
Improving Unsupervised Domain Adaptation: A
Pseudo-Candidate Set Approach

Aveen Dayal1 , Rishabh Lalla1 , Linga Reddy Cenkeramaddi2 , C Krishna
Mohan1 , Abhinav Kumar1 , and Vineeth N Balasubramanian1

1 Indian Institute of Technology Hyderabad, Hyderabad 502285, India
{ai21resch11003@, rishabh.lalla@cse., ckm@cse., abhinavkumar@ee.,

vineethnb@cse.}iith.ac.in
2 University of Agder, Grimstad 4879, Norway

linga.cenkeramaddi@uia.no

Abstract. Unsupervised domain adaptation (UDA) is a critical chal-
lenge in machine learning, aiming to transfer knowledge from a labeled
source domain to an unlabeled target domain. In this work, we aim to
improve target set accuracy in any existing UDA method by introducing
an approach that utilizes pseudo-candidate sets for labeling the target
data. These pseudo-candidate sets serve as a proxy for the true labels in
the absence of direct supervision. To enhance the accuracy of the target
domain, we propose Unsupervised Domain Adaptation refinement using
Pseudo-Candidate Sets (UDPCS), a method which effectively learns to
disambiguate among classes in the pseudo-candidate set. Our approach is
characterized by two distinct loss functions: one that acts on the pseudo-
candidate set to refine its predictions and another that operates on the
labels outside the pseudo-candidate set. We use a threshold-based strat-
egy to further guide the learning process toward accurate label disam-
biguation. We validate our novel yet simple approach through exten-
sive experiments on three well-known benchmark datasets: Office-Home,
VisDA, and DomainNet. Our experimental results demonstrate the ef-
ficacy of our method in achieving consistent gains on target accuracies
across these datasets.

Keywords: Unsupervised Domain Adaptation · Disambiguation · Pseudo-
Candidate Set

1 Introduction

In recent years, Deep Neural Networks (DNNs) have showcased remarkable
achievements in multiple domains such as robotics [19], medical imaging [37],
agriculture [17], and beyond. However, in the realm of deep learning, domain
shift presents a significant challenge as it occurs when the training set and the
test set exhibit different data distributions, leading to a degradation in model
performance [1, 29]. Unsupervised Domain Adaptation (UDA) has emerged as
a prominent setting to address such challenges. UDA aims to adapt a model
trained on a labeled training set (source domain) to perform well on an unlabeled

https://orcid.org/0000-0001-6792-9170
https://orcid.org/0009-0009-0861-2654
https://orcid.org/0000-0002-1023-2118
https://orcid.org/0000-0002-7316-0836
https://orcid.org/0000-0002-6468-7054
https://orcid.org/0000-0003-2656-0375

2 A. Dayal et al.

test set (target domain) by minimizing the domain discrepancy and leveraging
the intrinsic structure of the target domain [11, 41]. This adaptation is crucial
for deploying deep learning models in dynamic environments where obtaining
labeled data for every possible domain is impractical [6]. For instance, [16] ex-
plains how UDA techniques can be applied to bridge the gap between simulated
and real-world domains, a common challenge in robotics.

To address the UDA problem, two prominent categories of methods have
emerged: adversarial and self-training approaches. Adversarial methods, such
as Domain-Adversarial Neural Networks (DANN) [11], Maximum Classifier Dis-
crepancy (MCD) [36], and Margin Disparity Discrepancy (MDD) [50], focus on
minimizing the domain discrepancy by aligning the feature distributions of the
source and target domains through adversarial training. On the other hand, self-
training techniques, exemplified by works like Cycle Self-Training (CST) [22],
and Minimum Class Confusion (MCC) [15], leverage the model’s predictions on
the target domain to iteratively refine the model, aiming to improve its general-
ization to the target domain. Apart from these, hybrid approaches that integrate
both adversarial and self-training paradigms for effective adaptation across do-
mains have also been proposed [3,24,43]. These approaches have shown promising
results in addressing the challenges of domain shift in UDA.

Despite these existing efforts in the field of UDA, we recognize an opportu-
nity to further enhance performance in the target domain. Inspired by the use
of candidate sets in partial-label learning [10, 40], we present a novel perspec-
tive to address the UDA problem by analyzing the patterns in the predictions
of trained UDA models. As illustrated in Fig. 1, we observe that for multi-
ple target samples, the trained UDA model’s predictions are ambiguous, i.e.,
the model is not very confident about its predictions. Furthermore, we observe
that this ambiguity is not uniformly distributed across all classes; instead, it
is predominantly concentrated in a few closely related classes that exhibit the
highest predicted probabilities, thereby leading to this ambiguity. To tackle this
ambiguity, we introduce a novel technique, Unsupervised Domain Adaptation
refinement using Pseudo-Candidate Sets (UDPCS), which refines the predic-
tions within the target domain. UDPCS starts by creating a pseudo-candidate
set for each target sample, consisting of potential true labels based on the UDA
model’s predictions. Subsequently, inspired by [25], we propose a disambigua-
tion process which is applied to these pseudo-candidate sets. Additionally, our
method extends supervision beyond the pseudo-candidate set, penalizing predic-
tions that stray into other classes. As illustrated in Fig. 1, the proposed UDPCS
method effectively refines the UDA model’s predictions by resolving ambiguity.
It achieves this by identifying the potentially correct label and increasing its
confidence. The efficacy of UDPCS is demonstrated through extensive experi-
ments on various benchmark UDA datasets, showcasing its potential to enhance
target accuracy in UDA models.

The following are the main contributions of this work:(i) We introduce the
concept of a pseudo-candidate set, which is generated from the predictions of the
UDA model. To the best of our knowledge, this work is the first to use the idea

UDPCS 3

of pseudo-candidate set in the UDA setting; (ii) We propose a novel refinement
technique for UDA, UDPCS, by leveraging the identified pseudo-candidate sets;
and (iii) We study the proposed method by conducting extensive experiments
on multiple UDA benchmark datasets, observing consistent performance gains
across various datasets and UDA methods.

bus car horse

aeroplane

bicycleaeroplane

Fig. 1: Comparison of predictions between the trained UDA model (MDD [50]) and
the proposed UDPCS method after refining the trained UDA model on the VisDA
dataset for five target samples.

2 Related Work

This section discusses the earlier literature that was proposed specifically related
to UDA and the disambiguation process inspired by partial-label learning.

UDA aims to perform well on the unlabeled target domain by leveraging the
labeled source data. Inspired by the theoretical analysis [1], learning domain-
invariant features has emerged as a pivotal approach. This concept has given
rise to one of the most prevalent methodologies for addressing UDA challenges:
adversarial methods. Inspired by GAN, the key principle behind adversarial
methods is to minimize the domain shift through a minimax optimization strat-
egy. [11] introduced DANN, a pioneering work that employs a deep learning-
based adversarial approach for UDA using a generator and a domain discrim-
inator. Bi-classifier approaches, as proposed by [36] and [20], propose an ad-
versarial approach involving a single feature extractor and two classifiers. [50]
introduced a novel disparity discrepancy method, Margin Disparity Discrepancy
(MDD), to learn domain invariant features. Various other adversarial methods

4 A. Dayal et al.

include [9,12,14,23,35,44,45]. Another significant avenue in UDA is self-training,
where the model iteratively enhances its predictions to perform effectively on the
target domain. Minimum Class Confusion (MCC), as proposed by [15], intro-
duces a novel loss function that minimizes class confusion, leading to improved
transfer gains. Additionally, Cycle Self-Training (CST), presented in [22], advo-
cates for a cyclic self-training approach that refines target pseudo-labels in two
steps and by leveraging Tsallis entropy as a regularizer. Various other method-
ologies in this category include [5, 26, 38]. Beyond these techniques, alternative
methods such as optimal transport [18, 28, 32], moment matching [2, 21], and
self-supervised techniques [4,48], have been proposed to address UDA challenges.
Notably, recent years have witnessed the emergence of several hybrid approaches,
which typically amalgamate different categories of techniques [3,24,27,33,43,51].
In this work, we introduce a novel perspective for tackling the UDA problem by
analyzing the predictions of any trained UDA model on the target domain. Our
proposed method is designed to iteratively refine the UDA model’s prediction
on the target domain.

Disambiguation is a key aspect of partial label learning (PLL). The PRO-
DEN method [25] is a pivotal work in PLL that employs an iterative strategy for
refining candidate sets, directly targeting label disambiguation. Following PRO-
DEN, recent advancements have continued to refine the disambiguation process
in PLL. LWC [46] introduces a weighted loss function that prioritizes probable
labels within candidate sets, enhancing the disambiguation process. CR [47] in-
troduces consistency regularization in PLL for disambiguating the labels. These
developments highlight the importance of refining disambiguation processes for
accurate learning outcomes. In this work, inspired from [25], we introduce the
concept of pseudo-candidate set and propose a disambiguation process on these
pseudo-candidate sets. Unlike [49], which introduces a hybrid setting between
UDA and PLL, our work focuses on leveraging the concepts from PLL to refine
the predictions on the target domain in UDA.

3 UDPCS: Methodology

Preliminaries. This section describes the basic assumptions and notations for
classification problems in UDA. In a typical UDA framework, three key com-
ponents are involved: a feature extractor (G), a classifier (f), and a domain
adaptive component. The source and target domains are denoted by DS and
DT , respectively. The term D refers to any of these domains when the index
is irrelevant. Throughout this work, the terms ‘domain’ and ‘distribution’ are
used interchangeably. Each such domain D ⊆ X × Y, where X is an input
space and Y is the output (label) space, which is {0, 1} in binary classifica-
tion and {1, · · · , k} in multi-class classification. The term D̂ is used to denote
a set of samples drawn independently from D, i.e. D̂ =

{
(xi, yi)

}n

i=1
where

xi ∈ X and yi ∈ Y, ∀i ∈
{
1, 2, . . . , n

}
. We use (x, y) to refer to a sample

(xi, yi) when the index is irrelevant. We define the model, h(x) = f(G(x)),
where h : X → Rk, with each dimension of the output representing the class

UDPCS 5

probability for each class. We also use Z to refer to the pseudo-candidate set
where Z ⊂ Y.
Methodology. We now present the methodology of our proposed approach,
UDPCS, designed to enhance the accuracy of the target domain by leveraging
pseudo-candidate sets. In the standard UDA setting, we assume that the training
data consists of a labeled source domain, DS , and an unlabeled target domain,
DT . The primary objective of a UDA method is to perform well on unlabeled
target data. This is generally accomplished by employing a classification loss and
an adaptation loss that minimizes the discrepancy between the source and tar-
get features. Over time, various adaptation loss functions have been proposed,
depending on the specific UDA method employed [15,43,50]. Our proposed UD-
PCS method builds upon these standard techniques to further improve UDA
performance with minimal overhead. We now describe our methodology and
then illustrate it with a toy example.

In order to serve as a refinement strategy over any UDA method, we first train
the UDPCS model h(.) using any off-the-shelf UDA algorithm. Once the UDA
training is complete, we employ the trained model h(.) to generate a pseudo-
candidate set for target data, as below.

Z = {j|hj(x) > τ , ∀j ∈ {1, . . . , k}}, τ > 0 (1)

For each input x, Z represents the pseudo-candidate set consisting of class indices
j for which the corresponding class prediction probability, hj(x), exceeds a pre-
defined threshold τ . This approach allows us to include only those classes in the
pseudo-candidate set that have a relatively higher likelihood of being the true
label, as indicated by the model h(.). We further define a non-candidate set as
the complement of the pseudo-candidate set, i.e., all class indices not in Z.

Subsequently, for the refinement of the model’s predictions in the target
domain, our method is trained by utilizing an objective that consists of two loss
functions: candidate loss Lc and non-candidate loss Lnc. These loss functions
are each described below.
Candidate Loss. This loss guides the model h(.) to align its predictions with
the pseudo-candidate set. We introduce a label confidence vector w ∈ Rk, repre-
senting the confidence for all k classes. Each element wj in this vector signifies the
confidence assigned to class j. We ensure that

∑
j∈Z wj = 1 and wj = 0 ∀j /∈ Z,

meaning that the confidence values wj are assigned only to classes present in the
pseudo-candidate set, and set to 0 otherwise. Consequently, w serves as a distri-
bution over the classes in the pseudo-candidate set. The candidate loss applied
to the pseudo-candidate set is then defined as:

Lc =

{
KL(w||h(A1(x)) if max(h(A1(x))) < γ

0 otherwise
, γ < 1 (2)

The candidate loss is applied to samples for which the model’s maximum pre-
dicted class probability falls below a certain threshold γ. Rather than using the
raw input x, we utilize a strongly augmented version, A1(x), as the input. In-
spired by FixMatch [39], for strong augmentations, we leverage Cutout [8] and

6 A. Dayal et al.

RandAugment [7], which produce heavily distorted versions of the given input x.
The rationale behind employing strong augmentation and thresholding is to dif-
ferentiate between samples based on the model’s predictions. For samples where
the model’s prediction is just above the threshold γ, the strong augmentation
is likely to lower the prediction values, thereby including these samples in the
candidate loss Lc. Conversely, for samples where the model’s predictions are
very high, even after strong augmentation, the predictions remain robust and
above the threshold. Consequently, these samples are excluded from the candi-
date loss, ensuring that the loss is primarily applied to samples where the model’s
predictions are less certain. This loss is calculated as the Kullback-Leibler (KL)
divergence between the label confidence vector w and the model’s predictions
h(A1(x)). Thus, in this way, the candidate loss aligns the pseudo-candidate set
distribution and the model’s prediction distribution.
Non-Candidate Loss. This loss is applied to the elements outside the pseudo-
candidate set as:

Lnc = −
∑
j /∈Z

log(1− hj(A2(x))) (3)

The motivation for the non-candidate loss is that it penalizes the model for
assigning high probabilities to classes that are not in the pseudo-candidate set Z.
It is computed as the negative log-likelihood of the complement probabilities for
classes outside Z, using the model’s predictions h(A2(x)) after applying a weak
augmentation A2 to the input x. We use a standard flip-and-shift augmentation
as our weak A2. This loss discourages the model from considering classes outside
the pseudo-candidate set as potential true labels.
Overall Objective. The overall objective function of the proposed UDPCS
model is the sum of the candidate and non-candidate loss terms:,

Loss = Lc + λLnc (4)

where λ is a hyperparameter that balances the contributions of the two loss
functions.
Updating w. As in Eqn. (2), the vector w plays a crucial role in guiding
the model’s predictions. Therefore, updating w after each iteration is essential
for disambiguation of the pseudo-candidate set. We set the label confidence w
initially to 1

|Z| if the class j is in the pseudo-candidate set Z, where |Z| denotes
the cardinality of Z. This ensures that each class in the pseudo-candidate set
receives an equal initial confidence value. The rationale for assigning an equal
initial confidence value to each class in the pseudo-candidate set is to enable the
proposed UDPCS method to disambiguate the correct class from a set of classes
without bias. This scheme is given below:

wj =

{
1
|Z| if j ∈ Z

0 otherwise
, w ∈ Rk and

∑
j∈Z

wk = 1 (5)

UDPCS 7

Algorithm 1 Unsupervised Domain Adaptation refinement using pseudo-candidate
sets (UDPCS)

1: Input: Source domain data DS = {xS
i , yS

i }
nS
i=1, target domain data DT = {xT

j }
nT
j=1, learn-

ing rate η,number of iterations T , refinement iterations Trefine, strong augmentation A1, weak
augmentation A2.

2: Output: Refined model h
3: Initialize model h with random weights
4: for t = 1 to T do
5: (xS , yS) ∼ DS and (xT) ∼ DT

6: Update the parameters of h utilizing (xS , yS) and (xT) in accordance with any standard
unsupervised domain adaptation technique.

7: end for
8: Generate the pseudo-candidate set ‘Z’ for each sample in DT using Eqn. (1)
9: Initialize the label confidence vector ‘w’ using Eqn. (5)
10: for t = 1 to Trefine do
11: (xT) ∼ DT , with augmentations A1(x

T) and A2(x
T)

12: Compute the candidate loss Lc using Eqn. (2)
13: Compute the non-candidate loss Lnc using Eqn. (3)
14: Compute the final loss, Loss = Lc + λLnc

15: Update the label confidence vector using Eqn. (6)
16: Update model h using gradient descent: h← h− η∇Loss
17: end for
18: return h

After each iteration, the vector w is dynamically updated based on the model’s
predictions h(A1(x)), as below:

wj =

{
hj(A1(x))∑

m∈Z hm(A1(x))
if j ∈ Z

0 otherwise
(6)

As in Eqn. (6), the confidence wj for each class j in the pseudo-candidate set Z is
updated to be proportional to the model’s prediction probability for that class,
normalized by the sum of prediction probabilities for all classes in Z. This update
ensures that wj reflects the model’s current confidence in each class within the
pseudo-candidate set, facilitating the disambiguation process.

Therefore, by iteratively updating the model h(.) using the aforementioned
components, the proposed UDPCS improves the model’s ability to disambiguate
the correct class from the pseudo-candidate set, leading to more accurate and
confident predictions on the target domain. Our overall method is summarized
in Algorithm 1. We begin by training the proposed model h(.) using a standard
UDA technique. We then generate the pseudo-candidate set and initialize the
label confidence vector. Subsequently, the method undergoes iterative training,
incorporating both candidate and non-candidate loss in each iteration. We now
illustrate our approach using a toy example.
Toy Example. To illustrate the working of our method, the toy example in
Fig. 2 shows how the proposed UDPCS technique refines a model’s predictions.
In particular, we demonstrate a single iteration after UDA training. As shown
in the figure, we consider a 5-class classification problem with labeled source
data, unlabeled target data consisting of 5 samples from S1 to S5 and a model
hUDA(.) trained using any off-the-shelf UDA technique. The unseen true labels

8 A. Dayal et al.

S1 {1,2,3,5}

S2 {2,3,4}

S3 {2,3}

S4 {1,3,4}

S5 {2,5}

S2 S5S4S3S1

S2 S5S4S3S1 S2 S5S4S3S1

S2 S5S4S3S1

UDA
model

Refined
model

Refined
model

Refined
model

Text

Time step 0

Time step 1
S1 {1,2,3,5}

S2 {2,3,4}

S3 {2,3}

S4 {1,3,4}

S5 {2,5}

UDA model predictions Pseudo-candidate set

Pseudo-candidate set

Normalized vector w

Disambiguated vector wRefined model predictions

Fig. 2: Illustration of the toy example for demonstrating our UDPCS method. The
figure visualizes the process of refining the predictions of a base UDA model by lever-
aging pseudo-candidate sets.

for these 5 target samples are assigned such that sample j is labeled as class j,
∀j ∈ {1, 2, . . . , 5}.

As mentioned earlier in this section, after UDA training, our UDPCS method
generates the pseudo-candidate set Z using model predictions hUDA(.) and with
τ = 0.1, according to Eqn. (1), for each target sample. The cardinality of these
pseudo-candidate sets for this example ranges from 2 to 4 in Fig. 2. These sets
are then utilized to generate the label confidence vector w, which, as previously
discussed, is initialized with uniform confidence values according to Eqn. (5) (to
avoid error bias from the base model). This w, along with the pseudo-candidate
sets, is then used to refine the model’s prediction by updating its parameters
using Eqn. (4). In the next iteration, ‘Step = 1’ in the figure, this refined model
generates predictions on the target set, which is then used to get the disam-
biguated vector w according to Eqn. (6).

As in the figure, the refined model’s predictions for each sample definitively
impacts model accuracy. After initial UDA model training, the model correctly
predicted S1, S2, and S3, but incorrectly predicted S4 and S5, resulting in 60%
accuracy. Whereas after the refinement, S4 is correctly disambiguated, while
the confidence in predictions for S1, S2, and S3 has increased. For sample S5,
the disambiguation could not identify the correct label in the first iteration.
These changes in predictions increased the model’s accuracy from 60% to 80%.
It is also noticeable that the prediction probabilities of classes outside the can-
didate set have reduced, which can be attributed to the non-candidate set loss.
Thus, the proposed method improves UDA performance by refining the model’s
predictions. We show later in our experiments that with this little overhead,
we outperform the base UDA model across different baselines, even when the
baseline is allowed the same additional training time.

UDPCS 9

4 Experiments

Datasets: We conduct a comprehensive evaluation of our proposed UDPCS
method on several benchmark UDA datasets, including VisDA [31], Domain-
Net [30], and OfficeHome [42]. Each dataset poses unique challenges for domain
adaptation. The VisDA dataset, for instance, exhibits a significant domain gap
between the source and target domains, encompassing 12 classes. The Domain-
Net dataset, on the other hand, offers a broader label space with 365 classes,
presenting a different set of challenges. Lastly, the OfficeHome dataset, with its
relatively limited number of samples across all domains, necessitates efficient
adaptation strategies. Further details about these datasets are provided in the
Appendix.
Implementation Details and Baselines: Consistent with recent benchmarks
[24, 51], we employ the ResNet50 model as the feature extractor for the Office-
Home dataset and the ResNet101 model for the VisDA and DomainNet datasets.
Our method is trained using stochastic gradient descent with momentum [34].
Additional implementation details, such as hyperparameters including threshold
values, learning rates, etc., are detailed in the Appendix. Our UDPCS method en-
hances off-the-shelf UDA techniques; hence, we evaluate its effectiveness against
a range of UDA methods such as MDD [50], MCC [15], LeCo [43], SDAT [35], and
NWD [3], which encompass diverse approaches like adversarial and self-training.
We benchmark our model by comparing the performance of these UDA methods
with and without the application of our UDPCS technique. Additionally, we con-
trast our method with other recent benchmarks in Appendix A1. In our result
tables, (Tab. 1 to Tab. 3), the performance of our UDPCS method is denoted
as ‘UDA method+Ours,’ where ‘UDA method’ indicates the base method upon
which UDPCS is applied.
Results on VisDA: The VisDA dataset presents a single adaptation scenario,
from synthetic (source) to real-world (target) domains. Class-wise target accu-
racy results on the VisDA dataset are detailed in Tab. 1. As seen in Tab. 1, the
UDPCS method enhances mean accuracy across five different UDA methods.
Notably, the maximum improvement, a 2.4% gain, is observed when UDPCS is
applied to both the MCC and NWD models. The VisDA dataset is known for its
large domain gap between the source and target domains. Despite this challenge,
UDPCS achieves an average gain of 2% in target accuracy, as demonstrated in
Tab. 1, highlighting its efficacy in refining model predictions.
Results on DomainNet: In line with the settings from [13, 43], we carry out
experiments on 12 tasks involving clipart (c), painting (p), real (r), and sketch
(s) domains from the original DomainNet dataset. The detailed results for all
tasks are showcased in Tab. 2. As indicated in Tab. 2, the UDPCS method
surpasses the performance of each underlying UDA method, with a maximum
gain of 3.5% in average target accuracy. As seen from Tab. 2, our method,
‘MDD+Ours,’ achieves the best performance compared to all the other methods.
Despite DomainNet’s challenge of a vast label space with 365 classes, the UDPCS
method achieves an average gain of 1.6% in target accuracy, showcasing the
robustness and effectiveness of our approach.

10 A. Dayal et al.

Table 1: Accuracy(%) on VisDA dataset. Values in red are the gains achieved by
the proposed UDPCS method. Values underlined are the best-performing models in a
column. Mean denotes Mean Accuracy. Appendix A1 presents additional results.

Model plane bcybl bus car horse knife mcycle persn plant sktb train truck Mean Gains

MDD(ICML’19) 94.6 75.0 68.5 70.2 91.4 94.3 91.5 79.7 91.6 88.4 84.3 36.8 80.5
+Ours 96.1 76.8 69.3 72.4 93.3 96.5 92.5 80.5 92.6 89.7 86.8 38.6 82.1 1.6
MCC(ECCV’20) 94.5 85.9 74.5 71.6 93.9 94.9 85.9 82.3 91.4 91.7 82.4 57.4 83.8
+Ours 96.2 88.4 77.6 73.7 95.1 97.7 89.5 83.7 94.5 93.4 85.2 59.1 86.2 2.4
LeCo(ACCV’22) 96.1 87.5 85.8 89.6 95.6 96.2 90.8 82.7 94.4 91.1 84.4 41.9 86.3
+Ours 97.5 88.6 85.5 89.9 97.3 97.1 93.3 84.8 96.4 93.7 87.2 45.2 88.0 1.7
SDAT(ICML’22) 94.6 82.9 77.0 67.4 93.6 97.1 92.4 82.6 92.8 87.0 85.6 52.2 83.8
+Ours 95.6 84.6 79.3 76.0 94.9 98.1 92.7 83.9 94.4 90.6 88.1 48.7 85.6 1.8
NWD (CVPR’22) 93.9 83.9 76.6 73.2 93.1 91.0 85.7 80.9 91.8 90.0 82.0 51.2 82.8
+Ours 96.0 87.4 78.6 77.2 94.5 93.8 89.1 83.2 93.8 94.3 83.6 51.5 85.2 2.4

Average Gains 2

Table 2: Accuracy(%) on DomainNet dataset. Values in red are the gains achieved
by the proposed UDPCS method. Values underlined are the best-performing models
in a column. (Avg. = Average Accuracy). Appendix A1 presents additional results.

Model c-p c-r c-s p-c p-r p-s r-c r-p r-s s-c s-p s-r Avg. Gains

CDAN (NeurIPS’18) 40.4 56.8 46.1 45.1 58.4 40.5 55.6 53.6 43.0 57.2 46.4 55.7 49.9
+Ours 43.7 59.1 47.7 45.9 59.2 42 58.2 53.7 45.7 59 48.2 57.8 51.7 1.8
MDD (ICML’19) 42.8 59.2 48.3 49.2 59.6 43.6 58.8 54.1 46.6 59.1 46.7 57.8 52.2
+Ours 46.7 63.5 51.4 51.1 62.3 46.3 63.1 57.7 50.7 63.4 50.3 61.9 55.7 3.5
MCC (ECCV’20) 37.1 55.6 41.4 45.5 59.9 39.7 54.3 53.1 36.8 58.2 46.5 56.1 48.7
+Ours 39.1 56.6 43.0 47.2 60.6 41.1 56.4 55.0 38.8 59.1 47.0 57.7 50.1 1.4
SDAT (ICML’22) 41.9 57.2 47.2 47.8 60.2 42.3 56.5 53.9 42.7 60.4 48.0 57.5 51.3
+Ours 43.7 58.1 47.9 48.1 59.4 43.0 56.0 53.1 43.8 58.7 47.6 57.7 51.4 0.1

Average Gains 1.7

Results on OfficeHome: The OfficeHome dataset encompasses 12 tasks across
the Art (A), Clipart (C), Product (P), and Real World (R) domains. Target
accuracy results for all tasks are presented in Tab. 3. As evident in Tab. 3, the
UDPCS method surpasses the performance of the underlying UDA methods,
with a maximum gain of 1.8% in average target accuracy. As seen from Tab.
3, our methods, ‘MCC+Ours’ and ‘NWD+Ours,’ achieves the best performance
compared to all the other methods. Although OfficeHome presents a challenge
with its relatively small sample size per domain, the UDPCS technique still
manages to achieve an average gain of 0.9%, demonstrating its effectiveness.

5 More Empirical Analysis and Ablation Studies

Ablation Studies: To assess the impact of various components of the proposed
UDPCS method, we conduct ablation studies and present the results in Tab. 4.
The table outlines experiments on three key components: candidate loss (Lc),

UDPCS 11

Table 3: Accuracy(%) on OfficeHome dataset. Values in red are the gains achieved
by the proposed UDPCS method. Values underlined are the best-performing models
in a column. (Avg. = Average Accuracy). Appendix A1 presents additional results.

Model A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg. Gains

MDD (ICML’19) 75.5 56.2 79 63.1 72.5 72.6 63.1 55.1 79.7 73.3 60.1 83.6 69.5 -
+Ours 77.6 57.8 80.5 65.4 75.1 75.4 65.1 56.5 81.6 74.1 61.3 84.7 71.3 1.8
MCC(ECCV’20) 79.8 58.1 83.2 68.6 76.6 78.6 67.8 55.5 82.2 74.4 60.8 85.8 72.6
+ Ours 81.1 59.3 84.1 69.2 78 79.6 69.1 56.4 82.8 74.7 62.1 86.4 73.6 1
Leco (ACCV’22) 78.7 58.3 82.4 68.6 79.1 79.3 67.5 56.2 82.6 75 60.9 86 72.9
+Ours 79.1 59.2 82.7 68.8 79.4 79.3 67.7 56.9 82.6 75.2 61.1 86.4 73.2 0.3
SDAT(ICML’22) 77.2 58.9 81.2 66.6 75.8 76.8 63.9 57 81.8 75.1 64.8 85.8 72.1
+Ours 78.1 59.7 82.1 67 76.3 77 64.4 57.6 82.6 75.2 65.2 86 72.6 0.5
NWD(CVPR’22) 80.1 58.1 83.4 67.9 77.2 78.6 67.9 55.7 82 74.1 60.7 85.7 72.6 -
+Ours 80.9 59.1 83.9 68.6 79 80 68.5 56.7 83.2 74.9 62.1 86.7 73.6 1

Average Gains 0.9

non-candidate loss (Lnc), and a threshold (γ), with a tick mark indicating the
inclusion of a component in a particular experiment. The absence of all ticks
denotes the use of the base UDA method without our refinement. We evaluate
two base UDA methods, MDD and MCC, on the OfficeHome dataset, as detailed
in Tab. 4. For the MDD+Ours model, introducing candidate loss (Lc) yields a
1.2% increase in average accuracy, while adding non-candidate loss (Lnc) brings
a similar enhancement of 1.1%. The inclusion of thresholding (γ), particularly
with candidate loss, leads to a 1.6% improvement, emphasizing the value of
focusing on ambiguous samples. The combination of both losses, without the
threshold, results in a 1.4% uptick, and the full UDPCS model, integrating all
components, achieves the highest gain of 1.8% over the base MDD model. In
the MCC+Ours model, the addition of candidate loss and non-candidate loss
individually contributes to improvements of 0.4% and 0.7%, respectively. The
integration of thresholding, either alone or with other components, consistently
enhances performance, with the full UDPCS model outperforming the base MCC
model by 1%. These findings highlight the synergistic effect of combining candi-
date loss, non-candidate loss, and thresholding, underscoring the comprehensive
effectiveness of the UDPCS method in boosting average accuracy.
Complexity Analysis: The complexity analysis of the UDPCS method, as
presented in Table A1 in the Appendix, illustrates its efficiency in terms of train-
ing time while achieving improvements in average accuracy. The UDPCS method
achieves higher average accuracy without incurring any significant training time.
Please see the Appendix for the complete discussion.
Hyperparameter λ : The exploration of the hyperparameter λ, which balances
the candidate loss (Lc) and the non-candidate loss (Lnc) in the total loss equa-
tion (Lc + λLnc), reveals its impact on the performance of the UDPCS method,
as shown in Table 5. We run each of the experiment three times are report the
average values. For the MDD+Ours model, setting λ = 0.5 results in an aver-

12 A. Dayal et al.

Table 4: Ablation results (%) on OfficeHome dataset assessing the impact of UDPCS
components.

Model Lc Lnc γ A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg.

MDD+Ours

75.5 56.2 79 63.1 72.5 72.6 63.1 55.1 79.7 73.3 60.1 83.6 69.5
✓ 76.9 58 80.2 64.8 74.7 74.8 63.6 55.9 80.9 73.5 61.1 84 70.7

✓ 76.8 57.3 79.7 65.4 74.5 75.1 64.5 55.7 80.2 73.4 60.5 83.9 70.6
✓ ✓ 77.4 58.1 80.6 64.4 75.2 74.6 65 56.5 81.4 73.8 61.3 84.4 71.1
✓ ✓ 77.1 57.6 80.5 64.5 74.8 75.1 64.5 56.4 81.2 74 61 84.3 70.9
✓ ✓ ✓ 77.6 57.8 80.5 65.4 75.1 75.4 65.1 56.5 81.6 74.1 61.3 84.7 71.3

MCC+Ours

79.8 58.1 83.2 68.6 76.6 78.6 67.8 55.5 82.2 74.4 60.8 85.8 72.6
✓ 80.4 59 83.8 69.1 77.3 78.7 68 56.5 82 74.2 61.4 85.9 73

✓ 80.3 58.8 84 69.2 77.2 79.7 68.5 55.8 82.9 75.1 61.5 86.2 73.3
✓ ✓ 80.7 58.7 83.5 69 77.1 78.4 68.6 56.7 82.3 74.6 62 86 73.1
✓ ✓ 80.4 58.8 84 68.8 77.5 78.9 68 56.2 82.9 74.1 61.5 86 73.1
✓ ✓ ✓ 81.1 59.3 84.1 69.2 78 79.6 69.1 56.4 82.8 74.7 62.1 86.4 73.6

age accuracy of 71.1%, which slightly improves to 71.2% when λ = 1. Further
increasing λ to 2 maintains the average accuracy of 71.2%, suggesting a robust
performance across different values of λ. Similarly, for the MCC+Ours model,
the average accuracy is 73.6% for all the λ values with slight variations in the
standard deviation values. These findings indicate that the UDPCS method is
relatively stable across a range of λ values, with minor fluctuations in average
accuracy. This stability underscores the method’s robustness and the effective-
ness of the balanced approach to handling candidate and non-candidate losses
in refining predictions for domain adaptation tasks. Please see the Appendix for
the complete results of this analysis.

Table 5: Accuracy(%) of UDPCS for different λ values on OfficeHome dataset.

λ A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg.

MDD+Ours

λ = 0.5 77.2 58.2 80.6 64.8 75.3 74.9 65.1 56.5 81.0 73.9 61.4 84.5 71.1 ±0.1

λ = 1 77.5 58.0 80.6 65.3 75.2 75.1 65.0 56.5 81.6 74.1 61.4 84.5 71.2±0.02

λ = 2 77.3 57.9 80.8 65.1 75.0 75.3 65.1 56.6 81.5 74.0 61.3 84.4 71.2±0.01

MCC+Ours

λ = 0.5 80.9 59.1 83.8 69.6 77.8 79.6 68.9 56.6 83.2 74.8 62.1 86.6 73.6±0.05

λ = 1 81.0 59.1 84.3 69.3 77.9 79.6 68.9 56.6 83.2 74.7 62.0 86.5 73.6±0.06

λ = 2 80.9 59.2 84.2 69.2 78.0 79.6 68.9 56.7 82.9 74.8 62.4 86.6 73.6±0.1

Weak Augmentation: The exploration of weak augmentation A2 in the candi-
date set loss for the UDPCS method, as compared to the main results obtained
using strong augmentation A1, reveals interesting insights into the method’s
performance, as shown in Table 6. For the MDD+Ours model, employing weak
augmentation results in an average accuracy of 69.6%, which is lower than the
71.3% achieved with strong augmentation. Similarly, the MCC+Ours model ex-

UDPCS 13

hibits a decrease in average accuracy from 73.6% with strong augmentation to
72.8% with weak augmentation. These findings suggest that strong augmentation
plays a crucial role in the effectiveness of the UDPCS method, particularly in
refining predictions for domain adaptation tasks. Further augmentation related
experiments are reported in the Appendix.

Table 6: Accuracy(%) of UDPCS for different augmentation used on OfficeHome
dataset. (Aug. = Augmentation)

Aug. A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg.

MDD+Ours

Weak 76.3 56.4 79 63.3 73.5 73.6 63.1 54.7 79.3 73 59.7 83.1 69.6
Strong 77.6 57.8 80.5 65.4 75.1 75.4 65.1 56.5 81.6 74.1 61.3 84.7 71.3

MCC+Ours

Weak 79.9 58.2 83.2 69.1 76.8 78.5 67.6 56.7 81.9 74.1 61.2 86 72.8
Strong 81.1 59.3 84.1 69.2 78 79.6 69.1 56.4 82.8 74.7 62.1 86.4 73.6

Threshold γ: The examination of different threshold values (γ) used in the can-
didate loss, Eqn. (2), of the UDPCS method provides insights into the method’s
sensitivity to this hyperparameter, as shown in Table 7. For the MDD+Ours
model, the average accuracy remains consistent at 71.1% for both γ = 0.8 and
γ = 0.9, with a slight increase to 71.3% when γ = 0.85. Similarly, for the
MCC+Ours model, the average accuracy is stable at 73.5% for γ = 0.8 and
γ = 0.9, with a marginal increase to 73.6% at γ = 0.85. The slight variations
in average accuracy suggest that while the choice of threshold can influence
the method’s performance, the UDPCS method is not overly sensitive to this
hyperparameter.

Table 7: Accuracy(%) of UDPCS for different threshold (γ) values on OfficeHome
dataset.

A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg.

MDD+ours

γ = 0.8 77.1 58.5 80.8 64.9 75.1 74.9 64.7 56.5 81.6 73.8 61.3 84.5 71.1
γ = 0.85 77.6 57.8 80.5 65.4 75.1 75.4 65.1 56.5 81.6 74.1 61.3 84.7 71.3
γ = 0.9 77.3 58.1 81.1 64.9 75 75 64.5 56.6 81.4 74 61.1 84.6 71.1

MCC+Ours

γ = 0.8 81.1 59.3 83.6 69.2 78 79.6 69.1 56.4 82.8 74.7 61.9 86.4 73.5
γ = 0.85 81.1 59.3 84.1 69.2 78 79.6 69.1 56.4 82.8 74.7 62.1 86.4 73.6
γ = 0.9 80.7 59.3 83.8 69.4 77.5 79.3 68.9 56.5 82.9 74.7 62.4 86.6 73.5

Cross entropy: The investigation of using cross entropy as an alternative to
KL divergence for the candidate loss, Eqn.(2) in the UDPCS method reveals

14 A. Dayal et al.

the method’s adaptability and effectiveness across different loss functions, as
demonstrated in Table 8. For the MDD+Ours model, employing cross entropy
for the candidate loss yields an average accuracy of 71.3%, which is identical to
the average accuracy achieved using KL divergence. Similarly, the MCC+Ours
model maintains an average accuracy of 73.6% with both cross entropy and KL
divergence. The consistency in average accuracy across different loss functions
suggests that the method’s ability to refine predictions for domain adaptation
tasks is robust to the choice of loss function.

Table 8: Accuracy(%) of UDPCS for different loss functions on OfficeHome dataset.
(CE= Cross Entropy, KL=KL Divergence)

Loss A-P A-C A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg.

MDD+Ours

CE 77.4 58.1 80.7 64.9 75.2 75.3 65.3 56.3 81.5 73.9 61.7 84.8 71.3
KL 77.6 57.8 80.5 65.4 75.1 75.4 65.1 56.5 81.6 74.1 61.3 84.7 71.3

MCC+Ours

CE 81.1 59.3 84.1 69.2 78 79.6 69.1 56.4 82.8 74.7 62.1 86.4 73.6
KL 80.8 59.2 84.5 69.4 77.9 79.7 68.4 56.5 83.2 75.1 62.1 86.4 73.6

6 Conclusion

In conclusion, UDPCS presents a novel approach to UDA by leveraging the con-
cept of disambiguation and introducing pseudo-candidate sets to approximate
the true labels of the target set. Our method is distinguished by the use of two
loss functions to refine predictions within the pseudo-candidate set and to pe-
nalize incorrect labels outside of it, combined with a threshold-based strategy to
focus on ambiguous samples. Through comprehensive experiments on the bench-
mark datasets, our approach has demonstrated its effectiveness in consistently
improving target set accuracy across diverse domains. We also conduct thorough
analysis and ablation studies. The results highlight the potential of our method
to serve as a robust solution for UDA challenges.

Acknowledgements

The research of AD is supported in part by the Prime Minister Research Fel-
lowship, Ministry of Education, Government of India. VNB would like to ac-
knowledge the support through the Govt of India SERB IMPRINT and DST
ICPS funding programs for this work. The research of CKM is supported by
the LiDAR and Camera Sensors Data based Deep Learning Algorithms for Au-
tonomous Driving System project, funded by Govt. of India SERB program.
The research is also partly supported by the Indo-Norwegian Collaboration in

UDPCS 15

Autonomous Cyber-Physical Systems (INCAPS) project: 287918 of the Inter-
national Partnerships for Excellent Education, Research and Innovation (INT-
PART) program and the Low-Altitude UAV Communication and Tracking (LU-
CAT) project: 280835 of the IKTPLUSS program from the Research Council
of Norway. We are grateful to the anonymous reviewers for the feedback that
helped improved the presentation of this paper.

References

1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:
A theory of learning from different domains. Machine Learning 79(1-2), 151–175
(2010)

2. Chen, C., Fu, Z., Chen, Z., Jin, S., Cheng, Z., Jin, X., Hua, X.S.: Homm: Higher-
order moment matching for unsupervised domain adaptation. In: Proceedings of
the AAAI conference on artificial intelligence. vol. 34, pp. 3422–3429 (2020)

3. Chen, L., Chen, H., Wei, Z., Jin, X., Tan, X., Jin, Y., Chen, E.: Reusing the
task-specific classifier as a discriminator: Discriminator-free adversarial domain
adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 7181–7190 (2022)

4. Chen, W., Lin, L., Yang, S., Xie, D., Pu, S., Zhuang, Y.: Self-supervised noisy
label learning for source-free unsupervised domain adaptation. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 10185–
10192. IEEE (2022)

5. Chen, Y., Wei, C., Kumar, A., Ma, T.: Self-training avoids using spurious fea-
tures under domain shift. Advances in Neural Information Processing Systems 33,
21061–21071 (2020)

6. Csurka, G.: Domain adaptation for visual applications: A comprehensive survey,
pp. 1–35. Springer (2017)

7. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated
data augmentation with a reduced search space (2019)

8. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout (2017)

9. Du, Z., Li, J., Su, H., Zhu, L., Lu, K.: Cross-domain gradient discrepancy mini-
mization for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 3937–3946 (2021)

10. Feng, L., Lv, J., Han, B., Xu, M., Niu, G., Geng, X., An, B., Sugiyama,
M.: Provably consistent partial-label learning. In: Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Informa-
tion Processing Systems. vol. 33, pp. 10948–10960. Curran Associates, Inc.
(2020), https://proceedings.neurips.cc/paper_files/paper/2020/file/
7bd28f15a49d5e5848d6ec70e584e625-Paper.pdf

11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: Proceedings of the 32nd International Conference on Machine Learning (ICML)
(2015)

12. Gao, Z., Zhang, S., Huang, K., Wang, Q., Zhong, C.: Gradient distribution align-
ment certificates better adversarial domain adaptation. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 8937–8946 (2021)

13. Jiang, J., Chen, B., Fu, B., Long, M.: Transfer-learning-library. https://github.
com/thuml/Transfer-Learning-Library (2020)

https://proceedings.neurips.cc/paper_files/paper/2020/file/7bd28f15a49d5e5848d6ec70e584e625-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/7bd28f15a49d5e5848d6ec70e584e625-Paper.pdf
https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library

16 A. Dayal et al.

14. Jin, X., Lan, C., Zeng, W., Chen, Z.: Re-energizing domain discriminator with sam-
ple relabeling for adversarial domain adaptation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 9174–9183 (2021)

15. Jin, X., Lan, C., Zeng, W., Chen, Z.: Minimum class confusion for versatile do-
main adaptation. In: Proceedings of the European Conference on Computer Vision
(ECCV) (2020)

16. Jing, X., Qian, K., Jianu, T., Luo, S.: Unsupervised adversarial domain adaptation
for sim-to-real transfer of tactile images. IEEE Transactions on Instrumentation
and Measurement 72, 1–11 (2023). https://doi.org/10.1109/TIM.2023.3268458

17. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: A survey. Com-
puters and Electronics in Agriculture 147, 70–90 (2018)

18. Le, T., Nguyen, T., Ho, N., Bui, H., Phung, D.: Lamda: Label matching deep
domain adaptation. In: International Conference on Machine Learning. pp. 6043–
6054. PMLR (2021)

19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

20. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced wasserstein discrepancy for
unsupervised domain adaptation. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 10285–10295 (2019)

21. Li, S., Liu, C., Lin, Q., Xie, B., Ding, Z., Huang, G., Tang, J.: Domain condi-
tioned adaptation network. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 34, pp. 11386–11393 (2020)

22. Liu, H., Wang, J., Long, M.: Cycle self-training for domain adaptation. Advances
in Neural Information Processing Systems 34, 22968–22981 (2021)

23. Liu, X., Guo, Z., Li, S., Xing, F., You, J., Kuo, C.C.J., El Fakhri, G., Woo, J.:
Adversarial unsupervised domain adaptation with conditional and label shift: Infer,
align and iterate. In: Proceedings of the IEEE/CVF international conference on
computer vision. pp. 10367–10376 (2021)

24. Liu, Y., Zhou, Z., Sun, B.: Cot: Unsupervised domain adaptation with clustering
and optimal transport. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 19998–20007 (2023)

25. Lv, J., Xu, M., Feng, L., Niu, G., Geng, X., Sugiyama, M.: Progressive identification
of true labels for partial-label learning. In: III, H.D., Singh, A. (eds.) Proceedings of
the 37th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 119, pp. 6500–6510. PMLR (13–18 Jul 2020), https://
proceedings.mlr.press/v119/lv20a.html

26. Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsu-
pervised domain adaptation. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16. pp.
415–430. Springer (2020)

27. Na, J., Jung, H., Chang, H.J., Hwang, W.: Fixbi: Bridging domain spaces for
unsupervised domain adaptation. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 1094–1103 (2021)

28. Nguyen, T., Le, T., Dam, N., Tran, Q.H., Nguyen, T., Phung, D.Q.: Tidot: A
teacher imitation learning approach for domain adaptation with optimal transport.
In: IJCAI. pp. 2862–2868 (2021)

29. Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: A
survey of recent advances. IEEE Signal Processing Magazine 32(3), 53–69 (2015)

30. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching
for multi-source domain adaptation. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 1406–1415 (2019)

https://doi.org/10.1109/TIM.2023.3268458
https://doi.org/10.1109/TIM.2023.3268458
https://proceedings.mlr.press/v119/lv20a.html
https://proceedings.mlr.press/v119/lv20a.html

UDPCS 17

31. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: Visda: The
visual domain adaptation challenge (2017)

32. Phan, H., Le, T., Phung, T., Bui, A.T., Ho, N., Phung, D.: Global-local regu-
larization via distributional robustness. In: International Conference on Artificial
Intelligence and Statistics. pp. 7644–7664. PMLR (2023)

33. Prabhu, V., Khare, S., Kartik, D., Hoffman, J.: Sentry: Selective entropy optimiza-
tion via committee consistency for unsupervised domain adaptation. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. pp. 8558–
8567 (2021)

34. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
networks 12(1), 145–151 (1999)

35. Rangwani, H., Aithal, S.K., Mishra, M., Jain, A., Radhakrishnan, V.B.: A closer
look at smoothness in domain adversarial training. In: International Conference on
Machine Learning. pp. 18378–18399. PMLR (2022)

36. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2018)

37. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annual
Review of Biomedical Engineering 19, 221–248 (2017)

38. Shin, I., Woo, S., Pan, F., Kweon, I.S.: Two-phase pseudo label densification for
self-training based domain adaptation. In: Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII
16. pp. 532–548. Springer (2020)

39. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk,
E.D., Kurakin, A., Li, C.L.: Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33,
pp. 596–608. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/
paper_files/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733- Paper.
pdf

40. Tian, Y., Yu, X., Fu, S.: Partial label learning: Taxonomy, analysis and out-
look. Neural Networks 161, 708–734 (2023). https://doi.org/https://doi.org/
10.1016/j.neunet.2023.02.019, https://www.sciencedirect.com/science/
article/pii/S0893608023000825

41. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2017)

42. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing
network for unsupervised domain adaptation. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 5018–5027 (2017)

43. Wang, X., Zhuo, J., Zhang, M., Wang, S., Fang, Y.: Revisiting unsupervised do-
main adaptation models: A smoothness perspective. In: Proceedings of the Asian
Conference on Computer Vision. pp. 1504–1521 (2022)

44. Wei, G., Lan, C., Zeng, W., Chen, Z.: Metaalign: Coordinating domain align-
ment and classification for unsupervised domain adaptation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 16643–
16653 (2021)

45. Wei, G., Lan, C., Zeng, W., Zhang, Z., Chen, Z.: Toalign: task-oriented alignment
for unsupervised domain adaptation. Advances in Neural Information Processing
Systems 34, 13834–13846 (2021)

https://proceedings.neurips.cc/paper_files/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.neunet.2023.02.019
https://doi.org/https://doi.org/10.1016/j.neunet.2023.02.019
https://doi.org/https://doi.org/10.1016/j.neunet.2023.02.019
https://doi.org/https://doi.org/10.1016/j.neunet.2023.02.019
https://www.sciencedirect.com/science/article/pii/S0893608023000825
https://www.sciencedirect.com/science/article/pii/S0893608023000825

18 A. Dayal et al.

46. Wen, H., Cui, J., Hang, H., Liu, J., Wang, Y., Lin, Z.: Leveraged weighted
loss for partial label learning. In: Meila, M., Zhang, T. (eds.) Proceedings of
the 38th International Conference on Machine Learning. Proceedings of Ma-
chine Learning Research, vol. 139, pp. 11091–11100. PMLR (18–24 Jul 2021),
https://proceedings.mlr.press/v139/wen21a.html

47. Wu, D.D., Wang, D.B., Zhang, M.L.: Revisiting consistency regularization for deep
partial label learning. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu,
G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 162, pp. 24212–24225.
PMLR (17–23 Jul 2022), https://proceedings.mlr.press/v162/wu22l.html

48. Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: Self-supervised cyclegan for
object-preserving image-to-image domain adaptation. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XX 16. pp. 498–513. Springer (2020)

49. Yan, Y., Guo, Y.: Partial label unsupervised domain adaptation with class-
prototype alignment. In: The Eleventh International Conference on Learning Rep-
resentations (2022)

50. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for do-
main adaptation. In: Proceedings of the 36th International Conference on Machine
Learning (ICML) (2019)

51. Zhou, L., Ye, M., Zhu, X., Xiao, S., Fan, X.Q., Neri, F.: Homeomorphism alignment
for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 18699–18710 (2023)

https://proceedings.mlr.press/v139/wen21a.html
https://proceedings.mlr.press/v162/wu22l.html

	Improving Unsupervised Domain Adaptation: A Pseudo-Candidate Set Approach

