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Abstract. Temporal dependencies are essential in 3D human pose es-
timation to mitigate depth ambiguity. Previous methods typically use a
fixed-length sliding window to capture these dependencies. However, they
treat past and future frames equally, ignoring the fact that relying on
too many future frames increases the inference latency. In this paper, we
present a 3D human pose estimation model based on Retentive Networks
(RetNet) that incorporates temporal information by utilizing a large
number of past frames and a few future frames. The Non-Causal Ret-
Net (NC-RetNet) is designed to allow the originally causal RetNet to be
aware of future information. Additionally, we propose a knowledge trans-
fer strategy, i.e., training the model with a larger chunk size and using a
smaller chunk size during inference, to reduce latency while maintaining
comparable accuracy. Extensive experiments have been conducted on the
Human3.6M and MPI-INF-3DHP datasets, and the results demonstrate
that our method achieves state-of-the-art performance. Code and models
are available at https://github.com/Kelly510/PoseRetNet.

Keywords: 3D Human Pose Estimation · Temporal Dependency · Re-
tentive Networks

1 Introduction

Monocular 3D Human Pose Estimation (HPE) aims to reconstruct the 3D po-
sitions of human body joints based on monocular observations. This popular
computer vision task has a wide range of applications, including action recog-
nition [44], human-robot interaction [37] and motion analysis [11]. Most of the
previous works [2,22,39–41,45,48] adopt the 2D-to-3D lifting pipeline which pre-
dicts 3D human pose based on 2D keypoint detection results. It is challenging due
to the depth ambiguity issue, namely, one 2D detection result may correspond
to multiple 3D human skeletons.
B denotes corresponding author.
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Fig. 1: (Left) The framework of our method, which utilizes long-term historical in-
formation from the cross-chunk state and relies on only a few future frames within
the chunk. The past, current, and future frames are denoted by blue, green, and red
borders, respectively. (Right) Comparison of Mean Per-Joint Position Error (MPJPE)
on the Human3.6M dataset under different test chunk sizes. Our method outperforms
previous state-of-the-art remarkably, especially under small chunk sizes.

To mitigate the depth ambiguity, monocular 3D human pose estimation mod-
els usually take multiple frames as the input and exploit additional temporal
dependencies of human pose to reduce the ambiguity [1, 27, 29, 43, 46, 49, 50].
Specifically, a sliding-window of fixed length is usually adopted to capture the
temporal dependencies, where the length of window is referred to as the number
of frames or chunk size. A larger chunk size typically results in better accuracy
performance as it allows for the perception of more long-range temporal infor-
mation. However, previous methods treat past and future frames equally, and a
larger chunk size also means that the model relies on the arrival of more future
frames before inference, which significantly increases the inference latency. For
instance, consider the seq2frame framework, which aims to predict the 3D pose
of the center frame among the input frames. If the chunk size is 243 and the
input frame rate is 10 Hz, the inference latency will be (243− 1)÷ 2÷ 10 = 12.1
seconds. For seq2seq framework in the same case, the inference latency for the
first frame within the chunk is (243−1)÷10 = 24.2 seconds and that for the last
frame is zero. The average latency is 12.1 seconds as well. This is considerably
longer than the forward time of the model itself.

To address this problem, we propose a 3D human pose estimation model
based on Retentive Networks (RetNet) [35]. Fig. 1(left) illustrates the framework
of our method. Different from previous methods that use similar amounts of past
and future frames to incorporate temporal information, our method mainly ex-
tracts temporal information from past frames (blue) and uses only a few future
frames (red) within the current chunk for refinement. The RetNet can easily
capture long-term historical information by using the cross-chunk state, and
the Non-Causal RetNet (NC-RetNet) is further designed to make the originally
causal RetNet be aware of the future frames. Moreover, we develop a knowl-



3D HPE via Non-Causal Retentive Networks 3

edge transfer strategy of training the model with a large chunk size and using a
small chunk size during inference. Thanks to the long-term historical informa-
tion brought by the cross-chunk state, decreasing the test chunk size does not
significantly affect performance, as shown in Fig. 1(right), but greatly reduces
the inference latency.

Extensive experiments have been conducted on two datasets, Human3.6M
[14] and MPI-INF-3DHP [23], both quantitatively and qualitatively. The results
demonstrate that our method outperforms state-of-the-art with a clear margin in
terms of accuracy and continuity, especially when the model infers with a small
chunk size. Our method even surpasses state-of-the-art with a smaller chunk size
during inference. The ablation study also validates the efficacy of the components
in our method. Our main contributions can be summarized as follows.

1. This is the first study to investigate the potential of RetNet in 3D human
pose estimation. And we introduce NC-RetNet to extract temporal infor-
mation, which leverages past frames through the cross-chunk state and a
limited number of future frames within the chunk.

2. The NC-RetNet can be trained using a large chunk size and infer using a
small chunk size without significant performance deterioration, but with a
notable decrease in inference latency.

3. Extensive experiments have been conducted and the results demonstrate
that our method is the state-of-the-art in terms of accuracy and continuity,
especially when the test chunk size is small.

2 Related Work

2.1 3D Human Pose Estimation

Monocular 3D human pose estimation is a fundamental computer vision task
with a broad range of applications. Direct estimation of the 3D positions of
human joints from raw image pixels [26, 34] is difficult not only because of the
complexity of extracting image features, but also due to the lack of image-3D
data pairs. For these reasons, Martinez et al. [22] propose to estimate 3D hu-
man pose in a two-stage manner: detect 2D keypoints from images first and
then lift 2D to 3D. Since this approach can utilize existing 2D pose estimation
systems [3, 19, 25, 33, 42] and a large amount of 3D motion capture data, it has
received a lot of attention. In this paper, we also focus on the 2D-to-3D lift-
ing task. Although there are methods such as [48] propose to leverage visual
cues only to mitigate depth ambiguity, these methods are unable to produce re-
constructions with good continuity. Therefore, temporal dependencies are very
crucial for monocular human pose estimation models.

2.2 Exploitation of Temporal Dependencies

Previous methods mostly adopt four architectures to exploit temporal depen-
dencies: CNN, RNN, GCN [15] and transformer [21]. For example, to model
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the temporal dependencies of human motion, Pavllo et al. [27] propose a tem-
poral convolution model that utilizes dilated temporal convolutions to capture
long-term information and model the temporal dependencies of human motion.
The temporal receptive field depends on the dilation ratio and the number of
layers. Similarly, Choi et al. [5] utilizes GRU [7] to extract features from the
past frames and future frames within a fixed-length window respectively before
integration. Cai et al. [1] exploit graph convolutions [15] to model the graph
structure of different human joints. Along the time axis, this method treats the
joints at different time steps as the graph nodes where any two consecutive joints
are adjacent in the graph. Poseformer [50] proposed by Zheng et al. is the first
work to introduce transformers to 3D human pose estimation task. This model
incorporates the Spatial Transformer Module to encode the geometric structure
of the human pose in a single frame into a token, and the Temporal Transformer
Encoder to model temporal dependencies between frames. Since then, a lot of
works [8, 10, 16–18, 51] have emerged to explore the potential of transformers in
3D human pose estimation.

Although these methods leverage different architectures to extract spatial-
temporal information from 2D sequences, they share a common framework that
employs a fixed number of frames to predict the result. Moreover, the chunk
size has a significant impact on the accuracy, and a larger chunk size is usually
beneficial for performance. However, previous works have not taken into account
that a larger chunk size also significantly increases the inference delay. This
motivates us to develop a method that balances the accuracy and inference
latency better.

2.3 Real-time Human Pose Estimation

In addition to accuracy, low inference latency is also desired for human pose es-
timation models in many scenarios, and significant efforts have been devoted to
reducing the inference latency. On one hand, since human pose estimation mod-
els typically use a backbone model to extract image features, general-purpose
lightweight backbones [9,13,30,47], can be used directly to replace the backbone
in HPE models [6]. On the other hand, simplifying the pipeline can improve the
model’s efficiency. For example, Vnect [24] is proposed to combine the bounding
box detection, 2D keypoint detection, and 2D-to-3D lifting into one model. How-
ever, existing methods only focus on decreasing the forward time of the HPE
models, but do not consider the inference latency caused by large chunk sizes,
as our method does.

2.4 Length Extrapolation

Models in natural language processing are expected to be generalizable across
sequences of varying lengths, particularly to sequences longer than the training
samples. This desired property is called length extrapolation. To achieve this,
the use of relative position embedding, such as RoPE [32] and xPos [36], is
necessary because it does not require the input sequences to be of fixed length.
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Additionally, there are methods [4, 28] to improve the format of the attention
module to achieve length extrapolation. For example, ALIBI [28] proposes to
subtract the absolute temporal distance of two tokens from the attention score,
which enhances the performance on extremely long sequences. Our knowledge
transfer strategy is similar to length extrapolation, except that we concentrate
on the model’s transition from large chunks to smaller ones.

3 Method

3.1 Preliminary

RetNet [35] is a sequence modeling network that produces a contextualized fea-
ture sequence of length L given an input sequence X ∈ RL×d. The basic module
of RetNet is retention, which has three mathematically equivalent representa-
tions: parallel, recurrent, and chunkwise recurrent. We present a detailed expla-
nation of these representations below.

Parallel Given the input sequence X, the query Q and key K are derived by
applying the linear projection and RoPE. Pq, Pk are the rotary position embed-
ding for the query and the key respectively. The value V is obtained by the linear
projection only. D ∈ RL×L is the combination of causal masking and exponential
decay with respect to the relative distance. ⊙ denotes the element-wise product.
Since the value in the mask is non-zero only when the reference token (mth) is
earlier than the target token (nth), RetNet is a fully causal model.

Q = Pq(XWQ),K = Pk(XWK), V = XWV

Dnm =

{
γn−m, n ≥ m

0, n < m

Retention(X) = (QKT ⊙D)V

(1)

Recurrent Sn ∈ Rd×d represents the state of time step n, and Qn,Kn, Vn is
the value of the same Q,K, V in Eq. (1) at time step n. This representation also
shows that RetNet is entirely causal, as the output for the nth frame depends
solely on the previous state Sn−1 and the nth input.

Sn = γSn−1 +KT
n Vn

Retention(Xn) = QnSn, n = 1, ..., L
(2)

Chunkwise Recurrent This representation is the hybrid form of the above
two representations. Suppose the input sequence is segmented into chunks of
length T . Denote XiT :(i+1)T as X[i], where [i] indicates the i-th chunk. Within
the chunk, the model follows the parallel representation and the cross-chunk in-
formation is passed following the recurrent representation. The D here is similar
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Fig. 2: (Left) The causal masks in the parallel and chunkwise recurrent representations
of the original RetNet. The model can only perceive historical frames although there are
several future frames in the current chunk. (Right) We propose Non-Causal RetNet
(NC-RetNet), which utilizes all the frames within current chunk using the full mask
and can be trained in parallel with the staircase-shaped mask.

to that in Eq. (1), but its shape changes from L×L to T ×T . The D’s in Eq. (1)
and Eq. (3) are illustrated in Fig. 2(left). ζ and ξ are both T × d matrices and
the r-th row of them is γT−r−1 and γr+1 respectively.

Si = KT
[i](V[i] ⊙ ζ) + γTSi−1

Retention(X[i]) = (Q[i]K
T
[i] ⊙D)V[i]︸ ︷︷ ︸

Inner-Chunk

+(Q[i]Si−1)⊙ ξ︸ ︷︷ ︸
Cross-Chunk

(3)

Since low inference latency is required in real-time scenarios, the parallel rep-
resentation is not suitable. Moreover, the recurrent representation is the special
case of the chunkwise recurrent representation when T = 1. Therefore, we focus
on the chunkwise recurrent representation of RetNet to design our human pose
estimation model.

3.2 Non-Causal RetNet

Although the chunkwise recurrent representation of RetNet processes the input
sequence chunk by chunk, it does not utilize all the information in the current
chunk. As is shown in Fig. 2(left), the masking in the chunkwise recurrent rep-
resentation is a lower triangular matrix. This means that the estimation of the
current frame only uses the frames before it, regardless of the future frames
within the chunk. However, leveraging certain future information can be very
helpful for the accuracy of human pose estimation models.

To solve this problem, we modify the causal masking in RetNet to exploit
all the information within the current chunk and propose Non-Causal RetNet
(NC-RetNet). Formally, the new D in the chunkwise recurrent representation is
given by Eq. (4). The new masking is a full matrix instead of a lower triangular
matrix. When predicting the 3D pose of the nth frame, we can calculate the
exponential decay of both past frames (m < n) and future frames (m > n)
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within the chunk by using the absolute distance |n−m| between the two frames.
The mathematical expression of the new D matrix in the parallel representation
can be found in the Supp. Mat. The chunk size, denoted by T , can be adjusted
to balance the accuracy and inference latency. The larger T is, the more future
information can be perceived by the model, but the longer the inference latency
will be.

D = {Dnm} = {γ|n−m|}, n,m ∈ {1, ..., T} (4)

Fig. 2(right) illustrates the masks in the parallel and chunkwise recurrent repre-
sentations of this non-causal retention. Note that the model can also be trained
in parallel by using the staircase-shaped mask, but it does not have the recurrent
representation unless T = 1.

By using the non-causal masking, NC-RetNet exploits temporal dependencies
from the cross-chunk state which provides long-term historical information, and
only a few future frames which provides some future information. Therefore, the
temporal receptive field of our method is not limited by the chunk size. In fact,
the chunk size in our method only affects the amount of future information while
historical information is always adequate due to the cross-chunk state.

3.3 Transfer Knowledge from Large Chunks

We further develop a strategy for our NC-RetNet to improve its performance
under small test chunk sizes, which is to train the model with a large chunk size
and infer with a small chunk size. Since the model uses xPos, a relative position
embedding, it is able to handle 2D sequences of different lengths from the form.
In addition, the cross-chunk state Si in the chunkwise recurrent representation is
updated every chunk, containing a lot of information from previous chunks. With
this long-term historical information, the model becomes insensitive to the length
of future frames. Therefore, using a smaller chunk size during inference does
not significantly decrease accuracy, but greatly reduces inference latency. This
indicates that some knowledge is transferred from large chunks when training to
the small chunks during inference.

Algorithm 1 Pseudo-code for training
Input: Training dataloader, initialized model, training chunk size Tl

Output: model after training
for input_2d, target in dataloader do

L = input_2d.size(1) # Total length of the input sequence
D_parallel = get_D_parallel(L, Tl) # Get the staircase-shaped mask for parallel
training given the total length and chunk size
pred = model.forward_parallel(input_2d, D_parallel)
loss = loss_func(pred, target)
loss.backward()
optimizer.step()

end for
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Algorithm 2 Pseudo-code for inference
Input: 2D stream, trained model, test chunk size Ts

Output: 3D stream {y_n}
D_chunkwise = get_D_chunkwise(Ts) # Get the full mask for chunkwise inference
given the test chunk size
s_n, x_n = None, []
for x_i in stream do

x_n.append(x_i)
if len(x_n) == Ts then

y_n, s_n = model.forward_chunkwise(x_n, D_chunkwise, s_n, n)
x_n = []
output(y_n) # Output y_n every chunk for downstream task

end if
end for

The details of the training and testing are elaborated below. During training,
we utilize RetNet’s parallel representation to achieve training parallelism. We set
the training chunk size to a large number Tl, to capture long-term patterns of
human motion. The training pseudo-code is as shown in Algorithm 1. The par-
allel representation used during training implicitly incorporates the cross-chunk
state. This means that the model can theoretically observe historical informa-
tion over a long period of time as well as many future frames. During inference,
the test chunk size Ts is set smaller than the training chunk size Tl and the
chunkwise-recurrent representation is used. The pseudo-code for inference is as
in Algorithm 2. Given a stream of 2D keypoints, the model processes the stream
in the chunkwise-recurrent representation every Ts frames based on the current
chunk x_n as well as an explicit cross-chunk state s_n. This cross-chunk state
contains information about previous chunks and makes the model insensitive to
the number of future frames. Therefore, although the chunk is smaller than the
training chunks, the model can still extract stable temporal features.

3.4 Implementation Details

We implement our idea based on the state-of-the-art seq2seq method, MixSTE
[46], by replacing its temporal encoder with RetNet. Since the movement of
distal joints is more erratic than that of torso joints, the estimation of these
distal joints should rely on more local temporal information. Therefore, we assign
different decay coefficients to different human joints, which is referred to as joint-
related decay coefficients. The chunkwise recurrent representation of it can be
formulated in Eq. (5), where p is the index of human joints.

Si,p = KT
[i],p(V[i],p ⊙ ζp) + γT

p Si−1,p

Inneri,p = (Q[i],pK
T
[i],p ⊙Dp)V[i],p

Crossi,p = (Q[i],pSi−1,p)⊙ ξp

Retention(X[i]) = Concat(Inneri,p + Crossi,p)

(5)



3D HPE via Non-Causal Retentive Networks 9

The loss function and training strategies are the same as in MixSTE. The train-
ing chunk size is 243 on the Human3.6M dataset and 81 on the MPI-INF-3DHP
dataset, and then we test the model with different chunk sizes to get the results.
The overall architecture of our model is given in the Supp. Mat. We also imple-
ment our idea on MotionBERT [51] and the results can be found in the Supp.
Mat.

4 Experiments

4.1 Datasets and Evaluation Protocols

Experiments are conducted on two human pose estimation datasets: Human3.6M
[14] and MPI-INF-3DHP [23]. Human3.6M is the most widely used indoor
dataset for single-person 3D human pose estimation, containing about 3.6 million
images collected from 11 professional actors. Following the common practice
[2, 27, 46, 50], we use the samples of S1, S5, S6, S7, S8 for training and evaluate
on S9 and S11 subjects. Mean Per-Joint Position Error (MPJPE) and Procrustes-
Aligned MPJPE (PA-MPJPE) are evaluated on this dataset. We also report the
Mean Per-Joint Velocity Error (MPJVE) results, which reflect the continuity
of the predicted results. MPI-INF-3DHP is a more challenging 3D human
pose estimation dataset because it includes both indoor and outdoor scenes.
The samples are collected from 8 subjects, each performing 8 actions. The test
set consists of 6 subjects in different scenes. We follow the setup in [2,39,46,50].
For the MPI-INF-3DHP dataset, we report the results of MPJPE, Percentage
of Correct Keypoints (PCK) within the 150mm range, and Area Under Curve
(AUC), following [18,38,50].

4.2 Quantitative Comparison

Results on Human3.6M We first use the 2D keypoints detected by CPN [3]
as the input, and the results are shown in Tab. 1. It can be seen that our method
achieves comparable performance with the state-of-the-art when the chunk size
for inference is large (T = 243). Moreover, our method outperforms previous
methods by a clear margin when the chunk size is small (T = 27, 81), as the
accuracy of our method only decreases slightly when the chunk size is reduced.
Furthermore, the MPJPE at T = 27 is comparable to the previous state-of-
the-art method at T = 81 (42.1 mm vs. 42.0 mm). This indicates that our
method can provide similarly accurate predictions with much lower inference
latency. Additionally, our method exhibits significant improvement in continuity
compared with previous methods, with a 0.2 mm per frame improvement on the
MPJVE metric.

We further use the ground truth 2D keypoints of the Human3.6M dataset as
input to test the upper bound of our method, as shown in Tab. 2. The results
indicate that using the model trained with 243 frames to infer with a chunk size
of 81 improves the MPJPE metric by 2.3 mm compared to the previous state-of-
the-art (22.4 mm vs. 25.7 mm). Moreover, the MPJPE of our method at T = 27
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is remarkably lower than that of previous methods at T = 81, demonstrating our
method’s efficient utilization of transferred knowledge to achieve higher accuracy
with lower inference latency.

Table 1: Comparison of MPJPE, PA-MPJPE and MPJVE on the Human3.6M dataset
using 2D keypoints detected by CPN [3] as input. T is the chunk size when testing.

MPJPE T Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Average
MixSTE [46] 27 - - - - - - - - - - - - - - - 45.1
STCFormer [38] 27 40.7 44.6 41.2 41.9 45.8 53.7 41.5 40.9 55.9 63.8 44.6 41.5 44.7 29.5 30.8 44.1
Ours 27 38.0 41.5 40.0 40.0 44.1 51.3 39.8 41.7 53.1 58.3 43.5 39.8 42.0 28.4 29.6 42.1
Anatomy [2] 81 42.1 43.8 41.0 43.8 46.1 53.5 42.4 43.1 53.9 60.5 45.7 42.1 46.2 32.2 33.8 44.6
PoseFormer [50] 81 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Xue et al. [43] 81 42.1 45.3 40.9 42.9 45.4 52.7 42.6 42.5 55.3 61.8 44.9 41.7 44.9 29.9 30.8 44.2
P-STMO [31] 81 41.7 44.5 41.0 42.9 46.0 51.3 42.8 41.3 54.9 61.8 45.1 42.8 43.8 30.8 30.7 44.1
MixSTE [46] 81 39.8 43.0 38.6 40.1 43.4 50.6 40.6 41.4 52.2 56.7 43.8 40.8 43.9 29.4 30.3 42.4
STCFormer [38] 81 40.6 43.0 38.3 40.2 43.5 52.6 40.3 40.1 51.8 57.7 42.8 39.8 42.3 28.0 29.5 42.0
Ours 81 36.9 40.5 39.0 38.6 43.3 49.6 38.8 40.2 52.6 56.5 42.6 38.8 40.5 26.8 28.4 40.9
VideoPose3D [27] 243 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Anatomy [2] 243 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
Xue et al. [43] 243 39.9 42.7 40.3 42.3 45.0 52.8 40.4 39.3 56.9 61.2 44.1 41.3 42.8 28.4 29.3 43.1
MHFormer [18] 351 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
P-STMO [31] 243 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8
MixSTE [46] 243 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
STCFormer [38] 243 38.4 41.2 36.8 38.0 42.7 50.5 38.7 38.2 52.5 56.8 41.8 38.4 40.2 26.2 27.7 40.5
Ours 243 36.9 40.1 38.7 38.3 42.9 48.6 38.2 40.0 52.5 55.4 42.3 38.7 39.7 26.2 27.8 40.4

PA-MPJPE T Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Average
STCFormer [38] 27 31.9 35.1 32.7 34.1 34.9 41.3 32.1 31.6 45.0 50.6 36.0 31.7 35.5 23.6 25.1 34.8
Ours 27 31.7 33.9 32.3 33.3 35.2 39.1 31.0 31.9 44.0 48.7 36.0 31.0 34.6 23.0 24.8 34.0
Anatomy [2] 81 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6
PoseFormer [50] 81 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
Xue et al. [43] 81 31.6 35.5 32.3 34.2 35.1 40.3 32.3 32.3 44.5 49.6 35.8 31.6 35.0 23.7 24.7 34.6
MixSTE [46] 81 32.0 34.2 31.7 33.7 34.4 39.2 32.0 31.8 42.9 46.9 35.5 32.0 34.4 23.6 25.2 33.9
STCFormer [38] 81 30.4 33.8 31.1 31.7 33.5 39.5 30.8 30.0 41.8 45.8 34.3 30.1 32.8 21.9 23.4 32.7
Ours 81 30.5 33.1 31.4 31.6 33.0 38.4 29.8 30.6 43.6 45.4 34.4 30.3 32.4 21.5 22.2 32.6
VideoPose3D [27] 243 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Anatomy [2] 243 32.6 35.1 32.8 35.4 36.3 40.4 32.4 32.3 42.7 49.0 36.8 32.4 36.0 24.9 26.5 35.0
Xue et al. [43] 243 31.2 34.1 31.9 33.8 33.9 39.5 31.6 30.0 45.4 48.1 35.0 31.1 33.5 22.4 23.6 33.7
P-STMO [31] 243 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
MixSTE [46] 243 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
STCFormer [38] 243 29.3 33.0 30.7 30.6 32.7 38.2 29.7 28.8 42.2 45.0 33.3 29.4 31.5 20.9 22.3 31.8
Ours 243 30.8 33.1 31.3 31.8 33.4 37.7 30.1 30.5 43.4 45.5 34.3 30.3 31.5 21.4 22.7 32.5

MPJVE T Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Average
VideoPose3D [27] 243 3.0 3.1 2.2 3.4 2.3 2.7 2.7 3.1 2.1 2.9 2.3 2.4 3.7 3.1 2.8 2.8
Anatomy [2] 243 2.7 2.8 2.0 3.1 2.0 2.4 2.4 2.8 1.8 2.4 2.0 2.1 3.4 2.7 2.4 2.5
PoseFormer [50] 81 3.2 3.4 2.6 3.6 2.6 3.0 2.9 3.2 2.6 3.3 2.7 2.7 3.8 3.2 2.9 3.1
StridedFormer [17] 351 2.4 2.5 1.8 2.8 1.8 2.2 2.2 2.5 1.5 2.0 1.8 1.9 3.2 2.5 2.1 2.2
MixSTE [46] 243 2.5 2.7 1.9 2.8 1.9 2.2 2.3 2.6 1.6 2.2 1.9 2.0 3.1 2.6 2.2 2.3
Ours 81 2.3 2.4 1.8 2.6 1.7 2.1 2.1 2.5 1.5 2.1 1.8 1.9 3.0 2.4 2.0 2.2
Ours 243 2.3 2.4 1.8 2.6 1.7 2.1 2.1 2.5 1.5 2.1 1.8 1.9 3.0 2.4 2.0 2.0

Results on MPI-INF-3DHP The results on the MPI-INF-3DHP datasets
are shown in Tab. 3. An improvement of 0.9 mm on the MPJPE metric is
achieved at T = 81, and the improvement becomes more remarkable as the
chunk size decreases. In particular, our method outperforms previous methods
very significantly with an improvement of 4.1 mm on the MPJPE metric when
T is 9. Similar to the phenomenon on the Human3.6M dataset, our method is
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Table 2: Comparison of MPJPE on the Human3.6M dataset using 2D ground truth
keypoints as input.

MPJPE T Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Average
Ours 27 23.7 24.8 23.5 24.4 23.6 28.1 27.2 25.3 26.7 27.9 25.0 23.5 23.6 17.2 18.7 24.2
PoseFormer [50] 81 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
Xue et al. [43] 81 27.6 28.8 24.9 25.7 26.7 30.6 30.8 26.4 35.8 32.7 27.1 26.2 25.6 19.2 20.6 27.2
MixSTE [46] 81 25.6 27.8 24.5 25.7 24.9 29.9 28.6 27.4 29.9 29.0 26.1 25.0 25.2 18.7 19.9 25.9
STCFormer [38] 81 26.2 26.5 23.4 24.6 25.0 28.6 28.3 24.6 30.9 33.7 25.7 25.3 24.6 18.6 19.7 25.7
Ours 81 20.9 22.5 21.8 21.5 22.0 25.6 23.4 23.7 28.1 28.8 23.9 20.9 21.1 14.9 16.3 22.4
Xue et al. [43] 243 25.8 25.2 23.3 23.5 24.0 27.4 27.9 24.4 29.3 30.1 24.9 24.1 23.3 18.6 19.7 24.7
MHFormer [18] 351 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5
P-STMO [31] 243 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3
MixSTE [46] 243 21.6 22.0 20.4 21.0 20.8 24.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.7 21.6
STCFormer [38] 243 21.4 22.6 21.0 21.3 23.8 26.0 24.2 20.0 28.9 28.0 22.3 21.4 20.1 14.2 15.0 22.0
Ours 243 20.0 21.1 20.9 20.8 20.1 24.9 23.5 22.5 26.5 39.6 21.7 20.9 20.4 14.5 15.7 21.5

comparable to or better than previous methods with an even smaller chunk size.
For example, the MPJPE of our method at T = 27 is better than STCFormer
at T = 81 (22.7 mm vs. 23.1 mm). And the MPJPE of our method at T = 9
is similar to STCFormer at T = 27 (24.1 mm vs. 24.2 mm). These results show
that our method generalizes well on different datasets.

Table 3: Comparison of quantitative results on the MPI-INF-3DHP dataset. ↑: higher
is better. ↓: lower is better.

Method T PCK↑ AUC↑ MPJPE↓
PoseFormer [50] 9 88.6 56.4 77.1
CrossFormer [10] 9 89.1 57.5 76.3
MHFormer [18] 9 93.8 63.3 58.0
STCFormer [38] 9 98.2 81.5 28.2
Ours 9 98.9 83.3 24.1
Lin et al. [20] 25 83.6 51.4 79.8
MixSTE [46] 27 94.4 66.5 54.9
STCFormer [38] 27 98.4 83.4 24.2
Ours 27 99.1 84.1 22.7
UGCN [39] 96 86.9 62.1 68.1
Anatomy [2] 81 87.8 53.8 79.1
Hu et al. [12] 96 97.9 69.5 42.5
Einfalt et al. [8] 81 95.4 67.6 46.9
P-STMO [31] 81 97.9 75.8 32.2
STCFormer [38] 81 98.7 83.9 23.1
Ours 81 99.1 84.4 22.2

4.3 Qualitative Results

Visualization on Continuity We compute the MPJVE of the results predicted
by MixSTE, STCFormer and our method at different timesteps, and visualize
the curves in Fig. 3. It can be seen that the MPJVE of our method is lower than
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that of previous methods. Our method captures temporal information using non-
overlapping shift windows, similar to MixSTE. However, our method produces
more continuous results at the edge between two chunks compared to MixSTE.
MixSTE independently estimates two consecutive chunks, which results in a
lack of continuity at the edge. n contrast, our method incorporates temporal
information from previous chunks through the cross-chunk state, which improves
the continuity. Compared to STCFormer, our method generally produces more
continuous results. This is because our method generates multiple frames each
time, allowing for the continuity constraints to the output.

𝑖-th chunk (𝑖 + 1)-th chunk

Fig. 3: Comparison of the MPJVE curves over time between MixSTE, STCFormer
and our method.
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Fig. 4: Comparison of some visualization results predicted by MixSTE [46], STC-
Former [38] and our method. The black skeletons are the ground truth, and the red
skeletons are the predicted results. The comparison with MixSTE is shown in green
circles, while the comparison with STCFormer is shown in blue circles.
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Visualization of Results We present some visualization examples in Fig. 4,
where the results are predicted by MixSTE [46], STCFormer [38] and our method,
respectively. It can be seen that our method predicts more accurate results, and
the improvement is visually obvious. More visualization results can be found in
the Supp. Mat.

4.4 Ablation Study

Ablations on Knowledge Transfer The knowledge transferred from large
training chunks to smaller test chunks plays an important role in our method. To
demonstrate this, we train the model with chunk sizes of 27 and 81, respectively,
and compare the performance of these models with that of the model trained
with T = 243. The results are shown in Tab. 4 (2nd to 4th rows). It can be
seen that compared with the models trained with T = 27 and 81, using the
models trained with a larger chunk size (T = 243) for inference is significantly
better. This indicates that the knowledge learned with large chunks is useful for
reasoning about small chunks.

Table 4: Comparison of different methods in terms of knowledge transfer.

Method Train T Test T = 27 Test T = 81 Test T = 243
Previous SOTA Same as test T 44.1 42.0 40.5
Ours 27 43.7 - -
Ours 81 43.0 41.9 -
Ours 243 42.1 40.9 40.4
MixSTE w.t. xPos 27 45.3 - -
MixSTE w.t. xPos 81 47.0 42.6 -
MixSTE w.t. xPos 243 48.8 44.1 41.1
Ours w.o. state 27 46.3 - -
Ours w.o. state 81 49.1 44.0 -
Ours w.o. state 243 54.2 49.8 42.5

Effect of Cross-Chunk State We compare our methods with two baselines
that do not use the cross-chunk state: the MixSTE model with xPos as the
position embedding, and the model based on RetNet but without the cross-chunk
state. These two baselines are able to handle sequences of different lengths, but
can only use within-chunk information. The results are shown in Tab. 4 (bottom
six rows). It can be seen that the two baselines without long-term historical
information deteriorate rapidly as the gap between the training and test chunk
sizes increases. This means that they cannot efficiently transfer knowledge from
large chunks to small chunks. Therefore, the cross-chunk state is essential for
knowledge transfer in our method, and our NC-RetNet is the first method to
have this knowledge transfer property.
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Comparison of Computational Cost The comparison of the model parame-
ters and computational cost of our method and previous methods is as shown in
Tab. 5. For seq2seq methods, the FLOPs are averaged over the number of frames,
since the prediction of a single inference yields results over multiple frames. It
can be seen that our modification of MixSTE does not bring any increase in
the model parameters or FLOPs. And compared to STCFormer [38], which has
comparable performance to our method at T = 243, the computational cost of
our method is much lower (430 M vs. 78107 M).

Table 5: Comparison of model parameters, computational cost. FLOPs for seq2seq
and our methods is averaged over the number of output frames, as is done in [46].

Method Params (M) FLOPs (M) MPJPE (T=243)
StridedFormer [17] 4.2 1372 44.0
P-STMO [31] 6.7 1737 42.8
MHFormer [18] 24.7 4812 43.2
MixSTE [46] 33.6 572 40.9
STCFormer [38] 18.9 78107 40.5
Ours 25.2 430 40.4

5 Conclusion

In this paper, we propose the first 3D human pose estimation model based on
Retentive Networks, NC-RetNet. By using the non-causal masking, it effectively
leverages a large number of past frames and a limited number of future frames
to incorporate temporal information. Furthermore, we introduce a knowledge
transfer strategy that involves training the model with a larger chunk size and
using a smaller chunk size during inference, resulting in reduced inference la-
tency without too much loss in accuracy. Through extensive experiments on
the Human3.6M and MPI-INF-3DHP datasets, our approach has demonstrated
state-of-the-art performance even with a smaller test chunk size. In conclusion,
our method achieves a good balance between high accuracy and low inference
latency, making it suitable for real-time scenarios.

Limitations Admittedly, there are two limitations in our work. Firstly, the
fundamental theory behind our method’s ability to transfer knowledge is unclear,
despite our study of the effect of the cross-chunk state. Secondly, we have only
tested our method in the 2D-to-3D lifting task. However, the idea of transferring
knowledge from large chunks to smaller chunks is universal to many sequential
data in computer vision. Further work is required to explain the theory and
explore more applications.
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