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A Method Details

A.1 Detailed Architecture

Kalman Filter Network. Our Kalman Filter Network, as illustrated in Fig-
ure A1, adopts two distinct parameterized modules in implicitly estimating un-
certainty and Kalman gain. Note that the dynamic model from ẑ+

t−1 to prior
estimation ẑ−

t is omitted for simplicity in the illustration. The uncertainty net-
work implicitly estimates the uncertainty of shape h × w × c, and the Kalman
gain network calculates the corresponding Kalman gain Kt of shape h × w for
each code token. The Spatial-Temporal Attention (ST-Attn) takes the current
observed latent code z̃t as a query and attends to the combination of the first
frame z̃1 and previous frame z̃t−1. Inspired by [13], the spatial-temporal atten-
tion also takes the latent code of the first frame z̃1 as input, which serves as an
anchor prior to all temporal attention.
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Fig.A1: Illustration of Kalman Filter Network. (a) We unfold and show one
timestep of the Kalman filter network. The network mainly consists of two parametriza-
tion modules, i.e., uncertainty network and the gain network. Here “ST-Attn” and “T-
Attn” represent spatial-temporal attention and temporal attention, respectively. (b)
The Spatial-Temporal Attention (ST-Attn) takes estimated observed latent code for
current frame z̃t as a query and attends to the combination of the first frame z̃1 and
previous frame z̃t−1.
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Fig.A2: Illustration of the integrated decoder. Controllable Feature Transfor-
mation (CFT) and Cross-Frame Attention (CFA). TQ is a codebook lookup Trans-
former and quantization layer borrowed from CodeFormer [17]. Blocks are the basic
conv blocks in the decoder. CFT is tailored for modulating the features of decoder Fd

by the encoder’s features Fe. CFA is adopted in the decoder to further promote local
temporal consistency to regularize the information propagation.

Integrated Decoder. Figure A2 depicts how CFT and CFA layers are in-
tegrated into the decoder. Following [17], we leverage the encoder features to
modulate the corresponding decoder features. Denoted Fe and Fd as the encoder
and decoder features, respectively, the network learns an affine transformation
defined by α and β.

vt = Fd + (α · Fd + β), (1)

where α, β = C(Fe), and C is multiple convolution blocks. The CFT modules are
adopted at multiple scales 16, 32, 64, since shallow features of encoder would also
bring forward corrupted information to the decoder and yield blurry results. This
design facilitates fidelity reservation of each frame and hence improves temporal
coherence.

To further enforce temporal information propagation and reduce local jitters,
we adopt cross-frame attention modules, which search and match similar features
from the previous frame and attend to them correspondingly. Specifically, given
the latent features from the previous frame vt−1 and current frame vt. They
are projected onto the embedding space and output the features v′i by v′i =

Attn(Q,K, V ) = softmax(QKT

√
d
) · V , where

Q = WQ · vt,K = WK · vt−1, V = WV · vt−1. (2)

This module facilitates temporal information propagation in the decoder. We
adopt CFA modules on features of small scale 16 and 32 to avoid introducing
blur to the decoded results.

A.2 Algorithm Pseudocode

As shown in the below Algorithm , we present the pseudocode of our method.
In this algorithm, we only show the process of inference.
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Algorithm 1: Detailed algorithm of KEEP.
EL, EH ,DQ ← LQ Encoder / HQ Encoder/ Decoder;
φ← Kalman Gain network;
Φt−1→t ← Optical flow from previous frame;
ω ← Spatial warping operation;
T ← length of clips;
Initialize z̃1, ẑ+

1 , ŷ1;
for t = 2, 3, · · · , T do

State Prediction:
ẑ−
t ← EH(ω(ŷt−1, Φt−1→t));

State Update:
z̃t ← EL(xt);
Kt ← φ(z̃1, z̃t−1, z̃t);
ẑ+
t ← (1−Kt)ẑ

−
t +Ktz̃t;

ŷt ← DQ(ẑ
+
t ))

end

A.3 Training Scheme.

Codebook Pre-Training (Stage I). Following CodeFormer [17], we first pre-
train a codebook within a quantized autoencoder. Unlike TAST [5], the learned
codebook is still image-based and does not involve temporal information. Pre-
cisely, given a HQ frame yt ∈ RH×W×3 in pixel space, an encoder in HQ do-
main EH encodes it into a latent code EH(yt). Each token of the continuous
code will be mapped to quantized discrete code ẑq

t from the learnable code-
book C = {ck ∈ Rd}Nk=0 via nearest-neighbor matching. The decoder D then
reconstructs the high-quality image frame from latent code. Similar to [4, 17],
to train the quantized autoencoder, we adopt three image-level reconstruction
losses: pixel lossL1, perceptual loss [6, 16] Lper, and adversarial loss [11] Ladv.
Moreover, since image-level losses are underconstrained when updating the dis-
crete codebook, code-level losses are also used to reduce the distance between
the quantized code and input feature embeddings. The overall objectives in this
stage are defined by

LI = L1 + Lper + Ladv + ||sg(EH(yt))− ẑq
t ||22 + ||EH(yt)− sg(ẑq

t )||22, (3)

where sg(·) denotes stop-gradient operator.

Kalman Filter Network(Stage II). In this stage, we train a LQ encoder
EL, the quantization Transformer Tq, and the Kalman filter network, while the
codebook C and decoder D are frozen to preserve high-quality restoration from
the VQGAN. Similar to [17], we adopt cross-entropy loss LCE to supervise token
prediction, and feature loss L2 to minimize the distance between features before
and after quantization. The overall objectives are defined by

LII = LCE + L2(EH(yt), sg(ẑ
q
t ))). (4)
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Cross-Frame Attention (Stage III). To train both Cross-Frame Attention
(CFA) modules and Controllable Feature Transformation (CFT), we fix other
modules and use image-level reconstruction loss L1, Lper and GAN loss Ladv,
given by

LD = E[logD(Y )] + E[1− logD(Ŷ )]. (5)

The discriminator D is constructed with multiple 3D convolution layers [3],
denoted as temporal PatchGAN, which could further enhance the coherence
of the generated face videos. The adversarial loss for the decoder modules is
formulated as

Ladv = −E[logD(Ŷ )]. (6)

Additionally, we adopt temporal loss [7] between consecutive output frames,
formulated as

Ltemp =

T∑
t=2

Mt−1→t · ||ŷt − ŷt−1→t||1, (7)

where Mt−1→t denotes the valid mask computed by forward-backward consis-
tency assumption [8], and ŷt−1→t is the frame warped from previous frame ŷt−1

with optical flow estimated by GT frames yt−1 and yt.
Hence, the overall training objectives are given by

LIII = λ1L1 + λperLper + λadvLadv + λtempLtemp. (8)

Here λ1, λper, λadv, and λtemp are the balancing weights and we empirically set
λ1 = 0.01, λper = 1, λadv = 0.1, and λtemp = 0.1.

A.4 Details of Dataset

Different from image-based degradations, video compression implicitly considers
the dependencies across video frames, hence inducing temporal-variant degra-
dations. This is implemented by randomly selecting codecs and constant rate
factor (CRF) during training. The overall degradation model is defined by

x = {[(y ⊛ kσ) ↓ +nδ]codec} ↑, (9)

where x and y are degraded and high-quality video clips, respectively. k and nδ

are Gaussian blur kernel and Gaussian noise specified by σ and δ, respectively.
⊛ denotes the convolution operation, and ↓ and ↑ represent 4× downsample and
upsample in this paper. Video compression codec is selected from “libx264” and
“h264” and the video quality is controlled by CRF, ranging from [25, 45]. During
training, σ is sampled from [2, 10], and noise level δ from [0, 10].

For a comprehensive evaluation, we synthesize three splits of the VFHQ-Test
dataset containing different levels of degradation. As summarized in Table A1,
they follow the same degradation model but differ in the degree of noise, blur,
and compression. Note that we mainly focus on the video compression controlled
by CRF, which is unique for video tasks.
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Besides synthetic degradations, we also assess the generalizability of our
methods on real-world face videos. In particular, we collect 40 videos in the wild
from YouTube, covering various degradations and celebrities in different scenes,
e.g ., interviews, and talk shows. Given the raw video from online sources, data
processing pipeline proposed by [14] is adopted to extract low-quality real face
videos. For each video clip, we retain a sequence of 100 to 300 frames with-
out scene transitions, which may break the dynamics between frames and hence
deteriorate the temporal propagation.

Table A1: We divide the test data into different levels of difficulty for a more com-
prehensive analysis.

Degradation mild medium heavy

Noise δ [0, 5] [5, 10] [5, 10]
Blur σ [2, 5] [5, 10] [5, 10]
CRF [18, 25] [25, 35] [35, 45]

B More Analysis

B.1 Effectiveness of Alignment

Alignment is the common pre-processing procedure in face-related vision tasks.
This ensures the faces are transformed and centralized in the same canonical
coordinate system. This is realized by detecting landmark keypoints and apply-
ing affine transformation to the original face images, which is sensitive to the
locations of detected facial landmarks. Mild inaccuracy of landmark detections
is tolerable in a single image. However, the noisy detections could consequently
result in unintentional temporal inconsistencies between frames in a video.

To reduce the additional inconsistency, we adopt low-pass Gaussian filter on
the locations of each landmarks along the temporal dimension, which eliminates
abrupt change (jitters) oriented along time. Denoted Mk

t as the k-th detected
landmarks from frame yt, where t represents the timestep. The filtered landmarks
are given by

M̂k
t =

t+r∑
n=t−r

G(n, σ) · Mk
n, (10)

where G(n, σ) = 1
2πσ2 e

− (n−t)2

2σ2 , and r denotes the radius of the window size. In
our experiments, we empirically set σ = 5 and r = 20. Figure A3 provides a visual
example of landmarks processed by Gaussian filter. The temporal jitters are
largely alleviated by the filter. We also demonstrate the effectiveness of alignment
in the supplementary video.
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Fig.A3: A representative example of landmark location processed by Gaussian filter
along time.

B.2 Quantitative Comparison on Various Degradation.

Table A2 provides the full quantitative results of models on different test par-
titions. As can be observed, our proposed method consistently outperforms all
other concurrent approaches on all datasets. In particular, KEEP surpasses Ba-
sicVSR++ [2] by a large margin of 0.95 dB in PSNR on test dataset with heavy
degradation. For identity preservation and pose quality metrics (IDS and AKD),
our method achieves top performance and fewer fluctuations. On VFHQ-mild
dataset, KEEP possesses 8.82 average keypoint distances on images of shape
512× 512, while the distances of all other methods are over 10.53. This suggests
that our method could better preserve identity within the generated video and
introduce far less jitters in the pose of faces. Such improvements are significant
in VFSR.

C Limitations and Future Work

Figure A4 presents a failure case of our method when the input video suffers
heavy degradation. The recovered logo on the hat in different frames shows in-
consistent shapes. This could stem from the inherent limitation that the contents
in non-facial areas are unstructured and highly deviate from what the facial prior
code encapsulates. A potential solution is to use general well-trained VSR mod-
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Table A2: Quantitative comparison on VFHQ dataset with different levels
of degradation. Red and Blue indicate the best and the second best results.

Method PSNR↑ SSIM↑ LPIPS↓ IDS↑ AKD↓ σIDS(×10−2) ↓ σAKD ↓

Mild

GPEN [15] 25.5193 0.7517 0.2988 0.7142 11.4691 4.7416 3.5109
GFPGAN [10] 26.2933 0.7795 0.2482 0.7437 10.5467 4.5700 3.6482
RestoreFormer [12] 25.5720 0.7344 0.3195 0.7530 10.5354 4.7159 3.4122
CodeFormer [17] 24.6597 0.7454 0.2742 0.6272 11.4983 6.3726 3.6927
EDVR [9] 26.6051 0.7858 0.2484 0.7195 11.6220 4.8048 3.5829
BasicVSR [1] 26.0458 0.7765 0.2496 0.6973 11.3679 5.0343 3.6054
BasicVSR++ [2] 27.1996 0.8057 0.1958 0.7641 11.3136 5.2543 4.6425
KEEP (Ours) 27.9994 0.8267 0.1619 0.7960 8.8182 3.6866 3.2538

Medium

GPEN [15] 25.1871 0.7460 0.3063 0.6741 12.2091 5.3168 3.6872
GFPGAN [10] 26.2826 0.7839 0.2554 0.6970 11.1332 5.2539 3.7173
RestoreFormer [12] 25.5123 0.7256 0.3346 0.7044 11.2567 5.3760 3.6448
CodeFormer [17] 24.6238 0.7424 0.2852 0.6077 11.8149 6.7256 3.7899
EDVR [9] 26.3385 0.7815 0.2625 0.6771 12.4233 5.2598 3.6660
BasicVSR [1] 25.8332 0.7725 0.2594 0.6638 12.4503 5.7990 3.8101
BasicVSR++ [2] 26.5465 0.7918 0.2203 0.6919 13.4386 6.8957 5.6914
KEEP (Ours) 27.4853 0.8171 0.1740 0.7481 9.5937 4.6179 3.3764

Heavy

GPEN [15] 25.0191 0.7437 0.3108 0.6544 12.4814 5.6768 3.8088
GFPGAN [10] 26.0747 0.7807 0.2613 0.6761 11.6804 6.8689 3.9346
RestoreFormer [12] 25.3354 0.7216 0.3458 0.6715 11.7674 5.6277 3.6966
CodeFormer [17] 24.5600 0.7407 0.2916 0.5949 12.0462 5.9110 3.9079
EDVR [9] 26.1600 0.7792 0.2729 0.6524 13.0927 5.9243 3.8166
BasicVSR [1] 25.6895 0.7695 0.2686 0.6426 12.7841 6.1689 3.8356
BasicVSR++ [2] 26.2686 0.7872 0.2289 0.6650 14.2254 7.2980 6.1919
KEEP (Ours) 27.2165 0.8124 0.1803 0.7282 9.8833 4.8643 3.3217

els to further enhance these regions and backgrounds. We leave this avenue of
research as future work.

D Evaluation on Real-World Videos

Figure A5 shows that our method recovers texture details in each frame. In ad-
dition, the supplementary video delivers high-quality restoration of our method
with superior consistency from highly degraded face videos, demonstrating ex-
traordinary generalization in face videos in the wild.
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Input
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Fig.A4: Limitations. Our method might produce inconsistent results on non-facial
areas when the input video exhibits heavy degradation. For example, the logo on the
hat shows various shapes in different frames.

E Additional Visual Results

Figure A6, A7, A8, and A9 showcase additional visual examples of our methods
and other compared baselines.
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Fig.A5: Qualitative comparison on the real face videos. Our KEEP recovers
high-fidelity face videos with faithful and consistent details.
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Fig.A6: Qualitative comparison on the VFHQ. RFormer represents Restore-
Former [12].



12 R. Feng et al.

In
pu
t

G
FP
G
A
N

RF
or
m
er

Co
de
Fo
rm
er

Ba
sic
V
SR

Ba
sic
V
SR
++

O
ur
s

G
T

Fig.A7: Qualitative comparison on the VFHQ. RFormer represents Restore-
Former [12].
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Fig.A8: Qualitative comparison on the VFHQ. RFormer represents Restore-
Former [12].
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Fig.A9: Qualitative comparison on the VFHQ. RFormer represents Restore-
Former [12].
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