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A Details of Vision Transformer Pruning

Vision transformers, in contrast to Convolutional Neural Networks, encompass
a more diverse composition of substructures within their network architecture.
This section presents a detailed case study on vision transformers, elucidating
the isomorphic pruning process. As depicted in Figure 1, a fundamental block of
vision transformers, as described in [2], comprises a multi-head attention layer
and a Multi-Layer Perceptron (MLP) layer. We annotate the dimensions of inter-
mediate features and demarcate their isomorphic groups using different colors.
Owing to their heterogeneous composition, vision transformers naturally form
several groups:

The Embedding Group: This group encompasses parameters responsible for gen-
erating intermediate features between modules, of witch the dimension is marked
as E. In the ViT-Base model, as specified in [2], the embedding size is typically
768. The presence of residual connections mandates uniformity in embedding
sizes across different blocks, necessitating simultaneous pruning. Consequently,
the embedding group in a ViT-Base model comprises E = 768 substructures.

The MLP Group: A vision transformer includes several MLP layers, each with an
identical structure. This group maps N ×E embeddings to N ×M intermediate
results before transforming them back into E-dimensional features. Dimension
M is pruned within this group to effectively reduce the model size.

Head Dimension Group: Central to the vision transformer is the self-attention
module, which aggregates information across tokens. A typical self-attention
module maps embeddings to Query, Key, and Value, with the dimension such as
N ×H ×Q for the Query. The dimensions of Q and K must be identical, while
the dimension of V can be set variably. However, many implementations, such as
Pytorch-Image-Models [10], require identical QKV dimensions. Therefore, this
work prunes Q, K, and V concurrently. Additionally, the input dimension of the
subsequent projection layer is adjusted accordingly.
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Fig. 1: The isomorphic groups in a vision transformer block. There are three groups
for width pruning, which reduces the dimensions of embedding, MLP and attention.
One special group works in the head level, which removes entire heads for acceleration.
The shapes of intermediate features are hightlighted.

Head Group: In addition to the aforementioned groups for width pruning, the
pruning of the attention head is also considered for further acceleration. This
involves compressing the H dimension as shown in Figure 1.

The above analysis of substructures within vision transformers presents 4
unique isomorphic groups, associated with the dimensions E,QKV,H, and M ,
in which all elements have the same architecture and computational topology.
In isomorphic pruning, ranking is applied within each isomorphic group for a
reliable comparison. For vision transformers, the above analysis is feasible since
all sub-structures are aligned with the modular design. However, for CNNs like
ConvNext, ResNet, the substructures can be more complicated. Thus, our imple-
mentation automate the identification of substructures with dependency analy-
sis [1, 3, 5] as discussed in the main paper.

Pruning Ratios for Each Isomorphic Group: The established grouping facilitates
the allocation of different pruning ratios to different isomorphic groups. In our
experiments, we employed the pruning ratios detailed in Table 5 to accelerate
transformer models. For the DeiT-S and DeiT-T models, we keep the number of
heads and embedding dimensions after pruning the same as the official models
[9], while modifying the head dimensions to achieve further model compression.
DeiT-2.6G uses scaled pruning ratios based on the DeiT-S configurations.
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Architecture Base Model Emb% Head% Dim%

DeiT-S DeiT-B 50% 50% 25%
DeiT-2.6G DeiT-B 60% 60% 30%
DeiT-T DeiT-S 50% 50% 10%
DeiT-0.6G DeiT-T 25% 30% 30%

Table 1: The target architecture and corresponding configurations for pruning. Specif-
ically, “Emb”, “Head”, and “Dim” refer to the pruning ratios for the number of heads,
the size of embeddings, and the size of head dimensions.
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Fig. 2: The number of pruning functions in each isomorphic group. The types of prun-
ing functions are highlighted with different colors. In isomorphic pruning, we perform
ranking and pruning within each isomorphic group separately.

Swin Transformers Our method can be directly applied to Swin Transformers [6],
which introduces local attention for better performance. We prune the Swin-Base
to obtain 6G and 4.5G models and compare them to several baselines such as
WDPruning [13], NViT-H [12] and X-Pruner [14]. The proposed method achieves
better results compared to existing methods and pre-trained baselines.

B Details of CNN Pruning

This section elaborates on the pruning strategies applied to ConvNext, ResNet,
and MobileNet-v2 networks. Compared to Transformers, Convolutional Neural
Networks used in our experiments are more irregular, with intricated internal
connections. We model the substructures are modeled as graphs, which facilitates
automation of the pruning process, thereby obviating the need for cumbersome
manual analysis. Figure 2 visually illustrates the statistics of the detected iso-
morphic groups. In isomorphic pruning, we seperately eliminate parameters from
each distinct group. These groups encompass multiple sub-structures, varying in
the number of layers. As elucidated in the main paper, each layer can be subject
to two types of pruning functions. Assessing the relative significance of these
substructures presents a challenge. Figure 2 illustrates the number of different
pruning functions across various isomorphic groups. The x-axis represents the
group ID, denoting isomorphic groups with identical graph structures. The y-axis
quantifies the total number of pruning functions for each group, corresponding
to the number of total nodes in the graph modeling. Different pruning functions
are colored for better illustration. For instance, pruning functions targeting the
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Method #Params (M) MACs (G) Acc (%)

Swin-B† 87.77 15.48 83.42

Swin-T† 28.29 4.51 81.19
Swin-T (Ours) 24.66 4.47 81.32
X-Pruner [14] N/A 3.20 80.70

Table 2: Pruning results for Swin Transformers pre-trained on ImageNet-1K.

Training Configs DeiT ConvNext ResNet-50 MobileNet-v2 Swin

optimizer AdamW AdamW SGD SGD AdamW
base learning rate 0.0005 0.001 0.08 0.036 0.0005
weight decay 0.05 0.05 1e-4 4e-5 0.05
optimizer momentum (0.9, 0.999) (0.9, 0.999) 0.9 0.9 (0.9, 0.999)
batch size 2048 1024 1024 4096 2048
training epochs 300 300 100 300 300
learning rate schedule cosine cosine 30,60,90 cosine cosine
warmup epochs 0 0 0 0 0
layer-wise lr decay 0 0 0 0 0
randaugment ✓ ✓ None None ✓
mixup 0.2 0.2 None None 0.2
cutmix 1.0 1.0 None None 1.0
random erasing 0.25 0.25 None None 0.25
label smoothing 0.1 0.1 None None 0.1
stochastic depth 0 0.1 (S) / 0.4 (T) None None 0.1
layer scale None None None None None
gradient clip 5 None None None 5
exp. mov. avg. (EMA) None 0.9999 None None None

Table 3: Pruning Plain Vision Transformers. All pruned models are only fine-tuned
on ImageNet-1K.

input and output dimensions of a linear layer are distinguished by unique colors,
since the pruning is performed on different dimensions.

Observations in Figure 2 reveal significant variability in the composition of
each isomorphic group, potentially leading to unreliable rankings if a straight-
forward global pruning approach is employed. Additionally, the varying sizes
of the isomorphic groups suggest that independent pruning within each group
achieves a more balanced acceleration across different substructures, akin to local
pruning. This approach also retains the flexibility to dynamically adjust pruning
ratios for different layers.

C Experimental Details

Training. This section further details the training process and hyper-parameters
in our experiments. We report the training configurations including optimizer,
learning rate, and augmentation in Table 3. All models are fine-tuned with 8 RTX
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A5000 GPUs, with Automatic Mixed Precision implemented by PyTorch [7]. For
DeiT and ConvNext, we use strong augmentations as mentioned in the original
paper [9, 11], but did not deploy warmup, layer-wise lr decay and layer scale
for training. ResNet and MobileNet-v2 were trained with weak augmentation
described in [4, 8].

Latency Test For the Latency test on GPU, we forward the model a batch size
of 256 for 20-step warmup and 100-step experiments. We report the average
execution time of the 100 rounds. For CPU test, we deploy a batch size of 8 and
follow the same principle as GPU testing.

D Limitations

In this study, we empirically examine the impact of isomorphic sub-structures on
pruning. Structural similarity might not be the sole determinant of importance
distribution. Factors such as the training methodology, regularization techniques,
and network depth can also play significant roles in shaping different distribu-
tions. While our experiments demonstrate the effectiveness of isomorphic prun-
ing, further investigation in the future into these additional factors is necessary
for a more comprehensive framework.
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