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1 CWM pre-training

1.1 Architecture details

Figure 1 provides an overview of the predictor architecture. The input video is
first divided into non-overlapping spatiotemporal patches of size 8 × 8. Then a
subset of patches is masked, and only the remaining visible patches are passed as
inputs into the transformer encoder. We follow the standard ViT architecture.
Following MAE [11], each transformer block in the ViT consists of a multi-
head self-attention block and an MLP block, both having LayerNorm (LN).
The CWM encoder and decoder have different widths, which are matched by a
linear projection after the encoder [11]. Finally, the embedded tokens from the
encoder and learnable mask tokens are passed as inputs into a shallow decoder
to reconstruct the masked patches. Each spatiotemporal patch has a unique sine-
cosine positional embedding. Position embeddings are added to both the encoder
and decoder inputs. CWM does not use relative position or layer scaling [2,11].
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Fig. 1: Architecture of the masked predictor Ψ in the CWM framework.

1.2 Implementation details

While the discussion about CWM has for simplicity of presentation assumed
a frame pair as input, for physical prediction problems it is natural to have an
additional context frame to allow object initial velocities to be well-defined. More
specifically, given 3 consecutive video frames at 150 ms apart during training,
we provide full visibility to the first two context frames and only mask the last
frame. In common situations where there is no motion in the first two frames,
the three-frame model will recover what a two-frame model would have learned.
When there is motion, the three-frame model will additionally learn acceleration,
which is essential for physical predictions. For extracting keypoint and flow which
only require 2 frames as input, we repeat the first frame twice so that the total
input length is 3 frames. For extracting segmentation, we are given a single input
frame, which we repeat twice and simulate object motions onto the third frame
to compute segments.

CWM uses the standard ViT-B and ViT-L architectures with a patch size of
8, which allows structure extraction at a higher resolution. We pre-train CWM on
the Kinetics-400 dataset [12], without requiring any specialized sparse operations
or temporal downsampling. It takes approximately 6 days to train 1600 epochs
on a TPU v4-256 pod.

1.3 Default settings

We show the default pre-training settings in Table 1. CWM does not use color
jittering, drop path, or gradient clip. Following ViT’s official code, xavier uniform
is used to initialize all Transformer blocks. Learnable masked token is initialized
as a zero tensor. Following MAE, we use the linear lr scaling rule: lr = base_lr×
batch_size / 256 [11].

2 Structure extraction details and results

In this section, we discuss implementation details of the counterfactual queries
for extracting keypoints, optical flow, and segmentations. We also provide more
qualitative results of each structure extracted by CWM.
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Table 1: Default pre-training setting of CWM

config value

optimizer AdamW [14]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95 [6]
accumulative batch size 4096
learning rate schedule cosine decay [13]
warmup epochs [10] 40
total epochs 1600
flip augmentation no
augmentation MultiScaleCrop [26]

2.1 Keypoint

Implementation details CWM queries keypoints iteratively, starting with
an intervention initialized as an initial empty mask and adding visible tokens
one-by-one. Note that, whereas the counterfactual queries for optical flow and
segmentation involve perturbing the visual input to the predictor Ψ , keypoints
arise by varying the prediction model’s input mask.

At each iteration, we compute the Mean-Squared-Error (MSE) between the
next-frame predictions of Ψ and the ground-truth next frame. We sort the MSE
and select the top k locations as candidate keypoints. k is set as 4 by default.
For each candidate keypoint, we add its patch content to the intervention and
re-compute the MSE between the updated predictions of Ψ and the ground-
truth next frame. The candidate keypoint with the minimum MSE error, or
equivalently maximum error reduction, is selected as the keypoint output at
that iteration. The selected keypoint is added to the intervention and we repeat
the procedures above to compute the location of the next keypoint.

Additional qualitative results Figure 2 shows additional qualitative results
of the keypoints extracted on DAVIS 2016 [19] and Bridge dataset [7]. We extract
5 keypoints for each example. Our procedure extracts dynamical RGB keypoints
in the input frame pairs.

2.2 Optical flow

Implementation details As originally proposed in [4], we simultaneously es-
timate optical flow at all locations in a frame pair x1, x2 ∈ R3×H×W via the
Jacobian of Ψ , denoted as J Ψ ∈RH×W×H×W . The Jacobian of Ψ assigns to el-
ement (i, j, k, l) the predictor’s change in output at location (k, l) in the second
frame due to an infinitessimal change at location (i, j) in the first frame. Flow
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can be computed using J Ψ as the following:

flow(k, l) =

{
undefined (disocclusion) if argmaxi,j |J Ψ(i, j, k, l)| ≪ 1

(k, l)− argmaxi,jJ Ψ(i, j, k, l) otherwise
(1)

with results averaged over several choices of visible patches in the masked second
frame xβ

2 . This is a tensorial operation that enables parallel computation for flow
at all pixel locations, implemented practically using Jacobian-vector products
available in Pytorch autograd. Note that this method detects disocclusion rather
than occlusion, since no perturbation at any location in the first frame will cause
a response at a point that becomes disoccluded in the second frame.

Additional qualitative results We show additional qualitative results on two
distinct datasets: DAVIS 2016 [20] and a recent synthetic dataset SPRING [15].
The results are shown in Figure 3 and 4 respectively.

2.3 Segmentation

Single Spelke object extraction To extract the Spelke object at a pixel
location (i, j) of a static image, we first create an intervention that simulates
counterfactual motion by taking the patch at location (i, j) and creating a new
frame that is largely blank, but in which the content of the patch has been copied
(e.g. translated) to a new location (i+ϵ1, j+ϵ2), where ϵ1, ϵ2 are location offsets
randomly sampled within a radius r > 0. We set r to a fixed fraction (0.2) of
the input image size. In addition, we can optionally create the appearance of
stopping the counterfactual motion at a location (i′, j′) by directly copying the
patch at that location to the same location in the intervention without offset
(or equivalently r=0). Adding the stop-motion patch allows the counterfactual
query to isolate a single object, especially in a cluttered scene with multiple
objects adjacent to and stacked on top of one another. In practice, different
random choices of motion offset and stop-motion patches could potentially yield
different counterfactual motion results. We sample 4 different interventions per
pixel location, compute flow for the counterfactual motion, average the flow
magnitudes of the different samples, and then threshold the mean flow magnitude
map at 0.5 to obtain the binary segmentation map at pixel location (i, j). We can
use CWM to estimate optical flows, following procedures described in section 2.2.
For faster extraction, we use RAFT [22] to estimate the optical flows of different
samples.

We also find that the above procedure can be repeated iteratively to refine
the segments further. Once a tentative segmentation map is obtained, we can
sample more patches within the segment and add them to the intervention to
simulate better counterfactual motion. At each iteration, we sample one patch
within the segment and add it to the set of patches that simulates counterfactual
motion. We additionally sample one patch outside the segment and add it to the
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set of stop-motion patches that simulates stopping the counterfactual motion.
We set the number of iterations to 3 by default.

While the predictor Ψ is trained with input resolution 224×224, Spelke object
can be extracted at a different resolution by simply interpolating the position en-
coding correspondingly. We extract zero-shot segmentations on COCO training
images at resolution 480×480 using the ViT-B/8 CWM model.

Multiple Spelke object extraction To automatically discover multiple Spelke
objects in a single image, we choose interventions at pixel locations based on a
sampling probability distribution α, which has high probability at pixel locations
belonging to Spelke objects and low otherwise. Once a segment is discovered, we
mask out the probability distribution values using the segments and repeat the
process to discover the next object.

We find two choices of sampling distribution work well. One is a movabil-
ity distribution computed by sampling a few random interventions and averag-
ing the motion responses across multiple predictions. The second choice is the
prominence map computed by applying normalized cut to the patch-wise feature
similarity matrix as proposed by CutLER [28]. In practice, the second approach
yields slightly better qualitative segmentation results. Therefore, we choose the
second approach as the default for computing the sampling probability distribu-
tion.

Distillation We follow the same procedure in the previous work CutLER [28]
to distill segmentations extracted from a large task-agnostic pre-trained model
into a smaller instance segmenter for faster and more robust segmentation. The
extracted segmentations are used as pseudo annotations to train a downstream
instance segmenter in a self-supervised manner.

Additional qualitative results Figure 5a and 5b show more qualitative seg-
mentation results of Spelke objects extracted by CWM on COCO training im-
ages, and compare them to those of other baseline methods FreeSOLO [27] and
CutLER [28]. In each image, we set the maximum number of Spelke objects
to be extracted as 3. Figure 6a and 6b show unsupervised segmentation results
from the distilled instance segmenter. We show the results on COCO validation
images.

3 Dynamics understanding experiments

3.1 Physion benchmark

Dataset details As discussed in the main text, we use the Physion v1.5 bench-
mark to evaluate CWM and baseline models on physical dynamics understand-
ing. Physion v1.5 has several key improvements over Physion v1, which are
illustrated in Figure 7. More specifically, Physion v1.5 introduces another in-
door environment, called the “craft room”, in addition to the two environments
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featured in Physion v1 (see Figure 7d). Furthermore, v1.5 enhances the diver-
sity of lighting conditions by employing a collection of 8 unique HDRI skyboxes,
specifically designed to simulate various environmental lighting scenarios. This
enhancement allows for dynamic time-of-day simulations in the room by ad-
justing the orientation of the skyboxes and directional lighting (see Figure 7a).
Physion v1.5 also has improved rendering quality and photorealism in compar-
ison to v1 (see Figure 7b and 7c). The physics simulations and rendering are
done using the ThreeDWorld simulation platform [9].

Physion v1.5 comprises seven distinct physical scenarios, including collide,
drop, dominoes, contain, roll, support, and link. This version comprehensively
demonstrates various aspects and challenges of rigid body physics (see Figure 8
for examples of each scenario). We train and test the linear classifier model (as
outlined in Section 4.1 of the main text) on all seven scenarios.

Per-scenario OCP and OCD results. In the main text, we presented the
OCP and OCD scores averaged across all seven scenarios. Now, we provide a
detailed breakdown of performance for each specific scenario, as shown in Table 4
and Table 5.

Qualitative comparisons on OCP and OCD task. We supplement our
quantitative results on the Physion v1.5 tasks with qualitative visualizations
in Figures 8, 9, 10 and 11. We show several example inputs for each scenario,
along with the classification results of a linear probe on top of the CWM model,
compared with those of leading baselines in each model category outlined in
Table 1 in the main text.

Integrating vision structures for OCP and OCD tasks. In the main text,
we demonstrate how zero-shot vision structures extracted from CWM improve
OCP and OCD performance on Physion v1.5. This section describes the details
of how these structures are integrated prior to linear probing on downstream
tasks. Keypoint information is integrated by incorporating patch features at
the keypoint locations. Optical flow information is integrated by providing 8× 8
patches of optical flow value at the keypoint locations. Finally, segment informa-
tion is integrated by using the segments to pool the feature map and incorporate
the aggregated features for linear probing.

The integration process for segments is detailed as follows: Let F ∈RH×W×D

be the feature map of an input frame from the last layer of the ViT encoder,
where H, W , and D represent height, width, and channel dimension. Suppose
we have binary segmentation masks S with dimension N × H × W , where N
denotes the number of masks. We compute the set of aggregated feature vectors
for each of the segments,

Fagg =

{∑
i,j S

n
ijFij∑

i,j S
n
ij

| 1 ≤ n ≤ N

}
(2)

where Sn is the n-th segmentation mask and Fij is the feature vector at
location (i, j). These aggregated feature vectors, along with the keypoint patch
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Table 2: GPT-4V performance on the Physion v1.5 tasks using two different
promoting strategies: a) with RGB frames only and b) RGB frames with ground
truth segment map overlayed on the objects of interest.

Prompting Method OCP ↑ OCD ↑

RGB frames 52.9 54.7
RGB frames + GT segment overlay 58.3 67.5

features and flow patches, are concatenated with the original feature map F
before being fed into the linear classifier.

3.2 GPT4-Vision prompting

GPT-4V prompting methodology and results. In Figures 12, 13, 14 and
15 we report a few results from testing GPT-4V on the OCP and OCD tasks
in Physion v1.5. In each figure, the prompt image is shown on the left and the
prompt text along with the GT label and response is shown on the right. To
construct the image prompt, we tile four successive video frames (sampled at a
frame gap of 150ms) into a 2×2 image with four panels. Each panel contains an
RGB frame titled with its timestamp. Following the methodology used for eval-
uating vision-only models, the objects of interest for the contact-related queries
are rendered with red and yellow textures to provide visual cues for the model.
For OCP, the text prompt used was “These are 4 images taken sequentially from
a video. If the video were to continue, would the red object touch the yellow
surface? Explain your thinking and end with True or False only”. For OCD, the
prompt used was “These are 4 images taken sequentially from a video. Does
the red object touch the yellow surface at any point in the video? Explain your
thinking and end with True or False only”. GPT4-V achieves 52.9% accuracy
for OCP and 54.7% accuracy for OCD. For OCP, the model predicted “contact”
78.7% of the time, while for OCD the model predicted “no contact” 81.5% of the
time.

Alternate querying methods. Additionally, we experiment with an alterna-
tive querying method to explore the limit of GPT4-V in dynamics understand-
ing. In addition to rendering the objects of interest in red and yellow texture,
we apply a bright red and yellow ground-truth segmentation overlay on them to
focus the model’s attention on these objects (see Figure 12 for visualizations).
As shown in Table 2, we find that this querying strategy improves the OCP
from 52.9% to 58.3% and the OCD from 54.7% to 67.5%. In the main text,
we have also demonstrated a parallel phenomenon with CWM, where integrat-
ing segment information led to enhanced performance in related tasks (Table 3
in main text). These observations highlight the importance of vision structures
such as segmentation in downstream tasks associated with physical dynamics
understanding.
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Table 3: Evaluation on additional benchmarks. (a) Activity recognition on Something-
Something V2, (b) IntPhys intuitive physics benchmark.

Model frames accuracy ↑

VideoMAE 16 54.7
VideoMAE* 3 51.3

CWM 3 54.2

(a) Activity recognition on SSv2

Method B1↓ B2↓ B3↓

VideoMAE 0.40 0.23 0.30
VideoMAE* 0.46 0.30 0.30
VideoMAEv2 0.36 0.30 0.36

CWM 0.36 0.20 0.26

(b) IntPhys

Implementation details. We employ four GPT-4V accounts and retrieve the
results using Selenium [8], a browser automation tool. Our methodology adheres
to the code framework available at1.

4 Evaluating CWM on additional benchmarks

4.1 Activity Recognition

We evaluate CWM on the Something-Something V2 benchmark for activity
recognition and report the results in Table 3a. To obtain model predictions we
train an attentive probe on the feature representation similar to the setup used in
V-JEPA [3]. We find that CWM outperforms VideoMAE trained with the same
number of input frames (i.e VideoMAE*) by a fair margin and is comparable to
the standard VideoMAE trained on a longer context window of 16 frames.

4.2 IntPhys

In the main text we show evaluations on Physion as it is by far the most chal-
lenging and comprehensive benchmark in the literature, consisting of realistic 3D
simulations from diverse physical scenarios. Here, we evaluate on IntPhys [21]
which is a complementary benchmark to Physion with photorealistic simulations
of various intuitive physics tasks. Table 3b reports the relative error metric in
IntPhys [21] evaluation on the validation split. For all models, we use the fu-
ture frame reconstruction error to obtain a plausibility score for a given video.
The evaluation comprises of three tasks: B1 tests for object permanence, B2
tests for shape constancy, and B3 tests for spatio-temporal continuity. We find
that CWM, despite trained with less number of frames, outperforms VideoMAE.
CWM (86M) outperforms VideoMAEv2 (1.1B) despite having fewer parameters.
For a fair comparison, we further evaluate VideoMAE* which is trained on the
same number of frames as CWM but with tube masking instead of temporally
factored masking. The performance gain from CWM further validates the benefit
of the temporally-factored masking policy.
1 https://github.com/Michelangelo27/chatgpt_selenium_automation
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Frame 1 Frame 2 Keypoints Frame 1 Frame 2 Keypoints

Fig. 2: Keypoints extracted by CWM. We extract 5 keypoints for each example
on DAVIS 2016 (left) and Brige dataset (right). 3
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Frame 1 Frame 2 CWMFrame 1 Frame 2 CWMFrame 1 Frame 2 VideoMAE CWM

Fig. 3: Additional Optical Flows extracted on the DAVIS dataset. We apply
our flow extraction procedure to both CWM and VideoMAE predictors, and compare
the extracted flows. 4
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CWM

Frame 1 Frame 2 CWM GTVideoMAE

Fig. 4: Additional Optical Flows extracted on the Spring dataset. 4
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Input FreeSOLO CutLER CWM GT

Fig. 5a: Pseudo-masks extracted in a zero-shot manner on COCO train-
ing images. FreeSOLO extracts dense masks and removes redundancy via mask non-
maximum-suppression (NMS). CutLER and CWM extracts at most 3 masks per image.
The pseudo-masks are used as self-supervision signals for training downstream detec-
tors. 5



Counterfactual World Modeling 13

Input FreeSOLO CutLER CWM GT

Fig. 5b: More qualitative results on pseudo-masks extracted in a zero-shot
manner on COCO training images. 5
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Input FreeSOLO CutLER CWM GT

Fig. 6a: Unsupervised segmentation results from the distilled instance seg-
menter. We show the results on COCO validation images. 5
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Input FreeSOLO CutLER CWM GT

Fig. 6b: More unsupervised segmentation results from the distilled instance
segmenter. 5
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(a) Diverse lighting conditions

Physion V1 Physion V1.5

(b) Improved visual realism: high resolution
rendering

Physion V1 Physion V1.5

(c) Improved visual realism: rendering better
shadows

TDW Room Craft roomBox room

(d) New indoor environments

Fig. 7: Physion v1.5 features key improvements over v1 such as a) enhanced
diversity of lighting conditions by employing HDRI skyboxes, b) higher resolution ren-
dering, c) improved rendering of shadows and c) an additional indoor environment
(“Craft room”). 5
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Collide

Drop

Dominoes

Contain

Frame 0: 0ms Frame 1: 150ms Frame 2: 300ms Frame 3: 450ms

Fig. 8: Model predictions on the OCP task. The input frames sampled at a frame
gap of 150ms are shown on the left and the model predictions are shown on the right.
We compare against the best performing models in each model category outlined in
Table 4. 5
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Roll

Support

Link

Frame 0: 0ms Frame 1: 150ms Frame 2: 300ms Frame 3: 450ms

Fig. 9: More model predictions on the OCP task. 5
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Collide

Drop

Dominoes

Contain

Frame 0: 0ms Frame 1: 150ms Frame 2: 300ms Frame 3: 450ms

Fig. 10: Model predictions on the OCD task. The input frames sampled at a
frame gap of 150ms are shown on the left and the model predictions are shown on the
right. We compare against the best performing models in each model category outlined
in Table 5. 5
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Roll

Support

Link

Frame 0: 0ms Frame 1: 150ms Frame 2: 300ms Frame 3: 450ms

Fig. 11: More model predictions on the OCD task. 5
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Table 4: Physion v1.5 scenario-wise OCP results. We compare CWM to four
classes of baseline methods across different architectures on the OCP task. In the main
text, we presented the scores averaged across all seven scenarios. Here we provide a
detailed breakdown of performance for each specific scenario. For a strictly fair compar-
ison we train VideoMAE* with the same patch size and number of frames as CWM. 5

method arch OCP by scenario ↑ Avg. OCP ↑
collide drop support link roll contain dominoes

video prediction models

MCVD [24] UNet 73.3 65.0 70.7 59.2 51.0 66.7 57.9 63.4
R3M [16] Res50 79.0 61.8 70.1 66.9 66.2 62.1 67.3 67.6
FitVid [1] VAE 65.0 68.2 71.5 59.9 54.1 60.8 70.7 64.3
TECO [29] vq-gan 75.9 70.6 74.4 65.2 59.1 72.4 67.5 69.3

self-supervised image representation models

DINO [5] ViT-B 79.0 72.6 81.0 72.0 61.8 69.3 69.2 72.1
DINOv2 [18] ViT-B 78.1 70.7 80.3 70.7 64.3 70.6 70.4 72.2
DINOv2 [18] ViT-L 81.0 68.8 82.3 68.8 61.1 69.9 73.6 72.2
DINOv2 [18] ViT-g 80.0 74.5 81.0 66.2 61.8 74.5 71.1 72.7
MAE [11] ViT-B 80.0 72.6 78.9 70.1 64.3 68.0 74.2 72.6
MAE [11] ViT-L 80.0 73.2 81.0 69.4 58.0 69.3 70.4 71.6
MAE [11] ViT-H 83.8 72.0 84.4 70.1 61.8 69.3 71.7 73.3
MAE [11] ViT-B 81.9 70.7 83.0 68.8 59.9 67.3 73.0 72.1
MAE [11] ViT-L 83.8 70.7 81.0 68.2 59.9 70.6 74.2 72.6

self-supervised video representation models

VMAE [23] ViT-B 74.3 74.5 83.0 65.6 61.8 71.2 74.2 72.1
VMAE* [23] ViT-B 80.0 71.3 82.3 70.1 58.6 72.5 76.7 73.2
VMAE [23] ViT-L 79.0 73.9 82.3 66.9 65.0 72.5 75.5 73.6
VMAE [23] ViT-H 81.0 73.2 81.6 70.7 63.1 70.6 74.2 73.5
VMAEv2 [25] ViT-g 77.1 75.2 83.0 65.0 62.4 70.6 72.3 72.2
V-JEPA [23] ViT-L 80.1 68.8 84.3 69.4 62.4 73.8 74.2 73.4

vision-language models

GPT4-V [17] - 52.7 46.5 58.5 54.8 56.2 56.1 46.5 52.9

CWM ViT-B 82.9 75.2 83.7 70.7 63.7 77.8 77.4 75.9
CWM ViT-L 83.8 74.5 84.4 71.3 65.0 75.8 78.0 76.1
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Table 5: Physion v1.5 scenario-wise OCD results. We compare CWM to four
classes of baseline methods across different architectures on the OCD task. In the main
text, we presented the scores averaged across all seven scenarios. Here we provide a
detailed breakdown of performance for each specific scenario. For a strictly fair compar-
ison we train VideoMAE* with the same patch size and number of frames as CWM. 5

method arch OCD by scenario ↑ Avg. OCD ↑
collide drop support link roll contain dominoes

video prediction models

MCVD [24] UNet 82.9 74.5 95.9 75.8 68.8 77.8 89.9 80.8
R3M [16] Res50 83.8 72.0 90.5 72.0 72.0 70.6 86.2 78.1
FitVid [1] VAE 58.9 56.7 63.1 63.2 60.2 55.5 58.8 59.5
TECO [29] vq-gan 87.0 77.5 87.5 70.7 72.6 76.3 95.0 80.9

self-supervised image representation models

DINO [5] ViT-B 87.6 79.6 95.2 81.5 76.4 80.4 96.9 85.4
DINOv2 [18] ViT-B 89.5 84.7 96.6 86.6 76.4 79.1 96.9 87.1
DINOv2 [18] ViT-L 91.4 79.0 96.6 84.1 73.9 77.8 95.6 85.5
DINOv2 [18] ViT-g 91.4 80.3 95.2 83.4 70.1 77.1 94.3 84.6
MAE [11] ViT-B 86.7 76.4 92.5 77.7 71.3 72.5 93.7 81.6
MAE [11] ViT-L 86.7 75.8 93.9 80.3 70.7 73.2 95.6 82.3
MAE [11] ViT-H 84.8 75.2 92.5 76.4 67.5 73.2 96.2 80.8
MAE [11] ViT-B 86.7 75.8 91.2 76.4 70.7 74.5 96.9 81.7
MAE [11] ViT-L 89.5 76.4 93.2 77.1 69.4 72.5 95.0 81.9

self-supervised video representation models

VMAE [23] ViT-B 91.4 78.3 94.6 80.3 76.4 83.0 95.6 85.7
VMAE* [23] ViT-B 93.3 79.6 94.6 82.2 75.2 82.4 96.2 86.2
VMAE [23] ViT-L 95.2 78.3 95.2 82.8 75.2 80.4 95.6 86.1
VMAE [23] ViT-H 95.2 79.6 95.2 84.7 79.0 81.7 96.9 87.5
VMAEv2 [25] ViT-g 91.4 78.3 91.8 84.7 73.9 81.7 93.1 85.0
V-JEPA [23] ViT-L 93.3 84.7 95.9 83.4 73.2 83.0 95.6 87.0

vision-language models

GPT4-V [17] - 52.9 53.0 54.2 60.7 56.2 56.1 49.7 54.7

CWM ViT-B 96.2 82.2 95.9 85.4 81.5 86.3 96.2 89.1
CWM ViT-L 96.2 83.4 96.6 84.1 81.5 83.0 96.2 88.7
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Input Image to GPT4-V

Object Contact
 Prediction

Prompt: "These are 4 images taken sequentially from a video. If the video were to continue, would the red object 
touch the yellow surface? Explain your thinking and end with True or False only."

GT Label: True

GPT-4V Response: 
Based on the sequence of images:
In the frame at 0ms, the red object is above the ramp and not touching the yellow surface.
In the frame at 150ms, the red object has started its descent but still hasn't touched the yellow surface.
In the frame at 300ms, the red object has moved closer to the end of the ramp but remains above the yellow surface.
In the frame at 450ms, the red object is even closer to the end of the ramp, with only a small gap remaining between it 
and the yellow surface.
Given the consistent movement of the red object towards the yellow surface and the decreasing distance between the 
two, it's logical to infer that the red object's trajectory will lead it to touch the yellow surface if the video continues.
True.

Object Contact
 Detection

Prompt: "These are 4 images taken sequentially from a video. Does the red object touch the yellow surface at 
any point in the video? Explain your thinking and end with True or False only."

GT Label: True

GPT-4V Response: 
Based on the images:
In the first frame (0ms), the red object is clearly not touching the yellow surface.
In the second frame (150ms), the red object has moved slightly closer to the yellow surface but still has not made contact.
By the third frame (300ms), the red object is much closer to the yellow surface. However, there's still a small gap between 
them, indicating they have not touched.
In the final frame (450ms), the red object has moved past the yellow surface, and there's no evidence of them making 
contact.
From the sequential frames presented, there isn't a moment captured where the red object is visibly in contact with the 
yellow surface.
False.

Result: ✓

Result: X

(a) Querying method: RGB frames only

✓

✖

pilot_it2_rollingSliding_simple_ram
p_box_0029_True

(b) Querying method: RGB frames with objects of interest highlighted

Fig. 12: GPT-4V results on the OCP and OCD tasks in Physion v1.5. The
input image prompt is shown on the left and the text prompt, GPT-4V response and
results are shown on the right. We show the results of two different querying strategies:
a) with RGB frames only and b) RGB frames with ground truth segment map overlayed
on the objects of interest. 7
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✖

pilot_dominoes_2mid_J025R30_td
wroom_0024_True

✖

(a) Querying method: RGB frames only

✓

✓

(b) Querying method: RGB frames with objects of interest highlighted

Fig. 13: More GPT-4V results. 7
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✖

pilot_towers_nb4_fr015_SJ000_gr0
1_mono0_dis1_occ1_tdwroom_uns
table_0020_True

✓

(a) Querying method: RGB frames only

✓

✓

pilot_towers_nb4_fr015_SJ000_gr0
1_mono0_dis1_occ1_tdwroom_uns
table_0020_True

(b) Querying method: RGB frames with objects of interest highlighted

Fig. 14: More GPT-4V results. 7
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✓

pilot_dominoes_2mid_J025R30_td
wroom_0024_True

✖

(a) Querying method: RGB frames only

✓

✖

(b) Querying method: RGB frames with objects of interest highlighted

Fig. 15: More GPT-4V results. 7



Counterfactual World Modeling 27

References

1. Babaeizadeh, M., Saffar, M.T., Nair, S., Levine, S., Finn, C., Erhan, D.: Fitvid:
Overfitting in pixel-level video prediction. arXiv preprint arXiv:2106.13195 (2021)
21, 22

2. Bao, H., Dong, L., Piao, S., Wei, F.: Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254 (2021) 1

3. Bardes, A., Garrido, Q., Ponce, J., Rabbat, M., LeCun, Y., Assran, M., Ballas, N.:
Revisiting feature prediction for learning visual representations from video. arXiv
preprint (2024) 8

4. Bear, D.M., Feigelis, K., Chen, H., Lee, W., Venkatesh, R., Kotar, K., Durango,
A., Yamins, D.L.: Unifying (machine) vision via counterfactual world modeling.
arXiv preprint arXiv:2306.01828 (2023) 3

5. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
the International Conference on Computer Vision (ICCV) (2021) 21, 22

6. Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.: Gen-
erative pretraining from pixels. In: International conference on machine learning.
pp. 1691–1703. PMLR (2020) 3

7. Ebert, F., Yang, Y., Schmeckpeper, K., Bucher, B., Georgakis, G., Daniilidis, K.,
Finn, C., Levine, S.: Bridge data: Boosting generalization of robotic skills with
cross-domain datasets. arXiv preprint arXiv:2109.13396 (2021) 3

8. elenium Contributors: Selenium: Browser automation framework, https://www.
selenium.dev/ 8

9. Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M., Traer, J., De Freitas, J.,
Kubilius, J., Bhandwaldar, A., Haber, N., et al.: Threedworld: A platform for in-
teractive multi-modal physical simulation. arXiv preprint arXiv:2007.04954 (2020)
6

10. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017) 3

11. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 16000–16009 (2022) 1, 2, 21, 22

12. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950 (2017) 2

13. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016) 3

14. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017) 3

15. Mehl, L., Schmalfuss, J., Jahedi, A., Nalivayko, Y., Bruhn, A.: Spring: A high-
resolution high-detail dataset and benchmark for scene flow, optical flow and stereo.
In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2023) 4

16. Nair, S., Rajeswaran, A., Kumar, V., Finn, C., Gupta, A.: R3m: A universal visual
representation for robot manipulation. arXiv preprint arXiv:2203.12601 (2022) 21,
22

17. OpenAI: Gpt-4 for vision (chatgpt with image input) (2023), https://openai.
com/, accessed: October 27, 2023 21, 22

https://www.selenium.dev/
https://www.selenium.dev/
https://openai.com/
https://openai.com/


28 Venkatesh et al.

18. Oquab, M., Darcet, T., Moutakanni, T., Vo, H.V., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., Howes, R., Huang, P.Y., Xu, H.,
Sharma, V., Li, S.W., Galuba, W., Rabbat, M., Assran, M., Ballas, N., Synnaeve,
G., Misra, I., Jegou, H., Mairal, J., Labatut, P., Joulin, A., Bojanowski, P.: Dinov2:
Learning robust visual features without supervision (2023) 21, 22

19. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-
Hornung, A.: A benchmark dataset and evaluation methodology for video object
segmentation. In: Computer Vision and Pattern Recognition (2016) 3

20. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbelaez, P., Sorkine-Hornung, A., Gool,
L.V.: The 2017 davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675 (2017) 4

21. Riochet, R., Castro, M.Y., Bernard, M., Lerer, A., Fergus, R., Izard, V., Dupoux,
E.: Intphys 2019: A benchmark for visual intuitive physics understanding. IEEE
Transactions on Pattern Analysis and Machine Intelligence 44(9), 5016–5025
(2021) 8

22. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16. pp. 402–419. Springer (2020) 4

23. Tong, Z., Song, Y., Wang, J., Wang, L.: Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. Advances in neural infor-
mation processing systems 35, 10078–10093 (2022) 21, 22

24. Voleti, V., Jolicoeur-Martineau, A., Pal, C.: Mcvd-masked conditional video diffu-
sion for prediction, generation, and interpolation. Advances in Neural Information
Processing Systems 35, 23371–23385 (2022) 21, 22

25. Wang, L., Huang, B., Zhao, Z., Tong, Z., He, Y., Wang, Y., Wang, Y., Qiao, Y.:
Videomae v2: Scaling video masked autoencoders with dual masking. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 14549–14560 (2023) 21, 22

26. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal
segment networks for action recognition in videos. IEEE transactions on pattern
analysis and machine intelligence 41(11), 2740–2755 (2018) 3

27. Wang, X., Yu, Z., De Mello, S., Kautz, J., Anandkumar, A., Shen, C., Alvarez,
J.M.: Freesolo: Learning to segment objects without annotations. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
14176–14186 (2022) 5

28. Wang, X., Girdhar, R., Yu, S.X., Misra, I.: Cut and learn for unsupervised object
detection and instance segmentation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 3124–3134 (2023) 5

29. Yan, W., Hafner, D., James, S., Abbeel, P.: Temporally consistent transformers for
video generation (2023) 21, 22


	CWM pre-training
	Architecture details
	Implementation details
	Default settings

	Structure extraction details and results
	Keypoint
	Optical flow
	Segmentation

	Dynamics understanding experiments
	Physion benchmark
	GPT4-Vision prompting

	Evaluating CWM on additional benchmarks
	Activity Recognition
	IntPhys


