
SeiT++: Masked Token Modeling Improves
Storage-efficient Training

Minhyun Lee1,† Song Park2,† Byeongho Heo2 Dongyoon Han2

Hyunjung Shim3,⋆

1 Yonsei University 2 NAVER AI Lab 3 KAIST AI
† Equal contribution. Work done at NAVER AI Lab.

Abstract. Recent advancements in Deep Neural Network (DNN) mod-
els have significantly improved performance across computer vision tasks.
However, achieving highly generalizable and high-performing vision mod-
els requires expansive datasets, resulting in significant storage require-
ments. This storage challenge is a critical bottleneck for scaling up mod-
els. A recent breakthrough by SeiT proposed the use of Vector-Quantized
(VQ) feature vectors (i.e., tokens) as network inputs for vision classifica-
tion. This approach achieved 90% of the performance of a model trained
on full-pixel images with only 1% of the storage. While SeiT needs la-
beled data, its potential in scenarios beyond fully supervised learning
remains largely untapped. In this paper, we extend SeiT by integrating
Masked Token Modeling (MTM) for self-supervised pre-training. Rec-
ognizing that self-supervised approaches often demand more data due
to the lack of labels, we introduce TokenAdapt and ColorAdapt. These
methods facilitate comprehensive token-friendly data augmentation, ef-
fectively addressing the increased data requirements of self-supervised
learning. We evaluate our approach across various scenarios, includ-
ing storage-efficient ImageNet-1k classification, fine-grained classifica-
tion, ADE-20k semantic segmentation, and robustness benchmarks. Ex-
perimental results demonstrate consistent performance improvement in
diverse experiments, validating the effectiveness of our method. Code is
available at https://github.com/naver-ai/seit.

1 Introduction

Recent advancements in Deep Neural Network (DNN) [17,56] have significantly
improved their performance across various computer vision tasks. However, achiev-
ing highly generalizable and high-performing vision models demands an exten-
sive dataset, often containing billions of data points [28,41,53] with large storage
requirements. For example, the LAION-5B [50] dataset requires a storage size
of 240TB. This storage challenge emerges as a critical bottleneck for scaling up
vision models. Consequently, optimizing storage efficiency becomes essential for
the practical advancement of scaled-up vision models.
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Fig. 1: Over 70% top-1 accuracy is achievable with just 1GB data. On
ImageNet-1k, we visualize the trade-off of training data storage vs. top-1 accuracy
using the fixed ViT-B/16 for a controlled comparison. Each accuracy metric is individ-
ually trained with different data types. While the entire ImageNet-1k dataset requires
approximately 140GB for training with images, our approach demonstrates significant
storage efficiency over competitors.

Images require more storage than texts due to their intrinsic complexity
in converting continuous natural light signals into discrete pixels for computer
representation. However, a considerable portion of image data corresponds to
redundant or unnecessary details, such as repeated patterns or imperceptible
details [47]. These properties lead to large storage requirements and also induce
negative impacts on visual recognition tasks as mentioned in [1,11,21,22,40,51].
Therefore, several attempts [9, 29, 45, 69, 70] have been made to reduce storage
requirements by optimizing the efficiency of image data. A standard approach to
reduce storage requirements is to decrease the total number of training data by
removing less important samples [9, 29, 45] or condensing the data into smaller
synthetic sets [69,70].

However, as SeiT [44] illustrates, these approaches may incur a significant
performance drop or become infeasible for large-scale datasets due to their com-
plexity. Alternatively, some methods aim to reduce the size of each image through
compression techniques or resolution adjustments [50]. However, they still face
a considerable performance gap with the original dataset. Recently, SeiT [44]
has made a significant breakthrough in this area by enabling the direct learn-
ing of ViTs [17] from discrete representations (i.e., tokens) pre-extracted by an
offline tokenizer [66]. By using vector-quantized features instead of traditional
pixel images, SeiT achieves 90% of the performance of a full storage model while
requiring only 1% of the storage.

While SeiT [44] has demonstrated the high potential of token-based training,
a performance gap with the image-based models still persists, and a prospective
solution – exploration beyond fully supervised learning scenarios – remains un-
tapped. To leverage the advantages of large-scale data beyond human-annotated
datasets, exploring label-free learning methods is imperative. In this paper, we
investigate the compatibility of SeiT with self-supervised learning approaches in
token-based frameworks. Among many different self-supervised methods [6,7,23],
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Masked Image Modeling (MIM) [24, 64] derived from Masked Language Model-
ing (MLM) [15] has brought significant success and has quickly become a popular
approach for learning visual representations.

Inspired by this, we introduce Masked Token Modeling (MTM), a pre-training
method that performs token masking and reconstruction in token-based frame-
works, and validate its effectiveness for storage efficiency on various benchmarks.
To the best of our knowledge, this is the first approach for learning an MLM-
based model directly from offline tokens, offering the potential to optimize stor-
age efficiency for large-scale training tasks. As previous studies [12, 13, 56] have
highlighted, data augmentation plays a crucial role in large-scale model training
and is a fundamental element in various training setups [6,7,23,24,37,56,62,64].
However, applying existing data augmentation techniques [13,67,71] designed for
pixel images to tokens poses a significant challenge due to the input domain shift.
Therefore, addressing this challenge is key to overcoming major performance
bottlenecks and improving the storage efficiency of token-based frameworks.

To this end, we introduce TokenAdapt and ColorAdapt, two novel augmenta-
tion strategies designed for token-based training. TokenAdapt facilitates the in-
tegration of traditional pixel-based augmentation policies by transforming token
embeddings into a feature space compatible with pixel-based augmentations. Af-
ter applying augmentation to the transformed token embeddings, the augmented
token embeddings are then reverted to their original token space. ColorAdapt,
inspired by Adaptive Instance Normalization (AdaIN [27]), alters the color at-
tributes of token embeddings while preserving object structure by adjusting their
statistics. By integrating TokenAdapt and ColorAdapt into our token augmen-
tation process, we enhance the effectiveness of token-based training across both
fully supervised and unsupervised learning scenarios, demonstrating significant
improvements in model performance.

Our SeiT++ framework combines Masked Token Modeling (MTM) with the
proposed token augmentation strategies, TokenAdapt and ColorAdapt. We vali-
date the effectiveness of SeiT++ on various scenarios: (1) storage-efficient ImageNet-
1k classification, (2) transfer learning on fine-grained classification, (3) ADE-20k
semantic segmentation, and (4) evaluation on robustness benchmarks. As shown
in Figure 1, SeiT++ consistently outperforms comparison methods in storage-
efficient ImageNet-1k classification with limited storage sizes, achieving a top-1
accuracy of 77.8% with only 1.4GB of data. These results confirm that token-
based training can take advantage of self-supervised learning to improve storage
efficiency. We also demonstrate that our proposed token augmentations signifi-
cantly contribute to storage efficiency by augmenting data effectively. We reveal
that our token-based augmentation methods basically yield significant boosts in
supervised learning and further amplify improvements in MTM learning. Fur-
thermore, we present how our strategies enhance the generalizability of trained
models, as evidenced by our experimental results on fine-grained classification
and robustness evaluation. Lastly, the applicability of our method to an alter-
native input format (e.g ., DCT coefficients) demonstrates its extensibility.
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2 Related Work

Learning with Tokenization. The use of discrete tokens for training vision
models has recently gained attention, particularly in self-supervised representa-
tion learning. BeiT [2] employs the Masked Image Modeling (MIM) framework
to recover discrete tokens from masked images and CIM [19] utilizes tokens in
Corrupted Image Modeling. MAGE [34] demonstrates the incorporation of to-
kens from VQGAN [18] for both generative training and representation learning
within a unified training framework. However, existing studies mainly focus on
self-supervised representation learning and rely on online tokenization, convert-
ing images to tokens during each iteration of model training. This approach
incurs notable memory consumption and computational costs, limiting the full
exploitation of the storage efficiency of discrete tokens.

Storage-efficient Vision Training. Efficient model learning is a crucial re-
search area, with studies focusing on optimizing target models [35, 36] or min-
imizing training data and labels [39, 42]. Storage-efficient training aims to re-
duce the dataset storage size. To this end, dataset distillation (DD) [60] cre-
ates a condensed dataset by leveraging the knowledge of the original dataset.
Recent research [33, 48, 49, 69, 70] highlights the effectiveness of dataset distilla-
tion in improving training efficiency. However, its high computational complexity
poses challenges, particularly when applied to large-scale datasets like ImageNet-
1k [14]. Sampling-based methods [9, 29, 45] address this by selecting a subset of
the most representative samples from the full dataset. Paul et al . [45] identify
important samples very early in training. Jiang et al . [29] utilize a consistency
score based on statistics collected during training. However, the diverse sample
selection is not guaranteed, particularly in low data regimes, leading to subopti-
mal performance compared to dataset distillation (DD) methods [70]. To tackle
these issues, SeiT [44] proposes a storage-efficient vision training framework by
leveraging the storage efficiency of tokens. They utilize the ViT-VQGAN [66] to-
kenizer to extract tokens from images and store them for vision model training.
As a result, they outperform other storage-efficient training methods, signifi-
cantly reducing the dataset storage size.

Data Augmentation. Data augmentation serves as a fundamental building
block to improve the model performance across diverse computer vision tasks.
Various data augmentation techniques have been employed for improved per-
formance [16, 71] or model robustness [20, 38]. Mixup [68] introduces convex
combinations of pairs of images and their labels to create a smoother decision
boundary. CutMix [67] replaces certain regions of an image with a patch from an-
other image, enhancing the model’s localization ability. AutoAugment [12] lever-
ages reinforcement learning to automate optimal augmentation policy discovery.
RandAugment [13] introduces a potent policy based on random combinations
of different data augmentation methods. DeiT [56] emphasizes the crucial role
of data augmentation in vision transformers for improved model performance.
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Fig. 2: Masked Token Modeling (MTM) pipeline. MTM is a self-supervised
learning approach in token-based frameworks. (a) The tokenized dataset is saved on
storage before model training. Then, (b) using only the pre-stored tokens, a storage-
efficient vision model (MTM) is trained without relying on labeled datasets.

Previous studies extensively explore the effective data augmentation policies for
pixel-based vision model training. However, we observe that pixel-based data
augmentations are not well-suited for tokens, posing a critical performance bot-
tleneck. Motivated by this, we tackle the data augmentation challenge, which
has not been explored in previous studies for vision model training with tokens.

3 Method

3.1 Preliminary: Storage-efficient Vision Training (SeiT)

SeiT [44] aims to develop a scalable and high-performance vision classifier with
minimal storage requirements. It introduces a storage-efficient vision training
framework that enables the direct learning of ViT [17] from discrete represen-
tations (i.e., tokens) pre-extracted by an offline tokenizer. In addition, SeiT
further improves training by incorporating two token-specific augmentations:
Token-EDA, drawing inspiration from easy data augmentation for language [61],
and Emb-Noise, which introduces Gaussian noise into discrete representations.
By using vector-quantized features instead of pixel images, SeiT retains 90% of
the precision of a model trained on full-pixel images while using only 1% of the
storage space. SeiT consists of two parts: (1) preparing the token dataset and
(2) training a model using the token dataset.

Preparing the Token Dataset. SeiT extracts tokens using the ImageNet-1k-
trained ViT-VQGAN tokenizer [66] to prepare the token dataset for training. As
shown in Figure 2(a), each pixel image I is transformed into a sequence of tokens
T = [t1, t2, ..., tn]. Since the tokens are stored in quantized form, each token
means an embedding vector in a codebook Z = {zk ∈ Rd|k = 1, ...,K}. i.e., ti ∈
Q where Q = {1, 2, ...,K} for a codebook with size K. Here, given the tokens T
and the codebook Z, the corresponding token embeddings ZT = [zt1 , zt2 , ..., ztn ]
can be computed by lookup process. This conversion compresses each image
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I ∈ RH×W×3 into a more compact token sequence T ∈ Rn, where n is much
smaller than H ×W × 3, thus significantly reducing storage requirements. For
example, storing the full-pixel ImageNet-1k requires 140GB, but its tokenized
form needs only 1.4GB. Notably, the tokens are stored on storage before model
training with the codebook Z. Thus, during the training phase, the pre-stored
tokens are used directly as input instead of the original pixel images.

Training Pipeline. To train a vision classifier using tokens, SeiT initially loads
the token dataset and applies Token-EDA to the tokens. The tokens are then
converted to a one-hot format and randomly resized and cropped. Subsequently,
the processed one-hot tokens are transformed into token embeddings using a pre-
trained codebook. Techniques such as CutMix and Embedding-noise are applied
to these token embeddings, and the resulting augmented tensor is fed into the
model for training. Through the proposed framework, SeiT demonstrates the
high potential of token-based training, but it lacks exploration beyond fully
supervised learning scenarios. In addition, while token-specific augmentation is
proposed, the types of token augmentation are limited, and the analysis of data
augmentation compared to pixel-based training is insufficient.

3.2 Masked Token Modeling

In this section, we introduce Masked Token Modeling (MTM), a pre-training
method in token-based frameworks without relying on labeled datasets. MTM
shares a similar concept to Masked Language Modeling (MLM) [15], which works
by reconstructing original tokens from their masked versions, employing an au-
toencoding strategy. Figure 2(b) presents an overview of how our MTM operates.

Masking. We employ a variable masking ratio that follows a truncated normal
distribution, as investigated in previous studies [4,5,34]. The tokens are randomly
dropped according to the sampled masking ratio, and then the visible, unmasked
token embeddings are fed into the model. By processing only a subset of token
embeddings in the encoder, we significantly reduce the overall pre-training time
and memory consumption, which aligns with the findings of MAE [24].

MTM Encoder & Decoder. We use ViT [17] as our encoder because it is able
to process both the visible token embeddings and the original token embeddings,
seamlessly accommodating their different lengths. During training, the encoder
takes the visible token embeddings and outputs latent features that become the
decoder input. Before decoding, the latent features are padded to the length
of the original token embeddings using mask tokens M. Each mask token is a
shared, learned vector indicating the presence of a missing token to be predicted.
The decoder then estimates the original tokens T from the padded features.



SeiT++: Masked Token Modeling Improves Storage-efficient Training 7

RGB Image Token Recon. Token w/hFlip Token w/RRC

(a) Failure cases visualization (b) Performance degradation
Augmentation type

T
op

-1
 A

cc
ur

ac
y 

(%
)

74.5

74.0

73.5

73.0

72.5

72.0

71.5

71.0
SeiT +hFlip +Mixup +Affine

74.0%

73.2%

72.0%

71.3%

Fig. 3: Data augmentations with tokens. Each ViT-VQGAN decoded image is
reconstructed from a given RGB image after undergoing specific data augmentations.
We observe that naively adopting these methods results in incorrect tokenization: 1)
Token w/ hFlip demonstrates spatial information collapse during tokenization; 2) To-
ken w/ RRC shows interdependence between neighboring token embeddings. We note
the reconstructed images fail to preserve the images’ details, suggesting that this in-
curs ineffectiveness of tokenization. Furthermore, we report top-1 accuracies (ViT-B)
on ImageNet-1k according to the augmentations applied during training. All the aug-
mentations are de-facto default training setups for vision transformers [37,54,56].

Training Objective. MTM learns to accurately predict the original tokens of
each masked token from the visible tokens. In particular, we use a cross-entropy
loss between the decoder output and the ground truth tokens as the training
objective, which is denoted by Lrecon:

Lrecon = CE(T ′
M , TM ), (1)

where T ′
M denotes the predictions of the model for the masked tokens, and TM

corresponds to the ground truth tokens for T ′
M . Following MAE [24], this loss is

optimized only for the masked tokens.

3.3 Data Augmentation for Tokens

While Masked Token Modeling (MTM) improves the storage efficiency of the
token-based framework, there is still a performance bottleneck in improving
token-based training. Since self-supervised approaches often require more data
due to the lack of labels, exploring data augmentation is important to take full
advantage of MTM. In this section, we analyze why existing data augmentations
designed for pixel images are ineffective in the token domain. We then present
TokenAdapt and ColorAdapt as solutions for token-based data augmentation.

Limited Data Augmentations for Tokens. We explore the challenges of
pixel-based augmentation in the token domain and identify two main reasons:
(1) spatial information collapse during tokenization and (2) inter-token depen-
dencies. The discrete tokenization process condenses a n × n 2D image patch
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Fig. 4: TokenAdapt processing pipeline. TokenAdapt aims to enhance the compat-
ibility of token embeddings with pixel-based data augmentations by converting them
into augmentation-compatible space, applying augmentations, and reverting them back
to the original token embedding space.

into a single d-dimensional 1D vector (i.e., token embedding), causing a collapse
of spatial information. This collapse hinders augmentations that rely on spatial
details (e.g ., horizontal flip). Furthermore, unlike independent image pixels, to-
ken embeddings are inter-correlated. This complicates augmentations involving
interpolation (e.g ., Resize or Mixup [68]), by introducing undesired artifacts.

Figure 3 shows the limitations of pixel-based augmentations in the token
domain. A horizontal Flip (hFlip) distorts both the diagonal line (top row) and
the cat’s silhouette (bottom row) due to spatial information collapse. This occurs
because only the inter-token spatial relationship is flipped, while the inner-token
spatial arrangement remains unchanged. Augmentations involving interpolation
can lead to undesired artifacts, such as color leakage in the case of Random
Resized Crop (RRC), due to interdependence between neighboring embeddings.
Therefore, we suspect that the direct application of pixel-based augmentations
to token embedding may negatively affect token-based training.

TokenAdapt. The concept of TokenAdapt is to establish a feature space that
allows for conventional pixel-based augmentations while facilitating the conver-
sion and inversion of pre-extracted tokens with minimal computational overhead.
This approach offers several advantages for our TokenAdapt. Firstly, it enables
the direct reuse of well-designed pixel-based data augmentation policies. Addi-
tionally, the augmented token can be easily computed through the conversion-
augmentation-reverse process. Finally, it ensures that the feature spaces for both
the original and augmented tokens are preserved identically. This allows for the
seamless use of existing model architectures or pre-trained weights.

The goal of TokenAdapt is to design an augmentation function that con-
verts the input tokens T to augmented tokens TA = [tA1 , tA2 , ..., tAn ]. Note that
the augmented tokens should also be quantized tAi ∈ Q. Figure 4 depicts the
overall pipeline of TokenAdapt. The initial step of TokenAdapt is transforming
token embeddings ZT , computed from T and codebook Z, into a representa-
tion ST ∈ Rh×w×d in augmentation-compatible space S. This transformation
is achieved using a conversion function f , i.e., ST = f(ZT ). We apply aug-
mentation A at augmentation-compatible space S and build an augmented rep-
resentation SA

T = A(ST ). Then, the augmented representation is reverted to
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token embedding space by a reverse transformation g, ZA
T = g(SA

T ). At last, the
augmented tokens in embedding space ZA

T are quantized to codebook index as
TA = qZ(Z

A
T ), where qZ indicates the vector quantization process. In summary,

the augmentation process of TokenAdapt is as follows:

ZA
T = g(A(f(ZT ))), TA = qZ(Z

A
T ). (2)

The conversion function f and the reverse transformation g are learned from
paired data of tokens (Tx, TA(x)), where Tx and TA(x) denote tokens from an
image x and its augmented image A(x), respectively. We use the cross-entropy
loss between ZA

Tx
and ZTA(x)

as our objective function LTA for learning our
TokenAdapt module:

LTA = CE(ZA
Tx
, ZTA(x)

). (3)

TokenAdapt deals with geometric data augmentations (e.g ., flip, resize, crop,
affine) and Mixup [68]. These augmentations are commonly used in various train-
ing methods, but they can cause a performance drop in token-based training, as
shown in Figure 3(b).

Once trained, the TokenAdapt module is used to augment a sequence of to-
kens T into an augmented sequence TA across different datasets and downstream
tasks. Importantly, the augmentation-compatible feature space, which does not
rely on specific semantic knowledge or alignment with downstream tasks, makes
it dataset and task-agnostic. The inherent flexibility of TokenAdapt makes it
highly generalizable, allowing direct application to other datasets without the
need for additional training procedures.

ColorAdapt. As witnessed in Cubuk et al . [12], color-based augmentations
are often more effective than geometric ones in certain datasets and are an
important component of data augmentation strategies. For example, color-based
augmentations are useful for dealing with various environmental changes caused
by different lighting conditions (e.g ., day and night) or weather conditions (e.g .,
snow). However, integrating them into TokenAdapt is challenging because most
color-based augmentations are designed to work only in the pixel domain. To
address this, we propose ColorAdapt, a color-based token augmentation inspired
by the method [27]. Formally, the ColorAdapt function C is defined as:

C(ZT1 , ZT2) = σ(ZT2)

(
ZT1 − µ(ZT1)

σ(ZT1)

)
+ µ(ZT2), (4)

where µ(ZT ) and σ(ZT ) are the mean and standard deviation of each token
embedding ZT across its spatial dimension, computed for each channel.

ColorAdapt mimics color-changing augmentations in the pixel domain while
preserving the encoded object structure by transforming the global statistics
within each channel of the token embedding. Figure 5 shows the images decoded
from various color-augmented tokens. This illustrates how ColorAdapt affects
the visual properties of the augmented tokens. By incorporating ColorAdapt
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Input data Emb-Noise ColorAdaptBrightness Input data Emb-Noise ColorAdaptBrightness

Fig. 5: ColorAdapt provides more reasonable color changes. We present ViT-
VQGAN decoded images to verify the quality of tokenizations after color changes. We
use the brightness function with a factor of 0.2 following the implementation [46]. Emb-
Noise [44] is the color-based token augmentation. Notably, our ColorAdapt effectively
preserves object structure in contrast to the failure of the counterparts.

Table 1: Storage-efficient ImageNet-1k classification. We report top-1 accura-
cies (ViT-B) and compression ratio on ImageNet-1k using various data storage reduc-
tion methods. Our SeiT++ shows significant storage efficiency compared to competitors.

Method Input # of images Top 1 Acc. Dataset
storage size

Full pixels Image 1,281 k 81.8 140.0 GB

Uniform random sampling

Image

512 k 74.0 54.6 GB (39%)
C-score [29] based sampling 512 k 73.3 53.3 GB (38%)
Adjusting JPEG quality factor to 5 1,281 k 74.6 11.0 GB (8%)
Adjusting image resolution (× 0.2) 1,281 k 75.2 9.6 GB (7%)

SRe2L [65] Image 200 k 65.9 2.6 GB (2%)
G-VBSM [52] 100 k 63.7 1.6 GB (1%)

SeiT [44] Token 1,281 k 74.0 1.4 GB (1%)
SeiT++ 1,281 k 77.8 1.4 GB (1%)

into our token augmentation strategy, we improve the data diversity, exploring
new possibilities for training more robust and generalizable vision models.

4 Experiment

In this section, we validate the effectiveness of SeiT++ on various scenarios. First,
we evaluate the performance of our method in the context of storage-efficient
ImageNet-1k classification and transfer learning on fine-grained datasets. Then,
we demonstrate the adaptability of token-based vision training to ADE-20k se-
mantic segmentation, showing additional improvements facilitated by SeiT++.
In addition, we present experimental results illustrating how our strategies con-
tribute to enhanced model generalizability in robustness evaluation. We also
explore the applicability of our augmentation strategies to alternative input for-
mats, demonstrating its extensibility. Unless otherwise stated, SeiT++ refers to
the combination of MTM and our token augmentation strategies.
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Table 2: Token-based ImageNet-1k Classification. We report top-1 accuracies
(ViT-B) on ImageNet-1k. Note that SeiT++ w/o MTM means the original SeiT [44]
training with our token augmentation strategies.

Storage SeiT SeiT++

w/o MTM w/ MTM w/o MTM w/ MTM

1.4 GB 74.0 75.1 75.5 (+1.5) 77.8 (+2.7)
1.1 GB 70.2 74.1 73.1 (+2.9) 76.5 (+2.4)
0.8 GB 66.3 70.6 69.1 (+2.8) 74.1 (+3.5)
0.5 GB 59.7 64.5 63.8 (+4.1) 70.0 (+5.5)
0.3 GB 47.2 53.9 51.2 (+4.0) 60.6 (+6.7)

Table 3: Fine-grained classification. We report top-1 accuracies (ViT-B) on various
fine-grained datasets. Our method consistently outperforms its counterpart through
effective augmentations for tokens.

Method Flowers Cars iNat18 iNat19

SeiT [44] 93.5 79.7 43.1 50.1
SeiT++ 95.2

(+1.7)
86.9
(+7.2)

52.4
(+9.3)

58.9
(+8.8)

4.1 Storage-efficient ImageNet-1k

Table 1 summarizes the performance and compression ratio of storage-efficient
ImageNet-1k classification. Our method is compared with image-based approaches,
including uniform random sampling, C-score [29]-based sampling, adjusting im-
age resolution, and adjusting JPEG quality factor. Despite a 1% compression ra-
tio, when a ViT-B/16 model is pre-trained on tokenized ImageNet-1k using MTM
and the ViT model is fine-tuned, our method achieves a 77.8% top-1 accuracy,
outperforming various image-based approaches. In Table 2, our method consis-
tently outperforms the token-based learning baseline SeiT by 1.5–6.7%p in top-1
accuracies. Notably, the effectiveness of our method becomes more pronounced
as the available storage size decreases, highlighting its efficiency in low-storage
scenarios. Furthermore, SeiT++ shows more significant performance gains with
MTM. For a storage size of 1.4GB, SeiT++ achieves an improvement of 1.5%p
over SeiT without MTM, while with MTM the improvement increases to 2.7%p.
These results confirm that SeiT++ effectively takes advantage of MTM.

4.2 Fine-grained Classification

To further investigate the generalizability of SeiT++, we conduct experiments on
four different fine-grained datasets: Flowers [43], StandfordCars [31], iNat-18 [57],
and iNat-19 [58]. Specifically, we tokenize each dataset and then fine-tune the
token-trained model (ViT-B) on ImageNet-1k with the tokenized dataset. Since
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Table 4: ADE-20k Semantic Segmentation. We report mIoU on the ADE-20k
validation set, highlighting the effectiveness of our approach in pixel-level classification.

Method Backbone SeiT SeiT++

UPerNet [63] ViT-B [17] 39.0 43.2 (+4.2)

Table 5: Robustness evaluation. We report top-1 robust accuracies (ViT-B) against
corruptions and domain shifts for each model trained on ImageNet-1k. Our method
consistently outperforms its counterpart on various robustness benchmarks.

Method Clean Gauss. Noise Gauss. Blur ImageNet-R Sketch ObjectNet

SeiT [44] 74.0 50.7 62.6 25.5 22.6 15.7
SeiT++ 75.5

(+1.5)
58.6
(+7.9)

66.8
(+4.2)

30.2
(+4.7)

27.7
(+5.1)

18.3
(+2.6)

fine-grained datasets require the classification of objects with intricate charac-
teristics, they are particularly sensitive to undesirable noise (i.e., RRC in SeiT)
or excessive perturbation (i.e., Emb-Noise) resulting from data augmentation in
the token embedding space. Table 3 shows the quantitative performance (top-1
accuracies) on fine-grained datasets. SeiT++ consistently outperforms the per-
formance of SeiT across various datasets. These results confirm the effectiveness
of our proposed method in fine-grained classification.

4.3 ADE-20k Semantic Segmentation

A limitation of token-based learning is often substantiated by learning dense pre-
diction tasks. We conjecture that our method could facilitate training for those
tasks, such as semantic segmentation. We extract tokens from ADE-20k [72]
and use the pre-trained ViT-B/16 model on tokenized ImageNet-1k to evaluate
the effectiveness of our method in semantic segmentation. We then fine-tune
the pre-trained model using the tokenized ADE-20k dataset. Table 4 reports
the mean intersection-over-union (mIoU) as an evaluation metric. The results
show a significant performance improvement (+4.2%p mIoU) over SeiT. These
results indicate that SeiT++ significantly improves model performance in the
token-based dense prediction task.

4.4 Evaluation on Robustness Datasets

To validate the effectiveness of our augmentation strategies in terms of robust-
ness, we further evaluate the robustness of our method on a set of benchmarks
such as adding Gaussian noise [26] or Gaussian blur [26], ImageNet-R [25],
Sketch [59], and ObjectNet [3]. Notably, we adopt SeiT++ w/o MTM to validate
the impact of our augmentation strategies on model robustness. The results in
Table 5 show that SeiT++ consistently outperforms SeiT in terms of robustness
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Table 6: Impact of the proposed augmentation strategies. We report the top-1
accuracies (ViT-S) on the ImageNet-100 validation set for various combinations of our
token augmentation strategies. Notably, our TokenAdapt and ColorAdapt consistently
improve model performance, exhibiting synergy when used together.

Framework ColorAdapt TokenAdapt Top 1 Acc.

SeiT [44]

✘ ✘ 77.3
✔ ✘ 78.3
✘ ✔ 80.4
✔ ✔ 81.4

Table 7: Adaptibility of our method to different input. Input denotes tokenizers
for our model. We report the top-1 accuracies (ViT-S) on ImageNet-100. For VQGAN,
we used a publicly available VQGAN [18] trained on OpenImages [32] as a tokenizer.

Input SeiT SeiT++

Token (ViT-VQGAN [66]) 77.3 81.4 (+4.1)
Token (VQGAN [18]) 81.8 83.9 (+2.1)
DCT coefficients 69.5 71.0 (+1.5)

accuracy. Previous studies [8, 55] observe that the key to the input pixel ro-
bustness depends on the pixel-level augmentations. Since our method enables
pixel-based data augmentation to tokens, it achieves higher robustness than the
baseline, which does not effectively exploit the pixel-based data augmentation.

4.5 Ablation Study

Impact of Each Augmentation Strategy. In Table 6, we report the impact of
proposed token augmentations. In particular, incorporating ColorAdapt leads to
a 1.0%p performance improvement, highlighting the positive effect of preserving
object structure during model training. Additionally, incorporating TokenAdapt
yields an extra 3.1%p improvement. These results confirm that exploring token
augmentations is a key factor in fully exploiting pre-extracted tokens.

Extensibility of Our Augmentation Strategy. In this section, we conjec-
ture the broad applicability of our augmentation strategies across various sce-
narios. To explore its extensibility, we delve into two distinct situations. Firstly,
we examine the integration of our method with an alternative tokenizer—the
OpenImages-trained VQGAN tokenizer [18], alongside the ImageNet-1k-trained
ViT-VQGAN tokenizer [66]. The results in Table 7 consistently demonstrate im-
proved performance on ImageNet-100 across different tokenizers. Additionally,
we investigate the adaptability of our approach to a different input format by
focusing on Discrete Cosine Transform (DCT) coefficients. Inspired by JPEG
compression, we apply DCT to each 8× 8 image patch, yielding quantized DCT
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coefficients utilized as input data during model training. As shown in Table 7,
our approach enhances top-1 accuracy, similar to the tokenizer scenario. This
consistent improvement across diverse input formats underscores the universal
applicability of our method, highlighting its potential as a widely applicable
solution for diverse input representations.

4.6 Implementation Details

We use the pre-trained ViT-VQGAN tokenizer [66] for token extraction. For our
TokenAdapt module, we employ a single transformer block for conversion and
reverse function. The TokenAdapt module is trained for one epoch on ImageNet-
1k with a batch size of 128, a learning rate of 0.001 with cosine scheduling, and a
weight decay of 0.05. We follow the training recipes from MAGE [34], SeiT [44],
and mmsegmentation [10] for masked token modeling (MTM), token-based clas-
sification, and semantic segmentation, respectively. Detailed hyperparameters
and settings are available in the Appendix.

5 Conclusion

In this paper, we investigate the compatibility of SeiT with self-supervised learn-
ing approaches in token-based frameworks. Among various self-supervised algo-
rithms, Masked Image Modeling (MIM) [24, 64] has recently gained popularity
for learning visual representations. Inspired by this, we extend SeiT by inte-
grating Masked Token Modeling (MTM) for self-supervised pre-training. Ad-
ditionally, recognizing that self-supervised approaches often require more data
due to the lack of labels, we propose simple yet effective token-based augmenta-
tion strategies: TokenAdapt and ColorAdapt. TokenAdapt aligns the token em-
bedding space with another embedding space compatible with pixel-based data
augmentations. In addition, we introduce ColorAdapt, a color-changing augmen-
tation for tokens. Our experimental results across various scenarios, including
storage-efficient ImageNet-1k classification, fine-grained classification, ADE-20k
semantic segmentation, and robustness benchmarks, consistently validate the
effectiveness of our proposed method. Furthermore, the consistent performance
improvement across diverse input formats highlights the potential of our ap-
proach as a widely applicable solution for various input representations.

Limitations. While SeiT++ is capable of handling large-scale data without la-
bels with optimized storage requirements, experiments on such large datasets
(e.g ., ImageNet-21k [14]) and huge models are not contained in this paper due
to resource constraints. We believe the advantages of MTM and our data aug-
mentation strategies can be seamlessly integrated with scalability.
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