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We provide additional qualitative analysis to illustrate the effectiveness of
PaPr in practice (Sec. A–Sec. D). Additionally, we provide simple PyTorch pseudo
code for PaPr implementation (Sec. E).

A Robustness of PaPr with Various ConvNet Proposals

We study the patch significance map (PSM), and patch masks generated by
different ConvNet proposal networks. To make PaPr more computationally
efficient and accurate, we need precise mask of discriminative regions irrespective
of the size and top-1 accuracy of the proposal network. In Fig. 1, Fig. 2, and
Fig. 3, we demonstrate more visualizations of generated PSMs and patch masks
with different keeping ratios for various ConvNets. Despite little variations in
PSMs for different ConvNets, the top z% patch mask remains almost identical
focusing on the key image patches. With patch keeping ratio of z = 0.5, all
proposal models mostly keep the key patches representing target objects. With
much lower keeping ratio such as z = 0.3, few parts of the object in Fig. 2
are masked, however, in Fig. 1 and Fig. 3, most key object patches are visible
even with such high masking ratio. This highlights that PaPr can operate with
extremely lightweight ConvNet (MobileOne-S0 has 42× smaller FLOPs than
ResNet-152) for precise key discriminative patch localization, which makes it
particularly suitable for pruning redundant image patches in larger models.

B Robustness of PaPr over CAM Methods

Class activation mapping (CAM) methods mostly focus on highlighting key image
patches responsible for the target class prediction to make the decision more
interpretable [1, 7, 13, 16, 19]. Such CAM methods have two major limitations
preventing their use for patch masking: (1) These methods cannot leverage
batch processing for separately tracing the sample activation for each prediction.
Moreover, many of these methods rely on gradient modulation [1,13], or complex
activation decomposition [11, 16] which practically makes them infeasible for
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speeding-up large off-the-shelf models. (2) Since these methods heavily rely on
activation weights of the final prediction (usually, in the final FC layer), their
use is problematic for smaller models with significantly lower top-1 accuracy.
Therefore, rather than highlighting the class regions based on final prediction,
PaPr attempts to localize the most discriminative patch regions irrespective of
their class, thereby making them suitable for ultra-lightweight proposal ConvNets
unaffected by their size or final top-1 accuracy.

We provide extensive qualitative comparisons of various CAM methods with
PaPr in Fig. 4–Fig. 9. To focus on more challenging samples, we mainly present the
results on images, where the proposal ConvNet has significantly lower confidence
on the target class while the larger ViT has significantly higher confidence. We
denote the final confidence c on the target class in each sample. We use ViT-Base-
16 model as the baseline, and lightweight MobileOne-S0 as the proposal model. We
analyze whether the application of patch masking with light ConvNet (MobileOne-
S0 in our example) has significant impact on the target class prediction of the large
model (ViT-Base-16 in our example). We use keeping ratio of z = 0.4 to retain
top-40% discriminative patches in each method. We highlight several key findings
from these qualitative analysis: (1) PaPr can maintain the prediction confidence
of large ViTs with significantly smaller amount of patches, whereas other CAM
based methods face significant reduction of confidence, mostly in challenging
cases. (2) Notably, we observe the increase of prediction confidence in several cases
with reduced patches. We hypothesize that such patch masking greatly reduces
the complexity of the image by masking the backgrounds, and such simplification
of the image increases overall confidence. (3) PaPr performs significantly better
particularly in cases where the ConvNet has extremely low confidence, whereas
other CAM methods struggle in such scenarios. These demonstrate PaPr’s ability
to precisely locate the key discriminative patches in challenging scenarios without
hurting the large model’s performance.

C Qualitative Analysis on Patch Pruning in Videos

In general, video contains large information redundancies, particularly for the
video recognition task, that makes such applications computationally burdensome
for larger models. However, to locate key discriminative patch regions in videos,
spatio-temporal perception of the whole video is required. Interestingly, we can
integrate PaPr with light ConvNets for background patch masking with spatio-
temporal reasoning to speed-up larger models. In Fig. 10 and Fig. 11, we provide
additional visualizations on spatio-temporal patch masking in videos with PaPr.
We use lightweight X3d-s [3] model with low patch keeping ratio of z = 0.3 for
visualization. We highlight the major observations as follows: (1) PaPr can track
patches representing the target object across complex backgrounds. (2) In slow
moving videos with similar backgrounds, PaPr reduces the data redundancy by
suppressing similar frames. Usually, the starting and ending frames are observed
with higher priority, while similar intermediate frames are heavily masked. (3)
PaPr can precisely isolate few frames representing the main object regions across
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other redundant frames, thereby requiring holistic understanding of the whole
video. These results demonstrate that, PaPr can be very effective in suppressing
redundant spatio-temporal patches to significantly reduce computational burden
of large off-the-shelf models in video recognition.

D Additional Experiments

D.1 More downstream tasks and dynamic spatial pruning methods

The proposed method can be easily extended to downstream tasks like semantic
segmentation (SS) and object detection (OD). Initially, we fine-tune a multi-
label classifier based on MobileOne-s0 [20] on the target dataset and extract
the patch significance map with PaPr. Then, we follow DToP [14], replacing
the learnable pruning block with PaPr, where high-confidence tokens exit early
and low-confidence tokens go deeper. We fine-tune SegViT [18] for SS and
ViTDET [8] for OD using PaPr. Compared to other learnable dynamic spatial
pruning methods, reproduced in the same DToP [14] framework, PaPr achieves
significantly larger FLOP reduction for similar performance (Tab. I). PaPr can
directly speed-up other dynamic methods (e.g., early exiting) as well, by reducing
redundant patches before processing, offering a complementary approach to the
existing methods (Tab. II).

Tab. I: Comparison on more tasks with ViT-B/16 backbone

Pruning
Methods

Object Det. on COCO Sem. Seg. on ADE20K

box mAP GFLOPs mIoU GFLOPs

None 51.6 801 49.6 110
DToP [14] 51.3 659 49.8 86
SAR [5] 51.2 680 49.5 88

LAUDNet [6] 51.3 692 49.4 91
Ours 51.4 510 49.9 70

Tab. II: Integration of PaPr in early exiting methods

Method Arch PaPr Acc. Img/s

Dyn-
Perceiver [4]

ConvNeXt-
Base1k

✗ 82.3 385
✓ 82.2 498

DVT [17] ViT-B/16 ✗ 83.4 552
✓ 83.4 694
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D.2 Comparison with CAM variants and random pruning at
different keeping ratio

Existing CAM variants are mostly limited by batch in-operability for sample-wise
optimization, and the intrinsic lower accuracy of ConvNets for using FC layers,
which limits their effectiveness for expediting the ViT models. In contrast, PaPr
can extract precise masks even for classes where ConvNet confidence is low, and
hence it can maintain ViT accuracy while enabling significant speed up (see Fig.
7 in the main paper). We provide additional quantitative analysis with different
CAM variants, and random pruning for the patch selection in PaPr at various
patch keeping ratio (z) (Tab. III). Random pruning gets the lowest accuracy
due to lacking a holistic view and consequently removing essential information.
Despite the lower accuracy with smaller keep ratio for random pruning, unlike
other CAM variants, random pruning can be processed in batches, which provides
additional speed-ups for large-scale processing. In contrast, our method achieves
the best performance for all keep ratios while maintaining the batch processing
as random pruning for faster operation.

Tab. III: Patch localization methods at various keep ratio (z). We use ViT-B/16 MAE
model with MobileOne-S0 patch selector.

Methods BatchOp. z=1.0 z=0.7 z=0.6 z=0.5 z=0.4

Random ✓ 83.7 79.3 73.5 65.4 55.7
CAM [19] ✗ 83.7 80.5 77.9 74.5 71.3

GradCAM [13] ✗ 83.7 81.1 78.8 76.7 73.8
ScoreCAM [16] ✗ 83.7 80.9 78.5 75.8 73.2

Ours ✓ 83.7 83.3 82.9 82.4 81.4

D.3 FC layers are bottleneck

In Tab. IV, we examine the effects of FC layers in PaPr with and without the
proposed weight suppression. Including FC layers results in significantly lower
performance. Additionally, in Fig. 7 from the main paper and Fig. 4–9, we
highlight that PaPr can maintain ViT accuracy even when the proposal ConvNet
confidence is very low. This show that by suppressing FC layers, we can use
ultra-lightweight ConvNets to speed-up large-scale ViTs.

Tab. IV: Effect of FC layers in PaPr at various keep ratio (z)

Models FC Layer z=0.7 z=0.6 z=0.5 z=0.4

ViT-B/16
(& MobileOne-S0)

✓ 81.2 79.1 77.5 74.8
✗ 83.3 82.9 82.4 81.4

ViT-L/16
(& MobileOne-S0)

✓ 82.4 81.3 80.2 78.6
✗ 85.8 85.5 85.1 84.8
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E PyTorch Implementation

We provide pseudo code implementation of PaPr in PyTorch [12] on class-token
based vision transformer [2]. In particular, we apply PaPr to prune redundant
patch tokens in ViTs after the initial extraction of patch tokens with the integra-
tion of class token and position embedding. Starting from the ViT tokens, and
final convolutional feature maps extracted from the proposal ConvNet, the fol-
lowing code snippet can prune redundant patch tokens with target keeping ratio
(z). We note that, PaPr can operate with class-token free ViTs [2], hierarchical
transformers [9], pure ConvNets [10], and video transformers [15].

import torch.nn.functional as F

def apply_papr(x: torch.tensor , f: torch.tensor , z: float) ->
torch.tensor:

"""
x: input ViT tokens of size (batch , N, c)
f: proposal ConvNet features of size (batch , K, h, w)
z: keeping ratio for tokens

"""
b, n, c = x.shape
h1 = w1 = numpy.sqrt(n-1) # spatial resolution of tokens
nt = int(n*z) # total remaining tokens after pruning

# extract discriminative feature map from proposal features
Fd = f.mean(dim=1) # size (batch , h, w)

# upsampling F to match patch token spatial resolution in x
# it generates Patch Significance Map (P)
P = F.interpolate(Fd, size=(h1, w1), mode="bicubic")
P = P.view(b, -1) # reshaping for pruning mask extraction

# extracting indices of the most significant patches
patch_indices = P.argsort(dim=1, descending=True)[:, :nt]

patch_indices += 1 # adjusting indices for class tokens

# preparing class indices for each sample
class_indices = torch.zeros(b, 1).to(patch_indices.device)

# Patch mask is obtained combining class and patch indices
M = torch.cat([class_indices , patch_indices], dim=1)

# extracting tokens based on patch mask
x = x.gather(dim=1, index=M.unsqueeze(-1).expand(b, -1, c))

# pruned x tensor size (batch , nt, c)
return x
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Fig. 1: More visualizations of patch significance map (PSM) and patch masks with
various proposal models for different keeping ratio (z ).

Fig. 2: More visualizations of patch significance map (PSM) and patch masks with
various proposal models for different keeping ratio (z ).
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Fig. 5: More visualizations on robustness of PaPr compared to CAM based methods.

Fig. 6: More visualizations on robustness of PaPr compared to CAM based methods.
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Fig. 7: More visualizations on robustness of PaPr compared to CAM based methods.

Fig. 8: More visualizations on robustness of PaPr compared to CAM based methods.
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Fig. 9: More visualizations on robustness of PaPr compared to CAM based methods.
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Fig. 10: More visualizations of spatio-temporal patch masking in videos with PaPr for
keeping ratio z = 0.3. X3d-s [3] based ConvNet is used for visualization.
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Fig. 11: More visualizations of spatio-temporal patch masking in videos with PaPr for
keeping ratio z = 0.3. X3d-s [3] based ConvNet is used for visualization.
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