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1 Supplement of ablation study

In this section, we further discuss the effectiveness of some components of our
method, as well as the robustness of the input data.

Keyframe selection and template surface learning. Compared to directly
setting the middle frame as a keyframe, Fig. 1 shows that the selected keyframe
by our strategy is closer to the average shape. After learning the template surface,
we also show the results of only using the fine stage (Fig. 1 (b)) and using
the coarse-to-fine stage (Fig. 1 (c)). Based on Fig. 1 (c), we further show the
enhanced template surface after the temporal reconstruction process.

(a) Input: 1-st 5-th 9-th 14-th 16-th 17-th

(b) w.o. Coarse (c) Coarse-to-fine (d) Enhanced

Fig. 1: Visual results of the template surface learned from different settings. For input
point clouds, we use the green circle to mark the middle frame and the red circle to
mark the template frame we selected.
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Arbitrarily long point cloud sequence. Our method is theoretically in-
dependent of the sequence length. We experimented with sequences of vari-
ous lengths on "50007_shake_shoulders" sequence from DFAUST. As shown
in Tab. 1 below, our method can effectively handle sequences of varying lengths.
When the sequence is relatively long, the reconstruction quality decreases slightly
due to the diversity of deformations.

Table 1: Results of our method on sequences with various lengths.

Sequence length CD(×10−4) ↓ NC ↑ F-0.5% ↑ F-1% ↑ Corr. (×10−2) ↓

10 0.154 0.957 0.866 0.992 0.53
30 0.138 0.954 0.876 0.994 0.97
50 0.167 0.955 0.831 0.989 1.46
80 0.265 0.946 0.704 0.960 1.72

Various data qualities. We experimented with point clouds of different qual-
ities on the AMA dataset: (1) we randomly sampled Nk points from the ground
truth mesh respectively as input of our method; and (2) we randomly sampled
5000 points from ground truth mesh, randomly selected 10 points from them,
and deleted the hk nearest neighbor points of these points to construct point
clouds with holes. As listed in Tab. 2, our method shows robustness to vari-
ations in point cloud density and holes. We also showcase the visualization of
constructed point clouds with various qualities in Fig. 2.

Table 2: Results of our method on point clouds with various qualities.

Input Data CD(×10−4) ↓ NC ↑ F-0.5% ↑ F-1% ↑ Corr. (×10−2) ↓

(1)
Nk = 2000 0.451 0.906 0.563 0.899 3.54
Nk = 3000 0.402 0.911 0.610 0.916 3.46
Nk = 4000 0.381 0.913 0.597 0.921 3.41

(2)
hk = 10 0.336 0.918 0.634 0.935 2.88
hk = 20 0.366 0.914 0.617 0.926 3.57
hk = 30 0.405 0.911 0.587 0.912 3.50

GT-normal 0.318 0.918 0.656 0.940 3.10

Ours 0.324 0.919 0.649 0.939 2.89

Dependence on the normal direction. In all experiments, we did not use any
ground-truth normals. Instead, we first use the algorithm in PyMeshLab [5] to
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Fig. 2: Visualization of an input point cloud with various qualities.

estimate the normals of input point clouds. We then adjust the normal directions
to ensure that the majority of normals point outward. Besides, we also replaced
estimated normals with ground-truth normals in our method. As listed in Tab. 2,
the performance is comparable to Ours, demonstrating the robustness of our
method to normals of input point clouds.

Visualization of omitting loss terms. Additionally, Fig. 3 illustrates the
visual results of our method when different loss terms are omitted. We can see
that our method, incorporating all loss terms, achieves the best results.

2 More visual results

We present more visual results in this section and showcase the complete motion
sequences in the Video Demo.

Comparisons with state-of-the-art methods. We present additional visual
results for comparisons with LPDC [9] and Cadex [2] on the AMA dataset [10]
(Fig. 4), DT4D dataset [3] (Fig. 5) and DFAUST dataset [1] (Fig. 6). It is evident
that our method outperforms other approaches.

Performance on noisy data and partially missing data. Furthermore,
in Fig. 7, we showcase more visual results of our method applied to noisy data
constructed from the DFAUST dataset [1] and partially missing data constructed
from AMA dataset [10], respectively.

3 Technical Details

In this section, we introduce the parameter settings and explain some definitions
in the loss functions and evaluation metrics mentioned in the paper.
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(a) (b) (c) (d) (e) (f)

Fig. 3: Comparison of visual results by different variants of excluding a certain loss in
our method. (a) Input; (b) w.o. LR-SDF; (c) w.o. LNorm; (d) w.o. LSmo; (e) w.o. LShape;
f) Ours.

Parameter settings. Reconstructing temporally consistent dynamic surfaces
from point cloud sequences is challenging, especially for our unsupervised learn-
ing scenario. Therefore, we need multiple hyperparameters associated with the
regularization terms for shrinking the large solution space of our unsupervised
pipeline, we have uniformly set them to default values in all experiments and
found that they generally work well for most examples, minimizing the need for
additional parameter adjustments for new datasets. By default, in the calcula-
tion of the loss function (8), we set the number of the points for both Ṽk in Eq.
(9) and Qs in Eq. (10) to be 104. We set η = 0.1 in Eq. (7), α = 5.56 in Eq. (9)
and β = 50, γ = 102 in Eq. (10). The default weights setting in the loss function
are listed in Tab. 3. In addition, we also showcase the number of iterations and
training time in this table.

Table 3: Default parameter settings and runtime. For the learning template surface,
we listed iterations and running time for the coarse/fine stage.

Learning template surface Temporal reconstruction

w̃1 w̃2 w̃3 #Iters Time w1 w2 w3 w4 w5 #Iters Time

5× 102 10−3 50 103 / 5× 103 10 s/ 2 mins 5× 102 10−3 102 103 1 104 30 mins
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(a) Input (b) LPDC [9] (c) Cadex [2] (d) Ours
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Fig. 4: Comparison of visual results by different methods on the AMA dataset [10].

The details of loss functions. The Chamfer Distance between X and Y is
defined as

CDℓp(X,Y) =
1

|X̃|

∑
x∈X̃

∥x− ŷ∥ℓp +
1

|Ỹ|

∑
y∈Ỹ

∥y − x̂∥ℓp , (1)

where p = 1, 2. ŷ ∈ Ỹ and x̂ ∈ X̃ are the closest points for the x and y
respectively. When X(or Y) is a point set, X̃ = X(or Ỹ = Y). When X(or Y)

represents a mesh, X̃(or Ỹ) denotes the sampling point on the mesh. In the
learning phase, we set the number of sampling points to 104, and during the
evaluation, we set the number of sampling points to 105.

In Eqs. (3) and (8), the normal consistency of X and Y is defined as

NCℓ1(X,Y) =
1

|Nx|
∑

nx∈Nx

|1− |⟨nx,nŷ⟩||+
1

|Ny|
∑

ny∈Ny

|1− |⟨ny,nx̂⟩|| , (2)
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Fig. 5: Comparison of visual results by different methods on the DT4D dataset.

where Nx and Ny are the normal sets of X̃ and Ỹ, respectively, nŷ ∈ Ny and
nx̂ ∈ Nx are the corresponding normals of ŷ and x̂ respectively. ⟨·, ·⟩ is the inner
product of two vectors.

In Eq. (4), the SDF value SDFIMLS(q,Pk∗) at q approximated through im-
plicit moving least-squares is defined as

SDFIMLS(q,Pk∗) =

∑
pj∈N (q) θ(∥q− pj∥, ζ) · ⟨q− pj ,nj⟩∑

pj∈N (q) θ(∥q− pj∥, ζ)
, (3)

where N (q) denotes the set of nearest points in Pk∗ . θ(d, ζ) = exp(−d2/ζ2) is
the weight of each point in N (q). Here we set |N (q)| = 10 and ζ = 0.1 by
default.

Evaluation metrics. Following [4,7,8], the F-score to evaluate the reconstruc-
tion accuracy is defined as:

F-score(Mk,MGT
k , ϵ) =

2 · Recall · Precision
Recall + Precision

, (4)
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(a) Input (b) LPDC [9] (c) Cadex [2] (d) Ours
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Fig. 6: Comparison of visual results by different methods on the DFAUST dataset.

where

Recall(Mk,MGT
k , ϵ) =

∣∣∣∣∣
{
p1 ∈ P̃k, s.t. min

p2∈P̃GT
k

∥p1 − p2∥ < ϵ

}∣∣∣∣∣ ,
Precision(Mk,MGT

k , ϵ) =

∣∣∣∣∣
{
p2 ∈ P̃GT

k , s.t. min
p1∈P̃k

∥p1 − p2∥ < ϵ

}∣∣∣∣∣ .
Here MGT

k is the k-th ground-truth mesh, P̃k(P̃
GT
k ) is the point set of the

randomly sampling 105 points from Mk(MGT
k ). We set ϵ to 0.5% or 1%, and

compute mean value of F-score(Mk,MGT
k , ϵ) (k = 1, 2, ...,K) to get F-0.5% or

F-1%.



8 Y. Yao, S. Ren et al.

We denote {PGT(k)}k as the temporally consistent corresponding points
on the ground-truth surfaces. We set |PGT(k)| = 105. In the first frame, we
construct the index set of nearest points:

Index = {ρi|vρi
= argmin

v∈V1

∥v − pGT
i (1)∥},

where V1 is the vertex set of 1-st reconstructed mesh M1, pGT
i (1) ∈ PGT(1).

Following [2, 6], the Correspondences Error is defined as

Corr. =
1

|Index| ·K

K∑
k=1

∑
ρi∈Index

∥vk
ρi

− pGT
i (k)∥.
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Fig. 7: Visual results of our method on constructed noisy data from the DFAUST
dataset [1] (Top) and partially missing data from AMA dataset [10] (Bottom).
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