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In this supplementary material, we provide additional details and results that
did not fit into the main paper.

A Ethical Comments

We recognize the ethical considerations surrounding the creation of 3D facial
animations. Generating synthetic narratives with 3D faces poses inherent risks,
potentially resulting in both intentional and unintentional consequences for in-
dividuals and society as a whole. We emphasize the importance of adopting a
human-centered approach in the development and implementation of such tech-
nology.

Human-centered design is essential for shaping technology-driven strategies
that benefit humans. Our goal in this work is to develop technology that helps
people and addresses an open problem in the literature. Speech-driven human
face animation has numerous applications, some of which may be beneficial, while
others could be negative. Here we emphasize the importance of responsible use,
relying on the end user to apply the technology we developed properly.

B Transformer Decoder

Inspired by prior works [1,3], ScanTalk with Transformer Decoder follows a dis-
tinct approach. The architecture is shown in Fig. 1 and it employs a SpeechEn-
coder module preceding an autoregressive Transformer Decoder, which necessi-
tates an initial token. Unlike traditional methods, our approach initializes the
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generation process with the global representation of mneutral
i , the neutral face for

animation, denoted as gni , serving as the starting token. The per-vertex features
are aggregated through averaging, yielding:

gni =
1

Vi

Vi∑
k=1

(fn
i )k ∈ Rh. (1)

This global feature vector, gni , encapsulates fundamental attributes of the
neutral face, providing valuable insights into its overall structure and charac-
teristics. While Faceformer [1] commences generation with an embedding of
a one-hot label representing the speaker, and Imitator [3] begins from a zero
token, our methodology offers a novel perspective on initializing the generation
process.

The Transformer Decoder comprises a concatenation of components: a Po-
sitional Encoding Layer encoding token positions in the sequence, a Masked
Self-Attention Layer incorporating information from preceding tokens, and a
Masked Cross-Attention Layer combining token information with corresponding
details from the SpeechEncoder. The autoregressive token generation process is
defined as:

vji = TD(v1:j−1
i , aji ) ∈ Rh ∀j = 1, . . . , Ti with v0i = gni . (2)

Fig. 1: Architecture of ScanTalk Transformer.

C Mesh encoding

Several encoding strategies for geometry are feasible; however, with our experi-
mentation we saw that encoding vertex positions provides the optimal and most
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intuitive approach. When omitting mesh encoding and directly feeding the BiL-
STM output to the decoder, the mesh signal remains constant across frames,
leading to a static facial expression as the decoder lacks spatial awareness of
the mouth’s location. Incorporating normals alongside positions fails to enhance
results, as precomputed operators already furnish adequate orientation informa-
tion. Additionally, adopting the Heat Kernel Signature (HKS), as suggested in
the DiffusionNet framework, does not yield improvements in results. In Fig. 2,
we present the per-vertex norm of features derived from the DiffusioNet Encoder
for both training and testing meshes.

Fig. 2: Relative norm of the per-vertex descriptors extracted by the encoder displayed
as a heatmap where pinker hues indicates lower values and greener hues indicates higher
values.

D Datasets

We summarize the characteristics of the datasets in Tab. 1. Our preprocess-
ing of the BIWI dataset is depicted in Fig. 3, while the manipulation applied
to the Multiface dataset is illustrated in Fig. 4. Specifically, the BIWI dataset
underwent downsampling and rigid alignment with the VOCAset, whereas the
Multiface dataset was rigidly aligned with the VOCAset, with additional modi-
fications involving the creation of three apertures corresponding to the eyes and
mouth.
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Table 1: Train / test / val splits for each dataset.

VOCAset BIWI6 Multiface

Type Head + neck Narrow face Head + neck
# vertices 5,023 3,895 5,471
# faces 9,976 7,539 10,837
Training samples 320 400 410
Val samples 80 80 100
Test samples 80 80 100

Fig. 3: Side by side comparison of an original mesh from BIWI and the same mesh in
BIWI6.

Fig. 4: Side by side comparison of an original mesh from Multiface and the same mesh
after preprocessing.

E Additional Qualitative results

In Fig. 5, we present qualitative examples of animation using ScanTalk ap-
plied to 3D faces with arbitrary topology. Our preprocessing steps included rigid
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alignment with training meshes and the creation of an aperture for the mouth.
From Fig. 5 it is evident that ScanTalk exhibits a remarkable capacity for gen-
eralization, enabling animation of any 3D face once aligned with the training
set and provided with a mouth aperture. Notably, ScanTalk demonstrates ef-
fectiveness in animating diverse 3D face meshes, including non-human variants.
Such versatility holds significant promise for applications spanning video game
development and virtual reality animation.

Fig. 5: Additional experiments with different unseen meshes.

F Implementation details

Our ScanTalk model, as described in Section 3 of the main paper, is constructed
as follows: the DiffusionNet Encoder comprises 4 DiffusionNet blocks, each with
a hidden size (h) of 32. The Bi-LSTM consists of 3 layers with a hidden size
of 32. The DiffusionNet Decoder accepts as input the concatenation of features
of dimension 64 and outputs the per-vertex deformation of the neutral face.
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The DiffusionNet Decoder is composed of 4 DiffusionNet blocks concatenated
together.
All the ScanTalk versions presented in the main paper are trained for 200 epochs
over each dataset using the Adam optimizer [2], with a learning rate of 10−4.

G ScanTalk Limitations

While ScanTalk exhibits commendable performance in lip motion synthesis, we
refrained from incorporating expressions due to the persistently limited availabil-
ity of such data. Exploring how a similar framework to ScanTalk would handle
these additional modalities could be an engaging avenue for future research. Al-
though ScanTalk can animate unregistered meshes, its current training process
necessitates meshes with a common topology within each sequence. To over-
come this limitation, a fully unsupervised training strategy with a loss function
that does not rely on point-wise correspondence, yet captures small geometric
displacements, could be a promising direction for further exploration.

H User Study Interface

In Fig. 6, we depict the interface presented to users during our User Study
detailed in Section 4.6 of the main paper. On the left, the interface for Test 1, an
A/B test, is displayed, while the interface for Test 2 is showcased on the right.

Fig. 6: Examples of questions asked during the user study. (Left) Test 1, an A/B test
to compare ScanTalk against state-of-the-art models. (Right) Test 2, we asked the users
to evaluate the credibility of scan animations generated by ScanTalk.
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