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Abstract. This paper presents a novel optimization-based method for
non-line-of-sight (NLOS) imaging that aims to reconstruct hidden scenes
under general setups with significantly reduced reconstruction time. In
NLOS imaging, the visible surfaces of the target objects are notably
sparse. To mitigate unnecessary computations arising from empty re-
gions, we design our method to render the transients through partial
propagations from a continuously sampled set of points from the hidden
space. Our method is capable of accurately and efficiently modeling the
view-dependent reflectance using surface normals, which enables us to
obtain surface geometry as well as albedo. In this pipeline, we propose a
novel domain reduction strategy to eliminate superfluous computations
in empty regions. During the optimization process, our domain reduc-
tion procedure periodically prunes the empty regions from our sampling
domain in a coarse-to-fine manner, leading to substantial improvement
in efficiency. We demonstrate the effectiveness of our method in various
NLOS scenarios with sparse scanning patterns. Experiments conducted
on both synthetic and real-world data support the efficacy in general
NLOS scenarios, and the improved efficiency of our method compared
to the previous optimization-based solutions. Our code is available at
https://github.com/hyunbo9/domain-reduction-strategy.
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1 Introduction

The ability to see objects placed over the direct line-of-sight has the potential
to advance various applications, e.g ., autonomous driving, medical care, and
rescue operations. Non-line-of-sight (NLOS) imaging aims to reconstruct hidden
scenes from measurements of indirect reflections. These transient measurements
are commonly obtained via “looking around the corner”, where a light source
and a time-of-flight sensor illuminate and scan the relay wall (see Fig. 1 (a)).

Recent advancements in NLOS imaging have been achieved by FFT-based
inverse solutions, including 3D convolution-based methods [1,32,50], and wave-
based methods [22, 25]. Despite promising results, one or more assumptions are
made to model the exact solutions, e.g ., planar relay walls or certain scanning
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Fig. 1: (a) A common NLOS scanning system. A laser and a time-resolved sensor
illuminate and scan the relay wall. (b) Our method reconstructs both albedo and
surface normal of the hidden objects in general scenarios, including non-confocal, non-
planar relay walls and sparse sampling. (c) Our domain reduction gradually prunes
empty regions in a coarse-to-fine manner, achieving significant efficiency improvement.

systems. These methods also necessitate a dense scanning procedure to recon-
struct high-resolution outputs, which is too time-consuming for practical uses.

Considering the practical applications of NLOS imaging, there are numerous
scenarios where the exact solutions are not sufficient to meet the demands. In
such scenarios, an ideal relay wall may not be available, and dense scanning of
the relay wall becomes impractical. There is also a need to reconstruct precise
surface geometry. These scenarios give rise to the need for solutions capable of
solving NLOS imaging under broader settings. Several works have attempted to
meet this demand with optimization-based NLOS methods [13,33,39,43]. Albeit
versatile, they require substantial computational resources per iteration, with a
significant portion dedicated to the unoccupied regions of the hidden scenes.

In this paper, we present a novel optimization-based method that inherits
the versatility of previous optimization-based solutions while simultaneously en-
hancing efficiency. In NLOS imaging scenarios, the visible surfaces of the target
objects are notably sparse, occupying less than 5% regions of the entire hidden
space. Since the empty regions do not actually contribute to both transients and
the target volumes, we aim to exclude these unnecessary computations.

Pruning the empty regions requires processing varying size inputs. Therefore,
we tailor our method to render the transients by partially propagating the light
returning from a set of an arbitrary number of points. We begin by modeling the
transients as a superposition of point-wise light propagation functions. Given a
set of points sampled from the hidden space, light propagation of each point
is computed using its albedo and surface normal. The predicted transients are
obtained by a linear combination of the computed propagations, optimized to
reconstruct the target volumes through inverse rendering. Our pipeline is ac-
curately and efficiently implemented through a matrix-free CUDA kernel. This
facilitates our method to accurately model both surface geometry and albedo,
without being constrained to specific types of relay walls and scanning systems.

Once we model the transients as a superposition of point-wise propagations,
superfluous computations for the empty regions can be easily removed. Here, we
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propose a novel domain reduction strategy to eliminate such unnecessary compu-
tations, resulting in a notable improvement in the efficiency of the optimization
process. During the optimization process, our domain reduction strategy period-
ically identifies regions of which albedo becomes lower than a certain threshold
and prunes these empty regions from our sampling domain. Sampling a set of
points only from the active regions effectively boosts the efficiency of our method,
achieving about 20× acceleration of the reconstruction time. This domain reduc-
tion procedure is conducted in a coarse-to-fine manner, enabling our method to
reconstruct high-resolution output volumes with a single commercial GPU.

We demonstrate the validity of our method in various NLOS scenarios, in-
cluding a non-planar relay wall, sparse scanning patterns, confocal and non-
confocal, and surface geometry reconstruction (Fig. 1 (b)). Our experimental
results from both synthetic and real-world inputs confirm that our method can
efficiently reconstruct hidden objects with fine details across various scenarios.
Notably, our method is capable of producing 128×128 outputs in under a minute.

2 Related Work

NLOS imaging. NLOS imaging was first introduced by Kirmani et al . [19],
and experimentally validated in [44] by using a femtosecond laser and a streak
camera. Various methods have been developed for NLOS imaging, which can be
broadly divided into two parts: active [8, 15, 17, 22, 32, 42, 45, 47, 52] and passive
methods [4–6,36,37,41,49]. Passive methods rely on indirect light under various
setups, e.g ., using videos of a blank wall [38], a large transmissive window [40],
or recovering videos projected in a hidden scene [2]. On the other hand, active
NLOS methods utilize controllable a light source and a time-of-flight detector,
usually producing higher-quality results with the use of more abundant informa-
tion. In the active NLOS setup, the pulsed laser emits photons to the visible wall
and measures the amount of returning photons to reveal the shape of the hidden
object. The active NLOS imaging methods has been rapidly enhanced with var-
ious input sources, such as acoustic waves [21], and diverse types outputs, e.g .,
albedo [1, 32], normal [11,50], surface [43], and depth [9].
Inverse NLOS methods. Significant development has been recently made in
NLOS imaging through various inverse solutions. By assuming isotropic light
scatters and a planar relay wall, LCT [32] demonstrates that the NLOS imaging
problem can be interpreted as a 3D deconvolution problem under the confocal
setup. Their main concept is further extended by DLCT [50], which uses a vector
deconvolution to obtain both the surface normal and albedo. Lindell et al . [22]
present a wave-based solution named f-k migration. Phasor field methods [25,26]
formulate the NLOS imaging problem as a diffractive wave propagation and
utilize the Rayleigh-Sommerfeld integral. Despite impressive results, they require
several assumptions, e.g . planar relay wall, specific (e.g ., confocal) scanning
system and exhaustive raster scanning for high-resolution outputs. In addition,
methods except DLCT [50] can only reconstruct the albedo of hidden scenes.
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Although such constraints allow faster computations, general applicability and
accurate surface modeling are sacrificed in most inverse NLOS methods.
NLOS methods for general setups. A number of studies have explored
NLOS imaging algorithms that can be applied in various environments, e.g .
diverse acquisition patterns and geometry [12, 16, 27, 35, 48], and imaging over
long ranges [46]. Several works utilize additional hardware for various purposes,
such as SPAD arrays for faster scanning [30,31,33], which are often expensive for
real-world applications, and new hardware designs for dynamic relay walls [20].
Back-projection (BP) solvers [1, 3, 44] are one of the commonly used techniques
for general NLOS imaging. Iterative optimization-based methods [14,34,43] could
be effective solutions for NLOS imaging in challenging real-world scenarios. Ahn
et al . [1] propose the iterative approach that can operate without being bound
to a certain scan system and the lateral resolution of the transients. Heide et
al . [13] propose a volumetric-based optimization method that can handle par-
tial occlusion and surface normal. The optimization-based method using a point
spread function [33] was also proposed. Tsai et al . [43] propose the surface op-
timization method that can reconstruct the continuous surfaces of the hidden
scenes, of which results are sensitive to the initial state. NeTF [39] proposes neu-
ral representations similar to NeRF [29] for NLOS imaging. Importantly, most of
them suffer from huge computational costs of the optimization, usually O(N5) or
O(N6) per iteration. This paper aims to inherit the general applicability of the
optimization-based methods and to address expensive computation overheads of
the optimization by identifying and pruning unnecessary computations.

3 Method

3.1 NLOS Measurement Model

We begin by formulating the transient imaging model for an arbitrary measure-
ment environment. In the active NLOS methods, a time-resolved sensor measures
returning photons after light pulse is emitted onto a relay wall. Let p be a point
in the hidden volumes which follows Lambert’s cosine law. We assume no inter-
actions between the surfaces, including inter-reflections and self-occlusion. The
measured transients can be formulated as

τ(t, l, s) =

∫
p∈Ω

ρ(p) · Φp(l,n(p)) · Υp(l, s) · δ(dl + ds − tc) dp,

Φp(l,n(p)) = ⟨ l− p

||l− p||
,n(p)⟩, Υp(l, s) =

1

d2l
· 1

d2s
,

(1)

where l and s denote the laser and scan point at the relay wall, and ρ(p) and
n(p) are the albedo and the surface normal of point p in the hidden space Ω.
Φp(l,n) models the view-dependent cosine term according to Lambert’s cosine
law. Υp(l, s) models the distance fall-off, where dl, ds are the distances from
the hidden scene to the laser and the scan point respectively. The Dirac delta
δ(·) relates time to the light travel distance, c is the speed of light and t is
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Fig. 2: (a) The overview of our reconstruction scheme. We divide hidden space to a
grid shape and assign albedo ρ and surface normal n for each vertex. Input points
are randomly sampled from the hidden space. Then the light propagation from each
point Gp is computed, of which superposition is used as predicted transients. The vari-
ables are optimized by minimizing the L2 distance. Our domain is gradually reduced
by pruning the empty regions during the optimization. (b) The computation of light
propagation function from each point p. The arrival time at scan point s is first iden-
tified, and then the fall-off terms Φp and Υp are computed using p, l, s and n(p).

the arrival time of photons. Note that our formation model is defined without
assumptions on relay walls and scanning systems. By additionally assuming a
confocal scanning system and a planar relay wall, our formation model becomes
equivalent to the formation model of DLCT [50].

Since each point p in Ω independently contributes to the transients in our
formation model, we can represent the transients as a superposition of functions
that models the light propagation from each p. To decompose the transients into
a set of point-wise propagation functions, we first model the light propagation
function for given p:

gp(t, l, s) = Φp(l,n(p)) · Υp(l, s) · δ(dl + ds − tc). (2)

The propagation function gp determines the arrival time, distance fall-off and
cosine factor according to l and s. It can be interpreted as a tailored point spread
function that depends on p, l, s and the surface normal n(p) at p. With the
above equation, the entire transients can be expressed as

τ =

∫
p∈Ω

ρ(p) · gp dp. (3)

Each ρ(p) ·gp represents 3D sub-signals containing all measured photons return-
ing from point p. Our goal becomes revealing ρ and n to p that correspond to
each decomposed function, without posing constraints on l, s and without losing
accurate modeling of light propagation.
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3.2 Reconstruction Scheme

By ignoring Φ and Υ , the above equation can be addressed using an elliptical
Radon transform [24]. It would enable easier approaches to find the inverse, but
the accurate modeling would also be sacrificed. Therefore, we aim to reconstruct
ρ and n of the hidden volumes through the optimization. Instead of using a
discretized matrix with a fixed size, we leverage a set of an arbitrary number of
points as inputs, which are continuously sampled from the hidden space.

Fig. 2 (a) illustrates the overview of our proposed reconstruction scheme.
We first divide the hidden space into a grid and assign 4-dimensional variables,
albedo ρ and normal n to each vertex of the grid. In each optimization step,
input points are sampled from the hidden space. Then the light propagation of
each point is computed, which are composed to obtain the transient predictions.
The 4-dimensional variables are optimized using gradient descent by minimizing
the difference between the rendered and the ground truth measurements. We
illustrate details of our optimization scheme in the following paragraphs.
Input points sampling. Instead of using fixed points as inputs, we randomly
sample a set of continuous points, from the hidden space at every step. We utilize
a grid-based random sampling technique to obtain a spatially balanced points
set. We sample one point from each cell of the 3D voxel grid, resulting in the
set of points H. The albedo and normal at each point are determined by the
trilinear interpolation of the surrounding 8 vertices. The normals are converted
to unit vectors after the interpolation.
Light propagation and superposition. To synthesize the transients with a
sampled points set H, we discretize the transients in Equation (3) to a finite
linear combination of {Gp}, where Gp can be expressed as

Gp = Φp · Υp · 1A,
A = {(t, l, s) | dl + ds = tc}.

(4)

To compute Gp, we first identify the non-zero histograms of each scan point
s with given l and s, by computing t that satisfies the indicate function 1A.
The contribution at the corresponding location is then determined by Φp and
Υp, which are calculated as in Fig. 2 (b). Computations of light propagation are
done in parallel for all points in H, and thus can be accelerated by GPU. Finally,
we compute the predicted transients with a linear summation:

T =
∑
p∈H

ρ(p) ·Gp ·∆V, (5)

where ∆V is volume of a grid bin. We update ρ and n using the gradient descent,
by minimizing the L2 distance between rendered and ground truth transients.
Noise regularization. The sensor noise present in NLOS imaging could ad-
versely affect to our optimization process. To mitigate this issue, we utilize L1
regularization to the albedo to encourage sparsity, and jointly optimize additional
noise parameters d(t, l, s) to cover the effects of the background noise, includ-
ing both ambient light and dark counts. Specifically, these learnable parameters
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are defined and assigned for each transient histogram τ(t, l, s). To constrain the
range of these parameters, and thereby prevent them from covering too much
intensities of the rendered transients, we model the noise parameters d(t, l, s) as

d(t, l, s) = b+ λσ(z(t, l, s)), (6)

where b is the base noise level controlling the minimum values of the noise
parameters, σ denotes the sigmoid activation function, and z is the learnable
parameters that are jointly optimized throughout the optimization process. λ is
the hyperparameter controlling the maximum values of d(t, l, s). These simple
techniques greatly improves robustness of our method to the noise.

3.3 Domain Reduction Strategy

One crucial observation is that most of the hidden volumes to reconstruct is
empty in the NLOS imaging scenarios, since photons are only reflected from the
visible surfaces of the objects. These empty regions do not actually affect either
the measured transients or the reconstruction volumes. By taking the advantages
of this sparsity nature, most of the computations in synthesizing transients can
be eliminated, as our reconstruction pipeline is capable of computing transients
with an arbitrary number of points. The synthesized transients in Equation (5)
can be divided as

T =
∑
p∈Ω1

ρ(p) ·Gp ·∆V +
∑
p∈Ω2

ρ(p) ·Gp ·∆V,

Ω1 = { p ∈ Ω′| ρ(p) > ϵ }, Ω2 = Ω′ \Ω1,

(7)

where Ω′ ⊂ Ω is a set of points that corresponds to the vertices in the grids. Since
the values in the summation are always positive, we can ignore the operations
of the second term if ϵ is a sufficiently small value (||ρ(p) · Gp||∞ → 0 as ϵ → 0
∀p ∈ Ω2). Hence, we can exclude Ω2 from our domain and eliminate unnecessary
computations on Ω2. This domain reduction procedure is periodically conducted
during the optimization, significantly accelerating the efficiency of our method.
Soft domain reduction. We observed that the albedo ρ often takes on incorrect
values during the optimization, which can result in the accidental removal of non-
empty regions from the domain. To this end, we propose a soft domain reduction
strategy that gently reduces the domain with a low-pass filter. Specifically, we
apply a Gaussian kernel to the albedo volumes and then we exclude the grid bins
with values smaller than a certain threshold from the domain. This soft domain
reduction expands the domain to the surrounding areas and provides additional
chances to be optimized for the accidentally removed regions.
Coarse to fine strategy. Predicting transients with a large number of sam-
pled points is computationally exhaustive, while the coarse shapes of the hidden
objects can be sufficiently discovered with coarsely sampled input points. There-
fore, we initialize the hidden space with a coarse grid and gradually increase
the resolution to progressively reconstruct fine details. After sufficiently reduc-
ing the domain, we expand the grid to a higher resolution. The grid bins within
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Algorithm 1 Reconstruction Algorithm.
1: Ω′ ← Set of points of grid vertices of hidden scene
2: for step← 1, 2, ..., N do
3: S ← Set of variables ρ and n on Ω′

4: H ← Set of points, one for each bin on Ω′

5: T ← Linear combination of {Gp}p∈H ▷ Equation (5)
6: T ← T+ Synthesized noise ▷ Equation (6)
7: Update ρ,n ∈ S by minimizing ∥T − τgt∥2
8: if step ∈ reduction_step then
9: ρlow ← Low-pass filter(ρ)

10: Ω′ ← Domain reduction(Ω′, ρlow) ▷ Equation (7)
11: end if
12: if step ∈ expansion_step then
13: Ω′ ← Dividing Ω′ into a fine grid
14: S ← Trilinear interpolation(S)
15: end if
16: end for
17: return ρ,n

the active regions are subdivided into smaller bins, and variables of the divided
bins are assigned values obtained with trilinear interpolation of previous coarse
grids. Reconstructing in a coarse-to-fine fashion, which shares similar philosophy
with various studies in 3D computer vision [23, 28, 39, 51], enables our method
to efficiently reconstruct high-resolution outputs with fine details.
Overall algorithm. Equipped with the above equations and techniques, our
method can be described as in Algorithm. 1. The optimization process fully
exploits the parallel nature of our formulations with GPU implementations.

4 Experiments

We demonstrate the effectiveness of our method through the extensive experi-
ments. We compare the results on transients having 32×32 scannings, with both
confocal and non-confocal scanning systems, and with a non-planar relay wall.
Baselines. We compare our method with several state-of-the-art baselines: FK
[22], DLCT [50], Phasor field [26] with a BP solver (without FFT), Gram [1],
and NeTF [39]. We apply maximum intensity projection through the z axis for
all methods. For the results of DLCT, we follow the authors and report the
z-directional albedo. We provide results of more baselines in Supplement.
Dataset. We validate the results on the ZNLOS [10] dataset and the Stanford
real-world measurements [22]. ZNLOS consists of a number of synthetic tran-
sients, simulated with a 1 m× 1 m relay wall and hidden objects placed approx-
imately 0.5 m from the relay wall. The temporal resolution of bins corresponds
to the light travel time of 0.3 cm. The Stanford real-world measurements [22]
are obtained with a 2 m × 2 m relay wall (1m × 1 m for a non-planar case)
and a bin resolution 32 ps. The raw 512 × 512 measurements are first spatially
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Fig. 3: Reconstructed albedo on the transients with a confocal 32 × 32 scan system
and a planar relay wall. Our method achieves the highest reconstruction quality.

downsampled by 2, which results in 256× 256 transients. We adopt Bunny and
Serapis instances from ZNLOS dataset, and Statue, Dragon, NT instances from
the Stanford dataset. The NT instance is used for the non-planar evaluation.
Implementation detail. Our method is implemented using PyTorch, and the
light propagation function is implemented using the PyTorch CUDA extension.
We optimize the variables using the Adam optimizer [18] with learning rate 1
and total 1000 steps. We set the reduction threshold as 5% (3% for non-confocal)
of the maximum albedo value. The domain reduction step is performed at every
50 steps. We refer to Supplement for more implementation details.
Sparse scanning. It is worth mentioning that most previous studies [22,26,32,
50] have reported results on high-resolution transients obtained by dense scan-
ning. Such exhaustive procedures require much longer scanning time, which is
often difficult in several real-world scenarios. To demonstrate the applicability of
our method in such scenarios, we compare the results on 32× 32 sparsely sam-
pled transients. These sparsely sampled measurements are obtained by taking
the subset of the measurements with appropriate spatial strides.

4.1 Confocal NLOS Imaging Result

We first evaluate the performance of our method on sparsely sampled confocal
measurements. As shown in Fig. 3, results of DLCT contain pale artifacts around
the hidden objects, making some objects indistinguishable from these artifacts.
FK [22] often fail to reveal fine details of the objects, e.g . the ear of Bunny and
the head of Dragon. Phasor [26] with a BP solver yields some artifacts and some
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Table 1: Quantitative results of Depth map and Normal map on the ZNLOS Bunny
under confocal setting with threshold values of 5% and 10% of maximum albedo.

Method Depth (5%) Normal (5%) Depth (10%) Normal (10%)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LCT [32] 0.1977 0.2875 - - 0.1048 0.2069 - -
FK [22] 0.0719 0.1871 - - 0.1023 0.2173 - -

Phasor (BP) [26] 0.1348 0.2049 - - 0.1283 0.2068 - -
Phasor (FFT) [25] 0.1300 0.2808 - - 0.0818 0.2095 - -

Gram [1] 0.0913 0.1628 - - 0.0751 0.1827 - -
NeTF [39] 0.0679 0.1748 - - 0.0681 0.1754 - -
DLCT [50] 0.3189 0.4220 0.3796 0.4856 0.1449 0.2729 0.2021 0.3438

Ours 0.0477 0.1523 0.1147 0.2394 0.0493 0.1552 0.1115 0.2341

DLCT DLCT DLCTOurs Ours Ours

Serapis StatueBunny

Fig. 4: Comparison of the reconstructed normal map with DLCT [50] on the transients
with a confocal 32 × 32 scan system and a planar relay wall. Our method accurately
reconstructs surface geometry, whereas DLCT only produces coarse structures.

details are missing. Gram [1] delivers blurry results or fails to capture several
details. NeTF [39] tends to reconstruct the objects with blurry and distorted
albedo. On the other hand, our method successfully reconstructs clean and sharp
results with fine details on both synthetic and real-world transients.
Normal maps. To evaluate the capability of accurately reconstructing surface
geometry, we deliver the reconstructed normal maps in Fig. 4. DLCT is unable
to produce accurate surface geometry on 32×32 transients, indicating the neces-
sity of raster-scanning for the inverse methods. On the other hand, our method
delivers normal maps in high-quality, reconstructing details of the objects, and
achieves significantly reduced scanning time compared to DLCT.
Quantitative results. We also quantitatively evaluate depth maps and normal
maps on 32× 32 transients of Bunny. We upsample the results of all methods to
the resolution 256×256, matching that of the ground truth, with trilinear inter-
polation. We also apply 10% threshold to acquire depth and normal maps. We
measure the mean absolute error (MAE) and root mean squared error (RMSE)
for both depth and surface normals. As reported in Table 1, our method out-
performs all other baselines in both depths and surface geometry, demonstrating
that our method reconstructs accurate geometry as well as visual appearance.

4.2 Various NLOS Imaging Result

Non-planar relay wall result. We conduct the experiments on the real-world
transients captured with a non-planar wall [22], to show that our method can be
applied to arbitrary types of the sampling geometry. Following previous works
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Fig. 5: Results on various setting. (a) Results on the real-world 32 × 32 transients
of the NT instance [22], measured with a non-planar relay wall. (b) Results on non-
confocal ZNLOS Bunny. (c) Results on Bunny with various sampling resolutions. Our
method consistently delivers high-quality results in various scanning scenarios.

[32, 50], we slightly adjust our light propagation model in this experiment to
properly deal with the retro-reflective targets. We compare the results with FBP
[44] and FK [22]. The wave extrapolation technique is applied to report the
results of FK as in their paper. Fig. 5 (a) demonstrates the results of non-planar
relay wall setup. FBP is effective at reconstructing the silhouette, but its results
tend to be noisy and show some distortions. FK [22] recovers the blurry shapes
of the objects with the incorrect albedo values at some regions such as the shape
of N. Our method reconstructs the clean shapes of the objects with more correct
albedo values, showing the extensibility of our method beyond planar relay walls.
Non-confocal NLOS imaging result. We evaluate the performance of our
method with a non-confocal scanning system. We present our results on the
non-confocal 32× 32 transients of Bunny. Methods designed to address the non-
confocal measurements, Phasor [26] and FBP [44] are chosen and compared as
baselines. Fig. 5 (b) reports the qualitative results on the non-confocal Bunny.
FBP reconstructs only some parts of Bunny, in which streak artifacts can be
observed. Phasor field fails to recover some details and yields the coarse and
blurry output. Unlike these baselines, our method delivers much cleaner results
with more detailed shapes, exhibiting general applicability of our method.
Results with various sampling resolutions. We report the results on the
transients by gradually increasing the sampling resolutions by 2, from 16 × 16
to 64 × 64. We compare our results with DLCT [50], which shares most sim-
ilar image formation model with our method and FFT-based method. As in
Fig. 5 (c), our approach delivers plausible results with 16 × 16 samplings and
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Fig. 6: Qualitative and qualitative ablation results. (a) Ablation results on the noise
regularization techniques. ‘L1’ denotes the L1 regularization and ‘Noise.’ denotes op-
timized noise parameters. (b) Ablation results on the reduction. ‘Red.’ denotes the
domain reduction and ‘C2F’ denotes the coarse-to-fine strategy. Both ‘Red.’ and ‘C2F’
do not sacrifice the reconstruction quality. (c) Ablation results on the accurate light
modeling. ‘Dist.’ denotes the distance fall-off term and ‘Cosine.’ denotes the cosine
factor. The upper-right values denote RMSE of the depth maps.

already achieves high-quality outputs with 32 × 32 samplings. On the other
hand, DLCT fails to produce comparable outputs with our method until the
sampling resolution reaches 64 × 64. Interestingly, no meaningful enhancement
is observed by increasing the sampling resolution higher than 32×32, indicating
that sparsely sampled 32×32 scan points are sufficient for our method to achieve
high-resolution results, without requiring exhaustive raster-scanning.

4.3 Analysis and Ablation Study

In this section, we provide deeper insights and analysis of our proposed concepts.
All analysis and ablations are conducted on the confocal 32 × 32 transients of
Bunny, except for the ablation the noise regularization techniques.
Noise regularization. We conduct the ablation on our noise regularization
techniques to assess the robustness of our method in the presence of sensor noise.
Fig. 6 (a) delivers the results on the real-world measurements of Statue and
Dragon. Results of the model without any regularization are severely affected by
the presence of noise (No reg.). Imposing L1 regularization alleviates the effects
of the noise, but we can still observe some noisy artifacts (L1 only). With the
jointly optimized noise parameters, our method achieves clean results with much
reduced artifacts, showing the robustness of our method to the noise.
Domain reduction and runtime analysis. We conduct the ablation on our
domain reduction strategy to discover the efficiency improvement of our method.
We compare three models, which are without domain reduction, domain reduc-
tion without coarse-to-fine strategy, and the proposed method. We report to-
tal runtime and the ratio of remaining active regions at 100, 500, 1000 steps,
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Table 2: Ablation results on the domain
reduction. ‘Red.’ denotes the domain reduc-
tion and ‘C2F’ denotes the coarse-to-fine
strategy. We report elapsed time (seconds)
of the optimization and the ratio of remain-
ing domain in the parentheses at each step.

Red. C2F 100 iter 500 iter 1000 iter

109 s 539 s 1087 s
✓ 67 s (11%) 103 s (4%) 134 s (4%)
✓ ✓ 4 s (15%) 27 s (3%) 54 s (3%)

Table 3: Comparisons of GPU mem-
ory usage (MB) with FFT-based meth-
ods, where N is the hidden volume reso-
lution. Our domain reduction (DR) sig-
nificantly reduces the consumption espe-
cially when the target resolution is high.
We use GPU versions [7] of LCT and FK.

Resolution LCT FK Ours Ours
w/o DR w/ DR

N = 32 1473 1445 1187 1211
N = 128 7101 6813 4065 1659

with the final reconstructed albedo. As shown in Fig. 6 (b) and Table 2, our
model with coarse-to-fine domain reduction achieves substantial efficiency im-
provement, without sacrificing the quality of the outputs. Compared with the
model without reduction strategy, reconstruction time of our method is signif-
icantly reduced. The model without coarse-to-fine strategy suffers from heavy
computations at the early stage, where the empty regions are not sufficiently
pruned yet 100 steps. Thanks to the coarse-to-fine domain reduction strategy,
our method efficiently eliminates most of the unnecessary computations with a
low-resolution grid, achieving more than 20× efficiency improvement as a result.
Accurate light modeling. We discover the effects of accurate light modeling
through the ablation on the cosine factor and the distance fall-off term. We
compare the results of three variants of our method: optimized without both
cosine factor and distance fall-off, model assuming isotropic scatter (no cosine
factor), and model with both terms. As reported in Fig. 6 (c), The results of
both experiments with less accurate modeling are degraded. The model without
both terms shows the worst result, only recovering the silhouette of the bunny.
The model only without cosine term reconstructs almost all details, but still fails
to recover some details (circled parts). These results support that the accurate
modeling of light propagation leads to the improvement.

5 Discussion

Comparison of general applicability. We illustrate the general applicability
of the NLOS imaging algorithms in Table 4. As can be seen, none of the methods
exhibit general applicability as our method except NeTF [39]. The achievable
resolution of all FFT-based inverse methods are bounded to the sampling reso-
lution, which inevitably requires time-consuming scanning procedures. Although
NeTF could operate without being limited to all types of constraints, the training
time of NeTF typically exceeds 2 days, limiting the applicability of this method.
Our method, on the other hand, is capable of reconstruct hidden scenes with-
out being limited to scanning resolution, a planar relay wall, and can accurately
reconstruct surface normals as well as albedo, typically in a minute.
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Table 4: Comparison of the general applicability of various NLOS imaging algorithms.

Method Scan system Sparse scanning Non-planar Surface recon.

LCT [32] Confocal
FK [22] Confocal △

DLCT [50] Confocal ✓
Phasor [26] -
FBP [44] - ✓ ✓
Gram [1] - ✓
NeTF [39] - ✓ ✓

Ours - ✓ ✓ ✓

Comparison with FFT-based methods. The FFT-based methods exhibit
O(N3logN) complexity and faster reconstruction time than our method, where
N is the spatial and temporal resolution. However, exhaustive raster-scanning
procedures required for these methods serve as a major bottleneck, which takes
about 46 minutes to achieve 128 × 128 outputs on the Stanford dataset. While
FFT-based solutions have faster runtime, our optimization-based pipeline can
reconstruct high-quality outputs only using 32×32 samplings, requiring scanning
time less than 3 minutes. Considering both scanning and reconstruction time,
our method can serve as an efficient solution for real-world applications. We
provide more results and discussion on sparse samplings in Supplement.
Reconstruction time and memory usage. The time complexity of our
method O(cM2N3) per iteration, where M is the sampling resolution and c
is the active ratio. Since the ratio of active regions is mostly less than 4%, our
domain reduction reduces overall computations about 20×, achieving reconstruc-
tion time of about a minute. Moreover, as shown in Table 3, our domain reduction
effectively reduces memory consumption, particularly when the target resolution
is high. This enables our method to efficiently reconstruct hidden scenes using a
single commercial GPU, typically requiring less than 2GB memory.
Limitation and future works. While our method presented the robustness to
noise, we expect that such noise can be more effectively addressed. Reconstruct-
ing the objects with self-occlusion is also a worth exploring subject. We also
expect interesting future research for extending the domain reduction to more
complex scenes e.g ., scenes with multiple objects, and analyze its behavior.

6 Conclusion

This paper presented the new optimization-based method that can address var-
ious NLOS imaging scenarios. Thanks to the domain reduction strategy, con-
ducted in a coarse-to-fine manner, our method can efficiently reconstruct hidden
scenes in high-quality, less than a minute, significantly reducing acquisition time.
We expect our method to facilitate broader range of real-world applications.
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