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Abstract. We present Multi-HMR, a strong single-shot model for multi-
person 3D human mesh recovery from a single RGB image. Predictions
encompass the whole body, i.e., including hands and facial expressions,
using the SMPL-X parametric model and 3D location in the camera
coordinate system. Our model detects people by predicting coarse 2D
heatmaps of person locations, using features produced by a standard
Vision Transformer (ViT) backbone. It then predicts their whole-body
pose, shape and 3D location using a new cross-attention module called
the Human Prediction Head (HPH), with one query attending to the
entire set of features for each detected person. As direct prediction of
fine-grained hands and facial poses in a single shot, i.e., without rely-
ing on explicit crops around body parts, is hard to learn from existing
data, we introduce CUFFS, the Close-Up Frames of Full-body Subjects
dataset, containing humans close to the camera with diverse hand poses.
We show that incorporating it into the training data further enhances
predictions, particularly for hands. Multi-HMR also optionally accounts
for camera intrinsics, if available, by encoding camera ray directions for
each image token. This simple design achieves strong performance on
whole-body and body-only benchmarks simultaneously: a ViT-S back-
bone on 448×448 images already yields a fast and competitive model,
while larger models and higher resolutions obtain state-of-the-art results.
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Fig. 1: Efficient 3D reconstruction of multiple humans in camera space. We
introduce Multi-HMR, a single-shot approach to detect multiple humans in images, and
regress whole-body human meshes. Predictions encompass hands and facial expressions,
as well as 3D location with respect to the camera. Left: Visualization of Multi-HMR
predictions. Right: Relative improvements (in %) on human mesh recovery benchmarks.
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1 Introduction

We introduce a single-shot model for recovering whole-body 3D meshes of hu-
mans from a single RGB image. Our problem formulation focuses on four aspects
of Human Mesh Recovery (HMR) that we identify as pivotal to making HMR
applicable to real-world scenarios: i) capture of expressive body poses – i.e.,
including hands and facial expressions, ii) efficient processing of images with a
variable number of people, iii) location of people in 3D space, iv) adaptability
to camera information when available.

Successfully handling these aspects simultaneously makes our proposed model,
denoted Multi-HMR, widely applicable. For instance, in virtual or augmented re-
ality (AR/VR), capturing faces and hands precisely is key for communication. It
is also beneficial for enabling human-robot interactions [8,49], or human under-
standing from images and videos [45,50,62]. Likewise, understanding the place-
ment of people in the scene is necessary for applications ranging from robotic
navigation to AR/VR applications involving several people. In addition, efficient
processing of a variable number of people is desirable when computation is re-
stricted or real-time processing is needed. Finally, reasoning about 3D meshes
can only benefit from adapting to camera information when it is available [24,26].

Table 1: Main features of Multi-HMR
vs. the state of the art: Single-person meth-
ods rely on human detectors to process im-
age crops around each person independently.
Multi-person approaches detect humans and
regress their properties using the same net-
work. Single-shot refers to methods regress-
ing the expected output without extracting
or resampling features from different regions.

Method
Whole Single Camera Camera
Body Shot Space Aware

Single-person



HMR [22] ✗ ✓ ✗ ✗

HMR2.0 [12] ✗ ✓ ✗ ✗

SPEC [24] ✗ ✓ ✗ ✓

CLIFF [26] ✗ ✓ ✗ ✓

PIXIE [11] ✓ ✗ ✗ ✗

Hand4Whole [37] ✓ ✗ ✗ ✗

PyMAF-X [58] ✓ ✗ ✗ ✗

OSX [27] ✓ ✗ ✗ ✗

SMPLer-X [4] ✓ ✗ ✗ ✗

Det. + Single { 3DCrowdNet [6] ✗ ✗ ✗ ✗

Multi-person


ROMP [51] ✗ ✓ ✗ ✗

BEV [52] ✗ ✓ ✓ ✗

PSVT [43] ✗ ✓ ✓ ✗

Multi-HMR ✓ ✓ ✓ Optional

In their pioneering work on
HMR [22], Kanazawa et al. pro-
pose to predict SMPL mesh pa-
rameters and three parameters for
weak-perspective reprojection given
a cropped image containing a per-
son. Different aspects of this ap-
proach have been improved since,
including architectures [12, 26, 59],
training techniques [25] and data
enhancements [3, 21, 41]. The ap-
proach has also been extended to
whole-body parametric models like
SMPL-X [42], often with multiple
crops centered on body, hands and
face [7, 11, 37]. Multi-person inputs
are typically handled with a two-step
procedure: first running an off-the-
shelf human detector, then apply-
ing a mesh recovery model on crops
around each detected person. Conversely, ROMP [51] and PSVT [43] recover
multiple human meshes in a single step using one-shot detectors. BEV [52] addi-
tionally predicts the relative depths of meshes. Accounting for intrinsic camera
parameters has been shown to improve reprojection [24,26], especially when these
differ between training and inference. Despite these advancements, no previous
method has successfully integrated in a single model all four essential features:
efficient multi-person processing, whole-body mesh recovery, location estimation
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Fig. 2: Overview of Multi-HMR. A ViT backbone extracts image embeddings.
Detection is conducted at the patch level with additional 2D offset regression. Each
detected token serves as a query for a cross-attention-based head, called the Human
Perception Head (HPH), which predicts pose and shape parameters, along with location
in 3D space. Optionally, known camera parameters are embedded and added to each
patch, represented as a Fourier encoding of the ray originating from the camera center.

in camera space and, optionally, camera-aware predictions. Please refer to Ta-
ble 1 for a comparison to existing work.

In this paper, we introduce Multi-HMR, an efficient single-shot method that
detects each person in a scene and regresses their pose, shape, and 3D loca-
tion in camera space, using a whole-body parametric mesh model. Please see
Figure 1 (left) for an example of prediction. Optionally, Multi-HMR can be con-
ditioned on camera intrinsics if available. Figure 2 presents an overview of the
model architecture. We use a standard Vision Transformer (ViT) [9] backbone
to extract features from the input data, which allows us to benefit from recent
advancements in large-scale self-supervised pre-training [5, 14, 40]. This differs
from architectures like HR-Net [54] which are less common in the pre-training
literature. We regress a person-center heatmap from the feature tensor produced
by the backbone: for each input token, the model first outputs a probability that
a person is centered on a point present in the corresponding input patch, as well
as location offsets [63]. We introduce a prediction head called the Human Per-
ception Head (HPH) that employs cross-attention. In this mechanism, queries
correspond to the detected center tokens, while keys and values are drawn from
all image tokens. It efficiently predicts pose and shape parameters of an expres-
sive human model, namely SMPL-X [7], for a variable number of detections,
while also regressing depths to place individuals within the scene. To improve
3D prediction by incorporating camera intrinsics, our model can optionally take
camera parameters as input. These parameters are used to augment each token
feature with Fourier-encoding of the corresponding camera ray directions before
passing them to the prediction head.

Multi-HMR is conceptually simple: unlike most existing whole-body approaches,
it does not rely on multiple high-resolution crops of the body parts for ex-
pressive models [7, 11, 37], or hand-designed components to place people in the
scene [6, 51]. However, naively regressing SMPL-X parameters from a single to-
ken feature tends to under-perform on small body parts like hands. We find that
incorporating expressive human subjects positioned close to the camera in the
training data results in good performance across all body parts. We thus intro-
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duce the CUFFS (Close-Up Frames of Full-body Subjects) dataset, containing
synthetic renderings of people with clearly visible hands in diverse poses.

We train a family of models with various backbone sizes and input resolutions.
We evaluate performance on both body-only (3DPW [31], MuPoTs [33], CMU-
Panoptic [20], AGORA-SMPL [41]) and whole-body expressive mesh recovery
benchmarks (EHF [42], AGORA-SMPLX [41] and UBody [27]), see Figure 1
(right). The single-shot nature of the model allows for efficient inference. For
instance, with a ViT-S backbone and 448×448 inputs, Multi-HMR is competitive
on both body-only and whole-body datasets while being real-time, achieving 30
frames per second (fps) on a NVIDIA V100 GPU. Larger backbones and higher
resolutions – up to a ViT-L backbone and 896×896 inputs – outperform the
state of the art at the cost of slower but still reasonable inference speed (5 fps).

2 Related work

Multi-HMR primarily builds upon whole-body HMR and multi-person HMR. It
also relies on synthetic datasets. We now review these three literatures.
Whole-body Human Mesh Recovery. There has been a recent surge of in-
terest for whole-body mesh recovery from a single image [11,27,37,42], fostered in
part by seminal work on improving whole-body parametric models. In particular
SMPL-X [42] outputs an expressive mesh for the whole body given a small set
of pose and shape parameters. The first approaches were based on optimization,
e.g. SMPLify-X [42], but they remain slow and sensitive to local minima. Nu-
merous learning-based methods were also introduced, but only in single-person
settings [4, 7, 11, 37, 48, 58, 64]. This setting already poses significant challenges:
hands and faces are typically low resolution in natural images, and capturing
their poses hinges on subtle details. To overcome this, most approaches leverage
a multi-crop pipeline: areas of interest – such as the face and hands – are cropped,
resized and used to estimate the associated meshes which are aggregated into a
whole-body prediction. In particular, ExPose [7] selects high-resolution crops us-
ing a body-driven attention mechanism; PIXIE [11] fuses body parts in an adap-
tive manner, and Hand4Whole [37] uses both body and hand joint features for
3D wrist rotation estimation. In contrast to these methods, Multi-HMR is single-
shot, without high-resolution crops. More recently, OSX [27] introduced the first
single-crop method for single-person whole-body mesh recovery. They leverage
a ViT encoder, followed by a high-resolution feature pyramid, and use keypoint
(e.g. wrists) estimates to resample features in their decoder head. SMPLer-X [4]
employed a similar approach, training on numerous datasets. We depart from
existing methods by i) tackling multi-person whole-body mesh recovery and ii)
using a single-shot approach, with a non-hierarchical feature extractor.
Multi-Person Human Mesh Recovery. Most existing multi-person HMR
methods [6, 12, 25, 44, 59] build upon a multi-stage framework: an off-the-shell
human detector [15, 29, 47] is used, followed by a single-person mesh estimation
model [23, 30, 57, 61] to process each detected human. This has two drawbacks:
i) it is inefficient at inference time compared to a single-shot approach and ii)
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the pipeline cannot be learned end-to-end. This impacts final performance, in
particular in cases of truncation by the image frame or person-person occlu-
sions, a common scenario in multi-person settings. Following the seminal work
of ROMP [51] which estimates 2D maps for 2D human detections, positions and
mesh parameters, single-stage models have been proposed [43, 51, 52]. In par-
ticular, BEV [52] introduces an additional Bird-Eye-View representation of the
scene to predict relative depth between detected persons and PSVT [43] im-
proves performance using a transformer decoder. We follow the same single-shot
philosophy as [43,51,52] but go beyond their settings by: i) tackling whole-body
mesh recovery, ii) regressing the 3D location of each person in the camera coor-
dinate system, and iii) incorporating camera intrinsics as an optional input. We
also introduce an efficient cross-attention-based head, making Multi-HMR faster
to train, efficient at inference and improving performance.
Synthetic data. Acquiring high-quality real-world ground-truth data at scale
for human mesh recovery is costly, in particular when considering faces and hands
expressions. A body of work [13, 53, 56] has explored the generation of large-
scale synthetic data for human-related tasks. In this work, we experiment with
BEDLAM [3] and AGORA [41], and confirm empirically that using large-scale
synthetic data is beneficial for whole-body human mesh regression, compared to
real-world data with pseudo ground-truth fits. We also propose a new synthetic
dataset, CUFFS, which stands for Close-Up Frames of Full-body Subjects, de-
signed to improve performance particularly on hands for one-stage whole-body
prediction. It departs from existing ones in that it contains humans with diverse
and clearly visible hand poses, seen from a limited distance, to allow fine details
to be captured. Our experiments show that this type of training data is key to
allow regressing whole-body meshes in a single shot.

3 Multi-HMR

We now describe our single-shot multi-person whole-body human mesh recovery
approach. Given an input RGB image I ∈ RH×W×3 with resolution H ×W , our
model, denoted H, directly outputs a set of N centered whole-body 3D humans
meshes M ∈ RV×3 composed of V vertices, along with their corresponding root
3D locations t ∈ R3 in the camera coordinate system:{

Mn + tn
}
n∈{1,...,N} = H(I). (1)

As preliminaries, Section 3.1 presents the 3D whole-body parametric model
and the camera model that we use. We then detail the model architecture in
Section 3.2 and the training losses in Section 3.3.

3.1 Preliminaries

Human whole-body mesh representation. We build upon the SMPL-X
parametric 3D body model [7]. Given input parameters for the pose θ ∈ R53×3
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(global orientation, body, hands and jaw poses) in axis-angle representation,
shape β ∈ R10 and facial expression α ∈ R10, it outputs an expressive human-
centered 3D mesh M = SMPL-X(θ,β,α) ∈ RV×3, with V = 10, 475 vertices.
The mesh M is centered around a primary keypoint – in this work we choose the
head as primary keypoint. It is placed in the 3D scene by putting the primary
keypoint at the 3D location t = (tx, ty, tz). For simplicity, let x = [θ,β,α]: the
problem reduces to predicting x and t for all detected humans.
Pinhole camera model. We assume a simple pinhole camera model to project
3D points on the image plane. Ignoring distortion, it is defined by an intrinsic
matrix K ∈ R3×3 of focal length f and principal point (pu, pv). We set the
camera pose to the origin. We have:

K =
[ f 0 pu

0 f pv

0 0 1

]
and

{
[cu, cv, 1]

T = (1/tz) ·K [tx, ty, tz]
T

[tx, ty, tz]
T = tz ·K−1 [cu, cv, 1]

T
, (2)

with c = (cu, cv) the 2D image coordinates of the projection of a 3D point t into
the image plane. K can thus be used to backproject a 2D point into 3D given its
depth tz. We denote by πK the camera projection operator and π−1

K its inverse.

3.2 Single-shot architecture

Our method is summarized in Figure 2. We first encode images into token em-
beddings using a ViT backbone. These embeddings are used to detect humans
and can optionally be combined with camera embeddings. Our proposed Human
Perception Head is then employed to regress whole-body human meshes and
depth for a variable number of detected humans.
ViT backbone. The input RGB image I is encoded with a ViT backbone [9]. It
is sub-divided into image patches of size P ×P , each embedded into tokens with
a linear transformation and positional encoding. The set of tokens is processed
with self-attention blocks into E ∈ RH/P×W/P×D with D the feature dimension.
The ViT model keeps a constant resolution throughout so that each output token
spatially corresponds to a patch in the input image.
Patch-level detection. To detect humans in the input image, we define a
primary keypoint on human bodies, here the 3D keypoint of the head as de-
fined according to the SMPL-X body model. For each patch index (i, j) ∈
{1, . . . ,H/P}×{1, . . . ,W/P}, we predict if the patch centered at ui,j = (ui, vj)
contains a primary keypoint [63], with a score si,j ∈ [0, 1] computed from the
associated token embedding Ei,j ∈ RD using a Multi-Layer-Peceptron (MLP).
At inference, we apply a threshold τ to the scores to detect patches containing
primary keypoints: {

un

}
n
=

{
ui,j |si,j ≥ τ

}
. (3)

At train time, the ground-truth detections are used for the rest of the model.
Image coordinates regression. Detecting people at the patch level yields a
rough estimation of the 2D location of the primary keypoint, up to the size of
the predefined patch size P . We refine the 2D location of the primary keypoint



Multi-HMR 7

N primary 
kpts embeddings

...
All extracted features

SMPL-X 
mean params

Q0

K1V1

Human 
Queries

Updated 
Human Queries

MLPs

SMPLX 
params

B1
Q1

BL… QL-1 QL

KLVL

HPH-Blocks

Pos. emb.

!

...

Ql-1

Bl

CAl SAl Ql

E

MLPl

(a) Human Perception Head (b) Samples from CUFFS

Fig. 3: (a) The token embeddings corresponding to the N detected primary keypoints
are used as queries in a series of cross-attention blocks where keys and values corre-
spond to the context provided by all image tokens. MLPs then predict the SMPL-X
parameters (pose and shape) as well as the depth for each query. (b) Samples from
our CUFFS synthetic dataset.

by regressing a residual offset δ = (δu, δv) from the center of a patch (ui, vj),
using an MLP taking the corresponding token embedding Ei,j as input. The 2D
coordinates predicted for the primary keypoint detected at patch location (i, j)
are thus given by:

ci,j = [ui + δu, v
j + δv]. (4)

Human Perception Head (HPH). We predict human-centered meshes and
depths estimations for all people detected in the scene in a structured manner and
in parallel, by processing E with our Human Perception Head, built from cross-
attention blocks [17], see Figure 3a for an overview. This design choice allows
features corresponding to a person detection to attend information from all image
patches before making a full pose, shape and depth prediction for this person. For
a human detection n at patch location (i, j), we initialize a cross-attention query
qn = (Ei,j ⊕ x) + pi,j , where pi,j is a learned query initialization dependent on
patch location, x denotes the mean body model parameters, of dimension D′ as
in previous works [12, 25], and ⊕ denotes concatenation along the channel axis.
Given N detections, the queries {qn}n are stacked into Q0 ∈ R(D+D′)×N for
efficient processing in parallel. The full feature tensor E is used as cross-attention
keys and values. The queries are then updated with a stack of L blocks Bl (L=2
in practice), alternating between cross-attention layers (CA) over queries and
image features, self-attention layers (SA) over queries, and an MLP:

Ql = Bl
[
Ql−1,E

]
= MLPl

(
SAl

(
CAl

[
Ql−1,E

]))
. (5)

The final outputs of the cross-attention-based module are given by QL ∈ R(D+D′)×N

and viewed as a set of N output features, used to regress N human-centered
whole-body parameters

{
xn

}
n

with a shared MLP.
Depth parametrization. Following the monocular depth literature [34,55], we
predict the depth d in log-space, also called nearness [46] denoted η. We assume
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a standard focal length f̂ and regress a normalized η̂ from QL with an MLP:

η =
f̂

f
η̂, d = exp(−η). (6)

This follows [10] which shows that this parametrization improves robustness to
focal length changes. The depth d is used to back-project the 2D camera coordi-
nates c using the camera inverse projection operator π−1

K following Equation 2
to obtain the 3D location t of the primary keypoint.

Note that we directly supervise the absolute depth while most previous
works [52] supervise the relative depth. This is made possible by the utiliza-
tion of large-scale synthetic data, where absolute depth is known, as opposed to
real-world data where only relative depth can be annotated. Our experimental
results show the effectiveness of this simple strategy.
Optional camera embedding. If available, camera intrinsics K can be used as
additional input to our model H which becomes H(I,K). In more details, camera
information may be integrated into the Human Perception Head at training
and/or inference time. This is a desirable feature, but making it optional allows
for i) processing images when it is not available, and ii) fairly comparing to the
state-of-the-art methods that do no use this information.

We embed camera information by computing the ray direction [35] ri,j =
K−1[ui, vj , 1]

T from each patch center (ui, vj). The first two coordinates of the
ri,j vector are kept, and embedded into a high-dimensional space using Fourier
encoding [35] to obtain a patch-level embedding EK ∈ RH/P×W/P×2(F+1), where
F denotes the number of frequency bands. We concatenate features extracted
using the vision backbone with camera embeddings to get E := E⊕EK.

3.3 Training Multi-HMR

Multi-HMR is fully-differentiable and trained end-to-end by back-propagation.
We now discuss training losses. The symbol ∼ denotes ground-truth targets.

Detection loss. We project the ground-truth primary keypoint of each human
present in the image using the camera projection operator πK, and construct
a score map S̃ of dimension (W/P ) × (H/P ) with s̃i,j equal to 1 if a primary
keypoint is projected to the corresponding patch and 0 otherwise. Predictions
are trained by minimizing a binary cross-entropy loss:

Ldet = −
∑
i,j

s̃i,j log(si,j) + (1− s̃i,j) log(1− si,j). (7)

Regression losses. All other quantities predicted by the model are trained
with L1 regression losses. We concatenate the offset from the patch centers c̃,
the body model parameters (pose, shape, expression) x̃, following [12, 25], and
the depth d̃ and minimize Lparams =

∑
n

∣∣∣[c,x, d] − [
c̃, x̃, d̃

]∣∣∣. We also found it
beneficial to minimize an L1 loss for human-centered output meshes Lmesh =
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n

∣∣Mn−M̃n

∣∣, as well as for the reprojection of the mesh onto the image plane
Lreproj =

∑
n

∣∣πK(Mn + tn)− πK(M̃n + t̃n)|. The final training loss is thus:

L = Ldet + Lparams + λ(Lmesh + Lreproj). (8)

Synthetic whole-body CUFFS dataset. We introduce CUFFS1, the Close-
Up Frames of Full-body Subjects dataset, designed to contain synthetic render-
ings of people with close-up views of full-bodies with clearly visible hands in
diverse poses, see Figure 3b. Using Blender [1], we render synthetic human mod-
els close to the camera, in poses sampled from the BEDLAM [3], AGORA [41],
and UBody [27] datasets, using additional hand poses from InterHand2.6M [39]
for increased diversity. Please refer to the supplementary material for more de-
tails. We render a total of 60,000 images. Simply adding this data during training
improves the quality of hand pose predictions, without degrading other metrics.
Implementation details. By default, we use squared input images of resolution
448×448, with the longest side resized to 448 and the smallest zero-padded to
maintain aspect ratio. We use random horizontal flipping as data augmentation.
We initialize the weights of the backbone with DINOv2 [40] and experiment with
Small, Base and Large ViT models as encoder. Please refer to the supplementary
material for the full list of hyper-parameters and more implementation details.

4 Experiments

We first ablate training data and model architecture (Section 4.1), and then
compare to the state of the art on body-only and whole-body HMR (Section 4.2).

Evaluation metrics. We evaluate the accuracy of the entire 3D mesh predic-
tions with the per-vertex error (PVE), following [27,51,52], and also report it for
specific body parts (hands and face). When the entire ground-truth mesh is not
available, we report the Mean Per Joint Position Error (MPJPE) and the Per-
centage of Correct Keypoints (PCK) using a threshold of 15cm. We also report
these metrics after Procrustes-Alignment (PA), and F1-Scores to evaluate detec-
tion. To evaluate the placement in the scene, we report the Mean Root Position
Error (MRPE) [52] and the Percentage of Correct Ordinal Depth (PCOD) [60]
metrics. For computational costs, we report inference time on a NVIDIA V100
GPU and the number of Multiply-Add Cumulation (MACs) using the fvcore li-
brary2. More details about the metrics are given in the supplementary material.
Evaluation benchmarks. For body-only benchmarks, we predict SMPL meshes
from SMPL-X meshes using the regressor from [3], and follow prior work [27,37,
43,51,52] in evaluating on 3DPW [31], MuPoTs [33], CMU [20] and AGORA [41].
For whole-body evaluation, we compare performance with prior work [11,27,37]
on EHF [42], AGORA [41] and UBody [27]. We refer to the supplementary ma-
terial for more details on datasets.

1https://download.europe.naverlabs.com/ComputerVision/MultiHMR/CUFFS
2https://github.com/facebookresearch/fvcore

https://download.europe.naverlabs.com/ComputerVision/MultiHMR/CUFFS
https://github.com/facebookresearch/fvcore
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Table 2: Architecture and training data are ablated on MuPoTs (PCK3D-
All), 3DPW (MPJPE), EHF (PVE-All), EHF-H (PVE-Hands) and CMU (MPJPE).
Default settings in grey . (a) We compare a ViT backbone to HRNet as well as
our HPH with respect to a standard iterative regressor [22] (‘Reg.’). (b) Training
data type; ‘Real’=MS-CoCo+MPII+Human3.6M,‘A’=AGORA, ‘B’=BEDLAM, and
‘C’=CUFFS. When trained on ‘C’ only, we evaluate on single-person test sets only.

(a) Architecture

BackboneHead MuPoTs↑ 3DPW↓ EHF↓ CMU↓

HRNet Reg. 65.8 83.2 143.1 130.1
ViT-S Reg. 70.1 80.2 90.6 118.1
HRNet HPH 69.8 80.2 115.2 116.6
ViT-S HPH 70.9 80.1 80.1 109.1
ViT-B HPH 76.3 73.5 55.3 97.2

(b) Data

Data MuPoTS↑ 3DPW↓EHF↓EHF-H↓CMU↓

Real 68.5 83.8 70.2 51.2 101.6
A+B 76.3 73.5 55.3 47.4 97.2
C - - 53.5 44.5 -
A+B+C 76.0 72.9 49.8 40.5 96.5

+Real 69.8 77.6 61.1 48.4 98.5

4.1 Ablations on model design and training data

Default configuration. For the ablations, we use a ViT-B backbone with a
HPH head composed of 2 blocks. We train only using synthetic the BEDLAM
and AGORA datasets (but not CUFFS), without using the intrinsics as input. In
each table the row of the default ablation configuration has a grey background.
Model architecture. We investigate several architectures in Table 2a. As most
state-of-the-art single-shot methods (ROMP [51], BEV [52], PSVT [43]) use a
HRNet [54] convolutional backbone, we evaluate both HRNet and ViT-S (as
they have approximately equivalent parameter counts, 28.6M for HRNet and
21M for ViT-S) with either a vanilla iterative regression head [22] (‘Reg.’) or our
proposed HPH. In both cases, the ViT-S backbone is beneficial and significant
gains also come from our proposed HPH head, which validates our architecture.
Scaling up the backbone (last row) further improves performance.
Training data. In Table 2b, we experiment with different types of training
data. One source can be real-world datasets (‘Real’: MS-CoCo [28], MPII [2]
and Human3.6M [16]), for which pseudo-ground-truth fits [36, 38] are obtained
by minimizing the reprojection error of annotated 2D keypoints, but this re-
mains inherently noisy. An alternative is to train on synthetic datasets such as
AGORA [41] (‘A’) or BEDLAM [3] (‘B’) that have the advantage to be highly

Table 3: Ablation on the Human Perception Head (HPH). ‘Reg.’: parallel iter-
ative regressors; HPH w/o SA: queries processed independently in HPH, i.e., without
self-attention, L: number of layers and H: number of heads. (a) Training convergence
speed. (b) Impact of head choice. (c) Impact of HPH hyperparameters.
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(b) Head architecture

Head MuPoTS↑ 3DPW↓EHF↓
Reg. [22] 73.5 78.9 65.0
HPH w/o SA 74.5 76.4 63.2
HPH 76.3 73.5 55.3

(c) HPH Hyperparameters

L H MuPoTS↑3DPW↓EHF↓
2 8 76.3 73.5 55.3
2 4 76.5 74.0 54.8
4 8 78.5 72.4 51.3
8 8 78.9 72.0 51.0
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Fig. 4: Backbone-resolution-speed trade-off. We report the performance on
MuPoTs, CMU and EHF using different backbone sizes and image resolutions. We
also report the inference time (right).

scalable and to have perfect ground-truth. Recent work [3] has shown that state-
of-the-art results can be achieved using synthetic training data only, despite an
inherent sim-to-real gap. Our results confirm this finding as we obtain better
results when training on large-scale synthetic data. When we add our synthetic
CUFFS dataset (‘C’) we observe a significant boost in performance especially
for metrics related to the hands (column EHF-H in the fourth row). However,
when combining both real-world and synthetic datasets (last row), performance
drops compared to training solely on synthetic data (penultimate row).

HPH architecture. In Table 3, we further compare different heads to regress
the SMPL-X parameters. The baseline (‘Reg.’) uses a vanilla iterative regres-
sor [25] applied to each detected feature token independently. ‘HPH’ converges
faster (Table 3a) and performs better (Table 3b). ‘HPH w/o SA’ denotes a vari-
ant where queries are treated independently by removing SA blocks from the
HPH, see Equation 5: treating queries together is beneficial (Table 3b). In Table
3c we experiment with different configurations of the HPH (number of layers
‘L’ and number of attention heads ‘H’). Increasing the number of layers slightly
improves performance but we favor the use of 2 layers for better efficiency.

Input resolution and backbone size. We evaluate the impact of the input im-
age resolution for different backbone sizes (ViT-S, ViT-B, ViT-L) in Figure 4. In-
creasing the input resolution consistently brings performance gains across back-
bone sizes, at the cost of increased inference time (right). For body-only metrics,
a ViT-L backbone at 448×448 inputs arguably offers a good performance vs.
speed trade-off. Using higher resolutions may be more worthwhile for whole-
body metrics; in particular, with a ViT-S or ViT-B backbone, high resolutions
are critical to achieve competitive performance. This is to be expected as small
details such as facial expressions and hand poses are easier to capture at high
resolution – it motivated previous works [7,11,37] to extract specific high resolu-
tion crops for these parts. The largest backbone (ViT-L) at a 896×896 resolution
takes approximately 120ms per image – without compressing or quantizing the
network – which is fast compared to multi-stage methods (see Section 4.2).

Optional camera intrinsics. Integrating camera information is expected to
improve accuracy when recovering and placing human 3D meshes in the scene. In
Table 4a, we report results with different kinds of camera embeddings: computing
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Table 4: Ablative study. Experiments on (a) the importance of the camera embed-
ding type and (b) the sensitivity to the camera intrinsics in terms of human-centric
reconstruction error and distance estimation error. f̂ : focal length normalization.
(a) Camera embeddings

MuPoTS↑ 3DPW↓ EHF↓

none 76.3 73.5 55.3
simple 74.8 75.3 56.8
rays 77.0 72.6 54.4
rays+f̂ 78.8 71.3 53.1

(b) Impact of optional intrinsics
FOV Reconstruction↓ Distance (MRPE↓)

Train Test MuPoTs 3DPW CMU MuPoTs 3DPW CMU
60◦ 60◦ 76.3 73.5 97.2 1345 732 570
gt 60◦ 76.8 76.8 99.5 1512 731 595
gt gt 76.5 73.2 96.9 693 445 287

Fig. 5: Randomly sampled qualitative examples: input image and our results
overlaid on it. Images from EHF and AGORA (top), MuPoTs and 3DPW (middle),
UBody and CMU (bottom). See supplementary material for more visualizations.

simple embedding (where the flattened intrinsics matrix is fed to a linear layer)
degrades performances compared to not adding camera embedding (i.e., none)
while adding rays brings a gain. When combined with focal length normalization
f̂ , we observe a clear gain on all metrics. In Table 4b we report: performance with
a fixed field of view (FOV) of 60◦, like ROMP/BEV, for a model trained with
intrinsics (row 1), and for a model trained without (row 2). Conditioning the
model on camera intrinsics improves depth prediction accuracy (row 3), while
reconstruction metrics which are centered on people are far less sensitive to this
change. This validates the benefit of using intrinsics when available.
Other design choices. We present other ablations, e.g. on training losses and
choice of primary keypoints, in the supplementary material.
Qualitative results. Figure 5 shows visualizations of some predictions.

4.2 Comparisons with the state of the art

No existing method is both multi-person and whole-body (Table 1). We thus
compare either to multi-person approaches on body-only mesh recovery or to
whole-body methods. In the latter case, our approach is single-shot, while oth-
ers assume human detections, extract crops around each person, and process
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Table 5: Comparison with state-of-the-art methods. As there is no other method
that is both multi-person and whole-body, we compare separately to state-of-the-art
approaches for (a) multi-person body-only mesh recovery, and (b) whole-body mesh
recovery (all methods except Multi-HMR are single-person). For AGORA, we report
performance for a single Multi-HMR setting due to restrictions of the evaluation system.
† indicates a universal model which is not finetuned specifically for each benchmark.

(a) Body-only benchmarks

Method Res. Single Backbone 3DPW MuPoTs CMU AGORA
Shot PA-MPJPE↓ MPJPE↓ PVE↓ PCK-All↑ PCK-Matched↑ F1↑ MPJPE↓ F1↑ MPJPE↓ PVE↓

Body-only
CRMH [18] 832 ✓ RN50 - - - 69.1 72.2 0.92 143.2 - - -
3DCrowdNet [6] Full RN50 51.5 81.7 98.3 72.7 73.3 0.95 127.3 - -
ROMP [51] 512 ✓ HR32 47.3 76.6 93.4 69.9 72.2 0.93 128.2 0.91 108.1 103.4
BEV [52] 512 ✓ HR32 46.9 78.5 92.3 70.2 75.2 0.97 109.5 0.93 105.3 100.7
PSVT [43] 512 ✓ HR32 45.7 75.5 84.9 - - 0.97 105.7 0.93 97.7 94.1
Whole-Body
Hand4Whole [37]Full RN50 54.4 86.6 - - - - - 0.93 89.8 84.8
OSX [27] Full ViT-L/16 60.6 86.2 - - - - - - - -
SMPLer-X [4] Full ViT-L/16 51.5 76.8 - - - - - - - -
SMPLer-X [4] Full ViT-H/16 48.0 71.7 - - - - - - - -
Multi-HMR 896 ✓ ViT-S/14 53.2 76.3 91.1 77.0 81.5 0.97 102.9 - - -
Multi-HMR 896 ✓ ViT-B/14 46.7 70.9 86.9 79.4 84.6 0.97 94.6 - - -
Multi-HMR 896 ✓ ViT-L/14 41.7 61.4 75.9 85.0 89.3 0.97 77.3 0.95 65.3 61.1
Multi-HMR 448 ✓ ViT-L/14 43.8 64.6 79.7 77.8 84.1 0.96 84.0 - - -
Multi-HMR† 896 ✓ ViT-L/14 46.9 69.5 88.8 80.6 86.4 0.97 97.5 - - -

(b) Whole-body benchmarks
EHF AGORA UBody-intra

Method Single Backbone PVE↓ PA-PVE↓ PVE↓ PVE↓ PA-PVE↓
shot All Hands Face All Hands Face All Hands Face All Hands Face All Hands Face

Single person, per-body-part crops
ExPose [7] HR32/RN18 77.1 51.6 35.0 54.5 12.8 5.8 217.3 73.1 51.1 - - - - - -
FrankMocap [48] RN50 107.6 42.8 - 57.5 12.6 - - 55.2 - - - - - - -
PIXIE [11] RN50 88.2 42.8 32.7 55.0 11.1 4.6 191.8 49.3 50.2 168.4 55.6 45.2 61.7 12.2 4.2
Hand4Whole [37] RN50 76.8 39.8 26.1 50.3 10.8 5.8 135.5 47.2 41.6 104.1 45.7 27.0 44.8 8.9 2.8
PyMAF-X [58] HR48 64.9 29.7 19.7 50.2 10.2 5.5 125.7 45.0 35.0 - - - - - -
Single person, feature resampling
OSX [27] ViT-L/16 70.8 53.7 26.4 48.7 15.9 6.0 122.8 45.7 36.2 81.9 41.5 21.2 42.2 8.6 2.0
SMPLer-X [4] ViT-L/16 65.4 49.4 17.4 37.8 15.0 5.1 99.7 39.3 29.9 57.4 40.2 21.6 31.9 10.3 2.8
Multi-person, one forward pass
Multi-HMR ✓ ViT-S/14 50.0 43.3 24.4 36.8 14.4 5.8 - - - 56.9 35.7 18.9 23.8 9.9 2.5
Multi-HMR ✓ ViT-B/14 43.3 39.5 23.3 34.8 12.2 5.4 - - - 54.4 32.0 17.3 23.0 8.8 2.2
Multi-HMR ✓ ViT-L/14 42.0 28.9 18.0 28.2 10.8 5.3 95.9 40.7 27.7 51.2 25.0 16.2 21.0 7.2 1.8
Multi-HMR † ✓ ViT-L/14 42.0 28.9 18.0 28.2 10.8 5.3 - - - 54.0 27.5 17.0 22.8 8.0 2.4

each one independently. We report results with a 896×896 input resolution and
without using camera intrinsics, with either a model finetuned for each bench-
mark as other methods do or a single universal model indicated by † (please refer
to the supplementary material for additional information regarding finetuning).
Body Mesh Recovery. As most of these methods (ROMP [51], BEV [52]
and PSVT [43]) use a 512×512 resolution, we also report results obtained at
448×448, which offers an excellent speed-performance trade-off. All these multi-
person approaches are limited to body-only meshes. Multi-HMR outperforms
existing work, with substantial gains across various metrics, even when using
lower resolution input, smaller backbone or a universal model. At the same time,
it also predicts hands poses and facial expressions (as evaluated next), which is
not the case for other multi-person approaches.
Whole-Body Mesh Recovery. We evaluate our whole-body regression perfor-
mance by comparing it against whole-body 3D pose methods [11,27,37]. All exist-
ing approaches are limited to the single-person scenario: they do not consider the
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Table 6: Comparison to existing works for human depth estimation and
inference cost. (a) Human depth estimation: we evaluate Multi-HMR without and
with camera intrinsics information. (b) Comparison of inference cost for different num-
ber of humans N in an image between Multi-HMR (bottom) and the state of the art,
which is limited to either multi-person but body-only methods (top), or single-person
whole-body approaches thus requiring a human detector (middle).

(a) Depth estimation benchmark
MRPE (↓) PCOD (↑)

Method MuPoTs 3DPW CMU AGORA MuPoTs CMU

XNect [32] 639 - - - - -
ROMP [51] 1688 1060 679 - 91.2 97.1
BEV [52] 1884 1030 673 518 91.3 91.2
Multi-HMR
w/o cam. 1125 522 355 421 95.1 98.5
w/ cam. 514 318 110 396 97.9 99.5

(b) Inference time and MACs

Method SMPL-X Params Time (ms) MACs (G)
(M) N=1 N=5 N=10 N=1 N=5 N=10

ROMP [51] 29.0 32.1 33.5 34.8 43.0 43.6 44.2
BEV [52] 35.8 36.6 37.8 39.1 48.6 48.9 49.9
Hand4Whole [37] ✓ 77.9 73.3 366.5 733.0 26.3 98.3 188.3
OSX [27] ✓ 102.9 54.6 273.5 546.0 94.8 440.8 873.5
Multi-HMR-S ✓ 32.4 28.0 28.6 28.8 44.4 44.5 44.6
Multi-HMR-B ✓ 99.0 38.0 38.9 39.0 143.9 144.2 144.4
Multi-HMR-L ✓ 318.7 50.8 50.9 50.9 478.7 479.5 479.8

detection stage and the 3D positions in the scene, instead assuming predefined
2D bounding boxes around the person of interest. We report results in Table 5b.
Multi-HMR is competitive with, or outperforms, previous whole-body methods,
even when considering the universal model. In particular it obtains competi-
tive performance on hands and faces (on par with or better than SMPLer-X [4],
that is not single-shot). Overall, empirical results show that Multi-HMR predicts
accurate hand and facial poses while also being multi-person.
Human depth estimation. In Table 6a, we compare the performance of our
model in distance estimation, which uses simple depth regression, to the state
of the art [32, 51, 52]. Prior works assume a fixed camera setting. For exam-
ple, BEV [52] is competitive on AGORA-val but does not generalize as well to
datasets with different camera parameters. The camera-aware variant of Multi-
HMR provides accurate distance predictions across datasets and camera param-
eters, and the proposed approach still significantly outperforms the state of the
art when camera intrinsics are not provided.
Inference cost. The number N of humans in an image defines the number of
queries in the HPH head. With N=512, HPH takes 2.5ms vs. 2.3ms for N=5 on
a NVIDIA V100 GPU. Other parts of the model are independent of N , thus our
method scales well, as do other single-shot approaches (e.g. ROMP, BEV), see
Table 6b. This is in contrast to multi-stage methods (e.g. Hand4Whole, OSX)
which detect people,e.g. with YOLOv5 [19], and independently process their
crops.

5 Conclusion

We presented Multi-HMR, the first single-shot method for multi-person whole-
body human mesh recovery. It estimates accurate expressive 3D meshes (body,
face and hands) and 3D positions in the scene, outperforming the state of the art
for each sub-problem. Our model also adapts to camera information (i.e., intrin-
sics) when available. Multi-HMR is conceptually simple: it relies on a vanilla ViT
backbone and a newly introduced cross-attention-based head for predictions.
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