
Supplementary Material

1 Implicit Decoder Architecture

We use the convolutional decoder network as proposed by Bemana et al. [1, 5]
to output a full resolution 2D map corresponding to the camera index. The nor-
malized scalar input index is concatenated to the coordconv [3] layer in the first
layer of the decoder. This is followed by a series of convolutional and upsampling
layers (bi-linear interpolation) until the desired output resolution is reached. The
number of parameters is controlled using a scalar capacity factor that is multi-
plied to a preset of each layer, e.g., [2c, 4c, 8c] where c is the capacity factor.
We use capacity factor [10, 15, 18] for the depth decoder corresponding to 2, 3
and 4 inputs, respectively. Similarly, we use [6, 10, 12] for the opacity decoder.

2 3D Inpainting

Since we constrain the movement of Gaussians, our approach, unlike existing
methods, does not hallucinate details in the occluded areas. This is a unique
advantage as it allows us to inpaint these regions using state-of-the-art methods.
To do so, we begin by rendering a novel view with holes and alpha mask. We
use stable diffusion inpainting [7] to generate the missing texture in the masked
regions. Then, we estimate the monocular depth on the inpainted image. Next,
we use the gradient of this depth to fill in rendered depth in the masked regions
using poisson blending [6]. We then project Gaussians to the scene using the
inpainted depth and image. We repeat this process sequentially for a few novel
views. Once this process is done, the inpainted scene is 3D consistent and can
be rendered from any novel view without holes. We show additional inpainting
results in Fig. 1.

3 Comparison against DNGaussian

We compare our approach against a recent state-of-the-art sparse view synthe-
sis approach by Li et al. [2] which also utilizes the 3D Gaussian representation.
We use the author provided results for both qualitative (Fig. 2) and quanti-
tative (Table 1) comparisons on the 3-input LLFF [4] dataset. We outperform
DNGaussian both visually and numerically since DNGaussian generates blurry
texture with distracting artifacts.

4 Additional Ablation Results

To improve the effectiveness of decoder, we estimate a multi-channel depth offset
by utilizing a multi-channel depth-based segmentation mask. Table. 2 shows the
effectiveness of this multi-channel approach.
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Fig. 1: 3D consistent scene inpainting results.
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Fig. 2: LLFF 3 input. We show comparisons against DNGaussian [2].

5 Additional Qualitative Results

We provide additional qualitative results for 2 and 4 input configurations on the
LLFF [4] and NVS-RGBD [9] datasets.

LLFF Dataset As shown in Fig. 3, our method produces significantly bet-
ter texture and geometry compared to other approaches on the LLFF dataset
with 2 inputs. For the Orchids scene, all the NeRF-based approaches fail to han-
dle the complex jumble of leaves behind the flower, producing glaring artifacts.
Our approach is able to capture the intricate geometry and details. The other
scene, Trex, contains a lot of thin details as highlighted by the insets. NeRF-
based approaches fail to capture the thin details and produce blurry texture on
the trex bones. Our approach is able to reconstruct details while providing a
smooth geometry. We show the 4 input results in Fig. 5. SparseNeRF [9] and
FlipNeRF [8] produce noisy texture for the Fern scene, while FreeNeRF [10] pro-
duces over-blurred results. Our approach produces texture much closer to ground
truth in comparison without noise or blurriness. NeRF-based approaches strug-
gle to handle regions that contain relatively sparse supervision (e.g., regions
visible in 1 or 2 views out of 4). This is highlighted in the Flower scene. As
shown, NeRF-based approaches produce ghosted artifacts while our method is
able to generate a coherent geometry and thus high quality details.

NVS-RGBD Dataset NVS-RGBD is a sparse input dataset with 2 and
3 views. We show the 2 input results in Fig. 4. On the Plant scene, the input
views have a large angular difference in pose. NeRF-based approaches overfit to
the training views and produce geometry and texture with significant artifacts.
Our method is able to reconstruct a coherent geometry and high-quality texture
in comparison. For the Basketball scene, SparseNeRF and FlipNeRF generate
significant artifacts on the shoes while FreeNeRF is unable to capture texture
details. Our approach produces details closer to ground truth without any no-



Table 1: Numerical comparisons with DNGaussian [2] on the LLFF dataset with 3
views.

Method PSNR SSIM LPIPS

DNGaussian 19.55 0.647 0.264
Ours 20.33 0.725 0.180

Table 2: Numerical comparisons to highlight the effect of #channels in the segmen-
tation mask.

Method PSNR SSIM LPIPS

Ours w/o mask 19.70 0.673 0.214
Ours w/ 3ch mask 19.86 0.704 0.198
Ours w/ 5ch mask 20.33 0.725 0.180
Ours w/ 7ch mask 20.13 0.713 0.187
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Fig. 3: LLFF 2 input. We show comparisons against other sparse-view NeRF-based
approaches, SparseNeRF [9], FlipNeRF [8] and FreeNeRF [10].

ticeable artifacts. The differences are more prominent in the video comparisons
provided in supplementary video.
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Fig. 4: NVS-RGBD 2 input (iPhone on the top and ZED 2 on the bottom).
We show comparisons against other sparse-view NeRF-based approaches.
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Fig. 5: LLFF 4 input. We show comparisons against other sparse-view NeRF-based
approaches, SparseNeRF [9], FlipNeRF [8] and FreeNeRF [10].
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