for our method on NeRF Synthetic objects [32]. The
style scene for each object is depicted in the lower right angle for optimal presentation.

Ours
RGB

Ours
Normals

SNeRF
Normals

Style-RF
Normals

ARF
Normals

Fig. 5: Visualization of the normals obtained after stylization of the chair scene using
the pebbles style with different methods: ARF [54], Style-RF [29] and SNeRF [33].

study. Additionally, we show in Tab. 1 speed and memory requirements of base-
lines in comparison to our method

4.1 Ablation studies

Style scene geometry preservation. To demonstrate the effectiveness of our
approach in preserving the geometry of the original style scene, we compare
the normals generated by our method with three alternative approaches: ARF
[54], Style-RF [29] and SNeRF [33]. From Fig. 5 it is evident that our method
faithfully reproduces the style geometry, while the other approaches introduce
noise due to their optimization in RGB space. This highlights the robustness of
our methodology in maintaining the integrity of the style scene geometry.
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Sinkhorn divergence on different parameters. In Sec. 3, we outlined the
computation described in Equation 10, which operates on various components of
the Gaussians. Our standard configuration involves optimizing the coordinates
gx and the luminance derived from gc using the formula (0.299 × R + 0.587 ×
G+0.114×B), where R, G, and B denote the values of the red, green, and blue
channels within the range [0; 1]. As an alternative, we conducted experiments
solely on the positional values gx and on both the positional and color values gc.
The outcomes of these experiments are depicted in Fig. 6. It is noteworthy that
optimizing brightness (the second column) aids in preserving the original scene
shading, thereby enhancing the portrayal of the scene volume.

We visualize effect of the entropy regularization term γ in the supplementary
material, on default we use γ = 0.05.

position            position and brightness position, brightness and colorContent & Style

Fig. 6: Results of the stylization when minimizing Lopt: for positions only, for position
and brightness, for position, brightness and color. Original content scene hotdog and
style scene wicker basket is provided in the first column.

Wasserstein distance alternatives. To prevent overstretching or tearing of
the style cluster we can use the surface energy regularization. This mapping
D allows translation, rotation, scaling, and stretching of individual Gaussians
independently of each other. However, not controlling this operation we can
mess up the original style cluster. To prevent too strong stretching of the style
cluster C we compute the surface energy of every cluster before and after the
transformation:

E(C,D(C)) :=
∑
g∈C

∑
h∈N (g)

∥∥∥∥∥g − h∥2 −
1

λ2
D

∥D(g)−D(h)∥2
∥∥∥∥
1

. (11)

This loss is inspired by the ARAP loss [44] that is used to model the elastic
deformation of meshes, λD is the scaling constant of operator D. By construct-
ing the function and surface energy we guarantee that the style will not be
corrupted under any of the following transformation: translation, rotation, scal-
ing and stretching while preserving surface energy. The results of this loss are
depicted in the right column of Fig. 7. : content becomes less visible and follows
the content shape poorly. We additionally replace our loss defined in Eq. (10)
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Ours ARAP lossFewer  cluster

Fig. 7: We ablate two crucial components of WaSt-3D. In the middle we show our
main model stylizing lego scene using wicker basket scene. On the right side we replace
Sinkhorn divergence with the ARAP [44] loss. On the left side we reduce number of
content cluster N from 400 to 200.

with the entropy regularized Wasserstein-2 distance Eq. (6), this makes the op-
timization less stable in practice and requires more hyperparameters tweaking.
Results are provided in the supplementary.

5 Conclusion

In this paper, we propose the WaSt-3D method for stylizing 3D scenes using
another 3D style scene as a reference. Recognizing the difficulty of general scene-
to-scene translation, we first partition the content scene into simpler components,
identify the best-fitting style part for each content cluster, and fine-tune the
style by optimizing the Wasserstein-2 distance for each pair of clusters. This
approach to matching distributions, coupled with a robust representation of the
style scenes, enables a faithful reproduction of the style scene geometry. This
stands in contrast to the classical approach of rendering scenes to align with
feature distributions in the image encoder space, distinguishing our method from
conventional 3D scene processing techniques. We conduct ablation studies on
various components of our model and assess the impact of different parameters
on its final performance. Additionally, we demonstrate the effectiveness of our
approach through user preference studies and by measuring the CLIP similarity
score of the optimized scene and the style scene patches. We believe that our
approach holds promise for the community and can pave the way for alternative
research directions in this field.



WaSt-3D 15

Acknowledgements

This project has been supported by the German Federal Ministry for Economic
Affairs and Climate Action within the project “NXT GEN AI METHODS –
Generative Methoden für Perzeption, Prädiktion und Planung” and the German
Research Foundation (DFG) project 421703927. The authors gratefully acknowl-
edge the Gauss Center for Supercomputing for providing compute through the
NIC on JUWELS at JSC and the HPC resources supplied by the Erlangen
National High Performance Computing Center (NHR@FAU funded by DFG).
We also thank Ming Gui for the insightful discussion on the project and Owen
Vincent for his support with technical questions.

References

1. An, J., Huang, S., Song, Y., Dou, D., Liu, W., Luo, J.: Artflow: Unbiased im-
age style transfer via reversible neural flows. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 862–871 (2021) 4

2. Arnheim, R.: Art and visual perception, a psychology of the creative eye (1967) 3
3. Baatz, H., Granskog, J., Papas, M., Rousselle, F., Novák, J.: Nerf-tex: Neural

reflectance field textures. Computer Graphics Forum 41 (2022) 5
4. Chaudhuri, B., Sarafianos, N., Shapiro, L., Tung, T.: Semi-supervised synthesis of

high-resolution editable textures for 3d humans. In: CVPR (2021) 2
5. Chen, J., Ji, B., Zhang, Z., Chu, T., Zuo, Z., Zhao, L., Xing, W., Lu, D.: Test-

nerf: Text-driven 3d style transfer via cross-modal learning. In: International Joint
Conference on Artificial Intelligence (2023) 5

6. Chen, T.Q., Schmidt, M.: Fast patch-based style transfer of arbitrary style. arXiv
preprint arXiv:1612.04337 (2016) 4

7. Chiu, T.Y., Gurari, D.: Iterative feature transformation for fast and versatile uni-
versal style transfer. In: Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIX 16. pp. 169–184.
Springer (2020) 2, 4

8. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2414–2423 (2016) 2, 3, 4

9. Gombrich, E.H.: The story of art (1950) 3
10. Gu, S., Chen, C., Liao, J., Yuan, L.: Arbitrary style transfer with deep feature

reshuffle. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 8222–8231 (2018) 4

11. Huang, H., Wang, H., Luo, W., Ma, L., Jiang, W., Zhu, X., Li, Z., Liu, W.: Real-
time neural style transfer for videos. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) pp. 7044–7052 (2017) 2

12. Huang, H.P., Tseng, H.Y., Saini, S., Singh, M., Yang, M.H.: Learning to stylize
novel views. In: ICCV (2021) 5

13. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE international conference on computer
vision. pp. 1501–1510 (2017) 4

14. Jacobs, C., Salesin, D., Oliver, N., Hertzmann, A., Curless, A.: Image analogies.
In: Proceedings of Siggraph. pp. 327–340 (2001) 4



16 D. Kotovenko et al.

15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. ArXiv abs/1603.08155 (2016) 2

16. Jung, H., Nam, S., Sarafianos, N., Yoo, S., Sorkine-Hornung, A., Ranjan, R.: Ge-
ometry transfer for stylizing radiance fields. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 8565–8575
(June 2024) 5

17. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (July
2023) 5, 6

18. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics 36(4) (2017) 10,
11

19. Kolkin, N., Kucera, M., Paris, S., Sykora, D., Shechtman, E., Shakhnarovich, G.:
Neural neighbor style transfer. arXiv e-prints pp. arXiv–2203 (2022) 4

20. Kolkin, N., Salavon, J., Shakhnarovich, G.: Style transfer by relaxed optimal trans-
port and self-similarity. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10051–10060 (2019) 2, 4

21. Kotovenko, D., Sanakoyeu, A., Lang, S., Ommer, B.: Content and style disentan-
glement for artistic style transfer. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV) pp. 4421–4430 (2019) 4

22. Kotovenko, D., Sanakoyeu, A., Ma, P., Lang, S., Ommer, B.: A content transfor-
mation block for image style transfer. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) pp. 10024–10033 (2019) 4

23. Kotovenko, D., Wright, M., Heimbrecht, A., Ommer, B.: Rethinking style trans-
fer: From pixels to parameterized brushstrokes. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) pp. 12191–12200 (2021) 4

24. Kuznetsov, A., Wang, X., Mullia, K., Luan, F., Xu, Z., Hašan, M., Ramamoorthi,
R.: Rendering neural materials on curved surfaces. SIGGRAPH ’22 Conference
Proceedings (2022) 5

25. Li, C., Wand, M.: Combining markov random fields and convolutional neural net-
works for image synthesis. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2479–2486 (2016) 4

26. Li, Y., Chen, H.y., Larionov, E., Sarafianos, N., Matusik, W., Stuyck, T.: Diffavatar:
Simulation-ready garment optimization with differentiable simulation. In: CVPR.
pp. 4368–4378 (2024) 5

27. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via
feature transforms. Advances in neural information processing systems 30 (2017)
4

28. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through
deep image analogy. arXiv preprint arXiv:1705.01088 (2017) 4

29. Liu, K., Zhan, F., Chen, Y., Zhang, J., Yu, Y., Saddik, A.E., Lu, S., Xing, E.:
Stylerf: Zero-shot 3d style transfer of neural radiance fields. In: CVPR (2023) 5,
10, 11, 12

30. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image trans-
formation with non-aligned data. In: Proceedings of the European conference on
computer vision (ECCV). pp. 768–783 (2018) 4

31. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with pre-
scriptive sampling guidelines. ACM Transactions on Graphics (TOG) (2019) 10,
11



WaSt-3D 17

32. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020) 5, 10, 12

33. Nguyen-Phuoc, T., Liu, F., Xiao, L.: Snerf: stylized neural implicit representations
for 3d scenes. ACM Transactions on Graphics 41(4), 1–11 (Jul 2022) 5, 10, 11, 12

34. Park, D.Y., Lee, K.H.: Arbitrary style transfer with style-attentional networks. In:
proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. pp. 5880–5888 (2019) 4

35. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach.
Learn. 11, 355–607 (2018) 8

36. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision (2021) 10

37. Ramdas, A., Trillos, N.G., Cuturi, M.: On wasserstein two-sample testing and
related families of nonparametric tests. Entropy 19, 47 (2015) 8

38. Risser, E., Wilmot, P., Barnes, C.: Stable and controllable neural texture synthesis
and style transfer using histogram losses. arXiv preprint arXiv:1701.08893 (2017)
4

39. Sanakoyeu, A., Kotovenko, D., Lang, S., Ommer, B.: A style-aware content loss for
real-time hd style transfer. ArXiv abs/1807.10201 (2018) 4

40. Sarafianos, N., Stuyck, T., Xiang, X., Li, Y., Popovic, J., Ranjan, R.: Gar-
ment3DGen: 3D garment stylization and texture generation. arXiv preprint
arXiv:2403.18816 (2024) 5

41. Segu, M., Grinvald, M., Siegwart, R.Y., Tombari, F.: 3dsnet: Unsupervised shape-
to-shape 3d style transfer. ArXiv abs/2011.13388 (2020) 5

42. Sheng, L., Lin, Z., Shao, J., Wang, X.: Avatar-net: Multi-scale zero-shot style trans-
fer by feature decoration. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8242–8250 (2018) 4

43. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014) 4

44. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of
EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing. pp.
109–116 (2007) 13, 14

45. Thonat, T., Beaune, F., Sun, X., Carr, N., Boubekeur, T.: Tessellation-free dis-
placement mapping for ray tracing 40(6) (dec 2021) 5

46. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: Feed-
forward synthesis of textures and stylized images. ArXiv abs/1603.03417 (2016)
2

47. Wang, C., Jiang, R., Chai, M., He, M., Chen, D., Liao, J.: Nerf-art: Text-driven
neural radiance fields stylization. arXiv preprint arXiv:2212.08070 (2022) 5

48. Wang, R., Que, G., Chen, S., Li, X., Li, J.Y., Yang, J.: Creative birds: Self-
supervised single-view 3d style transfer. ArXiv abs/2307.14127 (2023) 5

49. Xia, X., Xue, T., Lai, W.S., Sun, Z., Chang, A., Kulis, B., Chen, J.: Real-time
localized photorealistic video style transfer. 2021 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV) pp. 1088–1097 (2020) 2

50. Xie, T., Zong, Z., Qiu, Y., Li, X., Feng, Y., Yang, Y., Jiang, C.: Physgaus-
sian: Physics-integrated 3d gaussians for generative dynamics. arXiv preprint
arXiv:2311.12198 (2023) 6

51. Xu, S., Li, L., Shen, L., Lian, Z.: Desrf: Deformable stylized radiance field. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops. pp. 709–718 (June 2023) 5



18 D. Kotovenko et al.

52. Yao, Y., Ren, J., Xie, X., Liu, W., Liu, Y.J., Wang, J.: Attention-aware multi-
stroke style transfer. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 1467–1475 (2019) 4

53. Ye, M., Danelljan, M., Yu, F., Ke, L.: Gaussian grouping: Segment and edit any-
thing in 3d scenes. arXiv preprint arXiv:2312.00732 (2023) 5

54. Zhang, K., Kolkin, N., Bi, S., Luan, F., Xu, Z., Shechtman, E., Snavely, N.: Arf:
Artistic radiance fields. In: European Conference on Computer Vision. pp. 717–733.
Springer (2022) 4, 5, 10, 11, 12

55. Zhang, Y., He, Z., Xing, J., Yao, X., Jia, J.: Ref-npr: Reference-based non-
photorealistic radiance fields for controllable scene stylization. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 4242–4251 (June 2023) 5, 10


	WaSt-3D: Wasserstein-2 Distance for Scene-to-Scene Stylization on 3D Gaussians

