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Abstract. We present the All-Seeing Project V2: a new model and
dataset designed for understanding object relations in images. Specifi-
cally, we propose the All-Seeing Model V2 (ASMv2) that integrates the
formulation of text generation, object localization, and relation compre-
hension into a relation conversation (ReC) task. Leveraging this unified
task, our model excels not only in perceiving and recognizing all ob-
jects within the image but also in grasping the intricate relation graph
between them, diminishing the relation hallucination often encountered
by Multi-modal Large Language Models (MLLMs). To facilitate training
and evaluation of MLLMs in relation understanding, we created the first
high-quality ReC dataset (AS-V2) which is aligned with the format of
standard instruction tuning data. In addition, we design a new bench-
mark, termed Circular-based Relation Probing Evaluation (CRPE) for
comprehensively evaluating the relation comprehension capabilities of
MLLMs. Notably, our ASMv2 achieves an overall accuracy of 64.50 on
this relation-aware benchmark, surpassing the 55.63 of LLaVA-1.5 by a
large margin. We hope that our work can inspire more future research
and contribute to the evolution towards artificial general intelligence. Our
project is released at https://github.com/OpenGVLab/all-seeing.
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1 Introduction

The study of artificial general intelligence (AGI) systems that can match human
intelligence and excel in any task across domains represents the ultimate goal
in the field of artificial intelligence. Benefiting from the advancements of Large
Language Models (LLMs), Multi-modal Large Language Models (MLLMs) have
demonstrated impressive capabilities in a variety of Vision-Language tasks, sug-
gesting new avenues for achieving AGI. However, as shown in Fig. 1a, most
popular MLLMs [11,52,53] are limited to understanding images as a whole.
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(a) Multi-modal Large Lan-
guage Models (MLLMs) can
process both text and images,
but they can only capture the
holistic visual information of
the whole image.
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(b) Grounded MLLMs can
link the objects mentioned in
the sentence to the regions in
the image while struggling to
efficiently understand the re-
lations between objects.
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(c) Our ASMv2 can compre-
hend and ground the relations
between the objects in the
image while maintaining the
capabilities of MLLMs and
Grounded MLLMs.

Fig. 1: Overview and comparison of our All-Seeing Model v2 with other
MLLMs. In this project, we propose (1) a novel task, termed Relation Conversation
(ReC), which unifies the formulation of text generation, object localization, and relation
comprehension; (2) a high-quality dataset AS-V2, which consists of over 127K samples
for ReC; (3) the All-Seeing Model v2 (ASMv2), which is capable of comprehending
and grounding the relations between the objects in the image.

As an effective method to improve interaction efficiency, the capabilities
of grounding and referring (i.e., adopting bounding boxes in responses) have
attracted increasing attention and have been widely integrated into current
Grounded MLLMs [2,8,62,77,78]. Such capabilities empower models to provide
visual responses (e.g ., bounding boxes), supporting more vision-language tasks
such as region captioning [33,59], referring expression comprehension [32,59], and
referring question answering [88]. However, as shown in Fig. 1b, existing models
primarily focus on recognizing certain objects within images, overlooking the
perception of relations between these objects. Due to the lack of appropriate
modeling methods and suitable training data for relation knowledge, these mod-
els struggle to comprehend the inter-object relations within images accurately.
Consequently, these models are prone to hallucinations when dealing with rela-
tion questions or overly relying on language priors for judgment.

To enhance relation comprehension ability while maintaining grounding, re-
ferring, and other general capabilities, we introduce a novel task, termed Relation
Conversation (ReC). The formulation of ReC unifies the modeling of text gener-
ation, object localization, and relation comprehension. Specifically, as depicted
in Fig. 1c, ReC requires the model to generate the text response while linking
all mentioned objects as well as the subjects and objects of each predicate in the
response to the corresponding regions in the image simultaneously. Such explicit
requirement for predicate grounding challenges the model to comprehend rela-
tions between objects within the image. Notably, models trained on ReC can be
naturally adapted to the Scene Graph Generation task. The grounded objects
serve as the nodes in the scene graph while the grounded predicates serve as
the edges. Compared with the traditional scene graph generation, ReC enables
the model to generate the scene graph in an open-ended manner, demonstrat-
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In the image, a young girl is holding and eating 
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appears to be smiling. Beside her, there is a 
man who is also sitting on the same chair.

No, the girl is the one holding the  pizza.

A man is sitting next to a girl who is holding a 
slice of pizza.

Fig. 2: Examples of relation conversation responses from ASMv2.

ing the potential to generalize to previously unseen predicate labels, while also
maintaining the general ability of MLLMs.

From the data aspect, we construct the All-Seeing Dataset V2 (AS-V2) com-
prising 127K high-quality relation conversation samples, which is built upon the
existing caption [10], location [47], and relation [81] annotations. Combining AS-
V2 with other image-level and region-level multimodal corpora for training, we
propose the All-Seeing Model v2 (ASMv2). Benefiting from the tailored task for-
mat and data, our model can deal with three types of relation tasks, including
(1) Relation Conversation, which requires the model to link all mentioned ob-
jects and predicates to the corresponding regions in the image; (2) Open-ended
Scene Graph Generation, which requires the model to generate a scene graph
based on the given image in an open-ended manner; (3) Predicate Classifica-
tion, which requires the model to generate a scene graph given the ground-truth
object labels and localization. An example of ASMv2 is shown in Fig. 2.

To evaluate the relation comprehension ability of existing MLLMs, we con-
struct a benchmark called Circular-based Relation Probing Evaluation (CRPE),
which is the first benchmark that covers all elements of the relation triplets
(subject, predicate, object), providing a systematic platform for the eval-
uation of relation comprehension ability. CRPE is formulated as single-choice
questions and consists of four splits: Existence, Subject, Predicate, and Object.
The Existence split evaluates the object recognition ability while the remaining
splits are designed to evaluate the relation comprehension capability. Addition-
ally, to evaluate the dependency on language priors, we include abnormal data
in CRPE, which depict relations that are rare but reasonable in the real world.

Our main contributions are as follows:
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(1) We introduce the All-Seeing Project V2, which endows MLLMs with the
ability not only to perceive all objects within the image but also to recognize
the relations between these objects, leading to superior relation comprehension
capability and the potential to generate scene graphs in an open-ended manner.

(2) We propose a novel task, termed Relation Conversation, and the corre-
sponding formulation method, unifying the modeling of captioning, grounding,
and relation tasks flexibly. Based on the task and formulation, we constructed
the AS-V2 dataset. Combining AS-V2 with other general multimodal corpora
for training, we propose the All-Seeing Model v2 (ASMv2), which demonstrates
powerful performance across various tasks, including Open-ended Scene Graph
Generation and other general image-level and region-level vision-language tasks.

(3) To evaluate the relation comprehension ability of existing MLLMs, we
construct the CRPE benchmark. Notably, our ASMv2 achieves an overall accu-
racy of 64.50 on CRPE, surpassing the 55.63 of LLaVA-1.5 by a large margin.
We also evaluate ASMv2 on various image-level and region-level vision-language
tasks. Specifically, our model achieves an overall score of 74.4 on MMBench [54]
and 1621.0 on MME [18], surpassing LLaVA-1.5 [52] by 5.5 points and 90.0
points separately. Besides, the average accuracy of ASMv2 on grounding bench-
marks [32,59] is 87.42, outperforming Qwen-VL [2] by 1.69 points.

2 Related Work

2.1 Vision-Language Models

Significant advancements have been made in the field of visual recognition and
understanding in recent years. Models based on the image-text matching frame-
work [11, 17, 29, 65] achieve powerful zero-shot performance on various down-
stream tasks, thereby initiating the era of open-world semantic recognition and
understanding. Subsequent works [39, 84] further integrate this framework with
language modeling tasks to support more generative tasks. The recent progress
of Large Language Models [5,60,74] leads to the emergency of many LLM-based
multimodal models [11,30,37,40,49,53,73,78,86,91,103], which aim to integrate
the powerful understanding and reasoning ability of LLMs with multimodal per-
ception and comprehension. Despite their powerful performance, these works
are only capable of capturing the holistic visual information of the whole image.
Some recent methods [8, 34, 55, 61, 62, 66, 77, 92, 95] begin to focus on location-
aware understanding. However, due to the lack of appropriate modeling methods
and training data for relation comprehension, these methods struggle to com-
prehend the inter-object relations within images accurately. To enhance relation
comprehension ability while maintaining other general capabilities of MLLMs,
we introduce a novel task, termed Relation Conversation, which unifies the for-
mulation of text generation, object localization, and relation comprehension.

2.2 Scene Graph Generation

Scene Graph Generation (SGG) [56] is a crucial task in scene understanding
and has attracted substantial interest across the research community. This area
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has witnessed the proposal of diverse model architectures, including message-
passing-based frameworks [14, 22, 24, 43, 44, 89], attention-based networks [64,
100], tree-structured networks [26, 93], and DETR-based networks [13, 41, 68].
While most existing methods only utilize images as input, recent works begin to
incorporate language information or knowledge graphs to facilitate SGG [16,27,
45,56,94,102], although the scope of language utilization remains limited to basic
object or relation concepts. Compared to prior specialized models, our model is a
powerful general model with strong vision-language understanding and reasoning
ability and can generate the scene graph in an open-ended manner, exhibiting
the potential to generalize to previously unseen predicate labels.

2.3 Benchmarks for Relation Comprehension

Evaluating the comprehension of relations between objects is a crucial aspect
of advancing MLLMs. Benchmarks like Visual Genome [33] and COCO [10, 47]
provide foundational datasets for object detection and image captioning. These
datasets primarily focus on individual object recognition and general descriptive
capabilities. They include annotations for object relations but are not explic-
itly designed to probe the depth of relation comprehension in a structured and
focused manner. Some synthetic datasets [1, 31, 71], are introduced to probe
the spatial reasoning capabilities of vision-language models. These datasets offer
controlled environments for model evaluation but inherently limit the problem’s
scope due to their bounded expressivity. The Visual Spatial Reasoning (VSR)
dataset [50] asks the model to classify whether the caption correctly describes the
relation of two objects presented in the image. This approach primarily focuses
on binary classification tasks instead of the understanding of relations within
the scene. In this work, we introduce the CRPE benchmark, which consists of
different splits and each split is designed to probe one of the elements in the re-
lation triplet (subject, predicate, object). Therefore, we can evaluate the
relation comprehension ability of existing MLLMs more systematically.

3 Data Construction

3.1 The All-Seeing Dataset v2

Our objective is to establish a dataset to unlock the Relation Conversation ca-
pability for Multi-modal Large Language Models (MLLMs), which requires the
model to predict not only the bounding boxes of each object but also those of the
subjects and objects for each predicate mentioned in the sentence. In this sec-
tion, we elaborate on the method for constructing the training dataset for ReC,
termed All-Seeing Dataset v2 (AS-V2). Specifically, we utilize GPT-4V [61] to
construct AS-V2 based on COCO images [6] and their annotations [10, 47, 81].
The key idea is to query GPT-4V to generate responses while linking the objects
and predicates mentioned in the generated response to specific regions within
the image, referring to the given location annotations and relation annotations.
The formulation of Relation Conversation is presented in Sec. 4.1.
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In the image, a tall red bus is driving on a road through a busy 
intersection in a metropolitan area. The bus is surrounded by various 
cars, with one car beside the bus and driving on the same road. There 
are multiple people visible in the scene, with one person in the bus 
and others on the surrounding pavement and road. The backdrop 
features buildings and trees, with a clear sky above. The scene 
captures the essence of city life with its bustling traffic and urban 
architecture.Describe the image in detail.
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Fig. 3: Data example in the AS-V2 dataset. In the relation conversation, all
mentioned objects are linked to their corresponding regions within the image while the
predicates are linked to the regions corresponding to their subjects and objects.

The prompt for GPT-4V comprises six components: (1) Task description,
which explains the formulation of relation conversation. (2) Image to be an-
notated. (3) Caption annotations of this image, intended to enhance GPT-
4V’s understanding of the scene. (4) Location annotations, which are the
bounding boxes of the objects in the scene and guide GPT-4V in annotating
the objects in the caption. (5) Relation annotations, which are presented as a
list of (subject, predicate, object) triplets and help GPT-4V to annotate
the predicate in the caption. (6) Seed examples, which are manually anno-
tated to assist GPT-4V in comprehending the task description and formatting
the output. Although the caption annotations are not necessary for GPT-4V to
produce the desired relation conversation data, incorporating these details into
the prompt significantly reduces the hallucinations in the generated data. An
example of the prompt is presented in Appendix B.

The generated data comprise three types, including: (1) Detailed descrip-
tion, which requires the model to generate a comprehensive description for an
image. (2) Region captioning, which requires the model to generate a com-
prehensive description for a certain region within the image. (3) Conversation,
which requires the model to respond to the user query in the multi-turn conversa-
tion. The question types include the relations between objects, the object types,
counting the objects, object actions, object locations, and relative positions be-
tween objects. Each type of data is generated using different task descriptions
and human-annotated seed examples. These tasks require the model to under-
stand pointer instructions (e.g ., utilizing bounding boxes as prompts) and link
the objects and predicates mentioned in the generated response to the image
regions. An example is shown in Fig. 3, with more examples in Appendix B.

In this way, we collected 127K relation conversation samples in total, includ-
ing 42K in detailed descriptions, 63K in region captioning, and 22K in conver-
sations (90K turns in total), respectively. The conversation samples also include
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Question: What is the relation between the 
bird and the bench?
Choices: 
A. The bird is beside the bench.
B. The bird is flying over the bench.
C. The bird is attached to the bench.
D. The bird is sitting on the bench.

LLaVA-1.5: D. The bird is sitting on the bench.
ASMv2: A. The bird is beside the bench.

Question: What is the relation between the 
person and the umbrella?
Choices: 
A. The person is holding the umbrella.
B. The person is attached to the umbrella.
C. The person is standing on the umbrella.
D. The person is touching the umbrella.

LLaVA-1.5: B. The person is attached to the umbrella.
ASMv2: C. The person is standing on the umbrella.
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Qustion(Pred.): What is the relation between the clock 
and the pavement?
Choices:
A. The clock is beside the pavement.
B. The clock is in front of the pavement.
C. The clock is over the pavement.
D. The clock is in the pavement.

Question(Obj.): What is the person on?
Choices: 
A. The person is on the platform.
B. The person is on the sand.
C. The person is on the surfboard.
D. The person is on the building.

Question(Exist.): Which of the following 
objects exists in the image?
Choices: 
A. Grass. 
B. Floor.
C. Parking meter.
D. Dining table.

Question(Subj.): What is in front of the dining table?
Choices:
A. The light is in front of the dining table.
B. The cabinet is in front of the dining table.
C. The window is in front of the dining table.
D. The person is in front of the dining table.

Fig. 4: Data examples in the CRPE. The benchmark consists of four splits: Exis-
tence, Subject, Predicate, and Object. A qualitative comparison in abnormal data
between LLaVA-1.5 and ASMv2 is shown at the bottom.

negative instructions to enhance model robustness. These instances contain in-
correct relations, and the model should be able to recognize their incorrectness.

3.2 Circular-based Relation Probing Evaluation

In this section, we introduce CRPE, a benchmark designed to quantitatively
evaluate the object recognition and relation comprehension capabilities of mod-
els. The evaluation is formulated as single-choice questions. For a robust evalu-
ation, we adopt CircularEval [54] as our evaluation strategy. Under this setting,
a question is considered as correctly answered only when the model consistently
predicts the correct answer in each of the N iterations, with N corresponding to
the number of choices. In each iteration, a circular shift is applied to both the
choices and the answer to form a new query for the model.

As shown in Fig. 4, each sample in our benchmark consists of an image and
a single-choice question with one correct answer and three wrong answers. The
location annotations [47] and the triplets (subject, predicate, object) in
the relation annotations [81] are utilized to generate the evaluation data. We
construct four evaluation splits, including (1) the Existence split: the question
of this split is “Which of the following objects exists in the images? ”. The correct
answer is sampled from the semantic tags that exist in the image while the
incorrect answer is sampled from those not exist in the image. (2) the Subject
split: we generate the question based on the template “What is <predicate> the
<object>? ” and consider the subject in the triplet as the correct answer. The
negative subjects are sampled from other semantic tags that exist in the image.
(3) the Predicate split: we generate the question based on the template “What
is the relation between <subject> and <object>? ” and consider the predicate in
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the triplet as the correct answer. The negative predicates are randomly sampled.
Only the predicates satisfying P (p|s) > 0 and P (p|o) > 0 can be sampled,
where p, s, o refer to predicates, subjects, and objects, separately. (4) the Object
split: we generate the question based on the template “What is the <subject>
<predicate>? ” and consider the object in the triplet as the correct answer. The
negative objects are sampled from other semantic tags that exist in the image.
To avoid reference ambiguity, we ensure that the semantic tags of the subject
and object in each triplet are distinct in the image. We also manually verify the
generated samples and filter those with ambiguous questions or choices.

Additionally, to evaluate the dependency on language priors, we further in-
clude abnormal data in the Predicate split, which depict relations that are rare
but reasonable in the real world. Specifically, we first select relation triplets with
minimal P (p|s, o) and then employ DALLE-3 [3] to generate corresponding im-
ages for these triplets. Considering that the generated images might not match
the specified triplets exactly, we perform a manual filtering process for these
triplet-image pairs to ensure data quality. After that, we generate the evaluation
data using the method mentioned above. Fig. 4 shows abnormal examples at the
bottom and more examples are presented in Appendix D.

4 The All-Seeing Model v2

ASMv2 is a powerful Multi-modal Large Language Model (MLLM), which inte-
grates the Relation Conversation (ReC) ability while maintaining powerful gen-
eral capabilities. Specifically, it follows the model architecture of LLaVA-1.5 [52],
comprising a vision encoder, a vision-language connector, and a language model.
The Vicuna-13B [99] and CLIP-ViT-L-336px [20] are utilized as the language
and vision backbone. This model can deal with three types of relation tasks,
including (1) Relation Conversation, which requires the model to link all ob-
jects and predicates mentioned in the response to the corresponding regions in
the image. (2) Open-ended Scene Graph Generation, which requires the model
to generate a scene graph based on the given image in an open-ended manner;
(3) Predicate Classification, which requires the model to generate a scene graph
given the ground-truth object labels and localization; In addition, our model is
also capable of multi-modality dialogue tasks such as Image Captioning, Visual
Question Answering, and Multi-turn conversation. Since the ReC task requires
the model to link the objects and predicates to the corresponding regions in the
image, our ASMv2 is also endowed with grounding and referring capabilities and
exhibits state-of-the-art performance on region-level tasks.

4.1 Relation Conversation

In this section, we elaborate on the formulation of ReC. Our objective is to
propose a task that can enhance the relation comprehension ability while main-
taining grounding, referring, and other general capabilities.
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A tall red <ref>bus</ref><box>[[290, 202, 835, 851]]</box> is <pred>driving on</pred><box>[[290, 202, 835, 851]]</box> 
<box>[[0, 604, 984, 999]]</box> a <ref>road</ref><box>[[0, 604, 984, 999]]</box>.

(bus, driving on, road)

Fig. 5: Data formulation for Relation Conversation. Each object is marked with
<ref></ref> and followed by a box denoting its location while each predicate is marked
with <pred></pred> and followed by two boxes referring to its subjects and objects.

As depicted in Fig. 5, we represent the sentence in the relation conversa-
tion as a text sequence. Specifically, our relation conversation marks the object
and predicate in the sentence using <ref></ref> and <pred></pred>, respec-
tively. Each marked object is followed by a bounding box, indicating its lo-
calization. Similarly, each predicate is followed by two bounding boxes, which
specifically refer to the subjects and objects of the predicate. All bounding boxes
are normalized to integer values within the range [0, 1000) and formatted as:
<box>[[x1, y1, x2, y2]]</box>. Please refer to Appendix A for more details.

Notably, the response in the relation conversation can be easily parsed into
a scene graph. In a typical scene graph, each node denotes an object in the
scene grounded by a bounding box with a semantic label, and each directed
edge denotes the relation between a pair of objects with a predicate label. By
utilizing the prediction of bounding boxes for each object (serving as semantic
tags for nodes) and those for subjects and objects related to each predicate
(serving as nodes, edges, and predicate labels), the generated ReC sentence can
be naturally converted into a scene graph. Nodes without semantic tags will be
labeled as Unknown. To convert the response shown in Fig. 5 into a scene graph,
we first parse the objects marked by “<ref></ref>” and assign the marked text
as the semantic tag of the following bounding box. Here, we assign “bus” and
“road” as the semantic tag of the bounding box highlighted in red and green,
separately. Then we extract the predicate label marked by “<pred></pred>”
(i.e., “driving on”) and the box coordinates of the subjects and objects of it
(i.e., bounding boxes highlighted with bold underline). After that, we utilize
these box coordinates as keys to match their semantic tags. In this example,
the bounding box for the subject of “driving on” is matched with the box
highlighted in red, therefore the subject of “driving on” is “bus”. Similarly, the
object of it is “road”. Hence, we obtain the parsed triplet (bus, driving on,
road). Note that the bounding boxes of the subject and object are also part of
the triplet while we omit them for simplicity.

Compared with the traditional Scene Graph Generation task, our ReC task
exhibits three advantages: (1) More flexible. Models trained on our proposed
Relation Conversation task can be naturally adapted to the Scene Graph Gen-
eration task in an open-ended manner. (2) Open-World. Benefiting from the
open-ended generation manner, models trained on ReC have the potential to
generalize to previously unseen predicate labels in the Scene Graph Genera-
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tion task. (3) More general. ReC requires models to generate a text response
and link all mentioned objects to their corresponding regions within the image,
thereby maintaining the grounding, referring, and general capabilities of MLLMs
and broadening the applicability of these models in real-world scenarios.

4.2 Model Training

The training process of ASMv2 is divided into two stages, with each stage com-
prising a pre-training phase and an instruction-tuning phase. The first stage
is designed to enable the model to effectively understand visual information at
the image level. The pre-training phrase utilizes 595K samples from CC3M [67]
filtered by LLaVA [53] while the instruction-tuning phrase utilizes a blend of
665K samples from LLaVA-1.5 [52]. We update the data format of the region-
level data [32, 33, 59] in LLaVA-1.5 to the format introduced in Sec. 4.1. The
second stage trains the model with a mixture of image-level data and region-
level data, which enables the model to comprehend the visual information at the
region level, facilitating effective grounding of objects and predicates within sen-
tences. The pre-training phrase employs 5M samples from CC12M [67] filtered by
BLIP [38], 10M filtered samples from AS-1B [77], and 15M filtered samples from
GRiT [62]. The instruction-tuning phase employs 4M samples collected from a
variety of sources, including image-level datasets [4, 9, 12, 31, 50–53, 58, 63, 96],
region-level datasets [32,33,59,77,88,97] and our proposed AS-V2 dataset. The
summary of these datasets is presented in Tab. 9.

5 Experiments

In this section, we first compare our ASMv2 with leading Multi-modal Large
Language Models (MLLMs) on representative vision-language benchmarks in
Sec. 5.1. In addition to these image-level benchmarks, we also evaluate ASMv2 on
three representative region-level tasks in Sec. 5.2. After that, ASMv2 is evaluated
on the Open-ended Scene Graph Generation task [81] in Sec. 5.3. The results and
analyses of our proposed CRPE are presented in Sec. 5.4. Note that we utilize a
consistent checkpoint for all evaluations.

5.1 Results on General Benchmarks

To evaluate the general ability of ASMv2, we perform a comprehensive com-
parison with leading MLLMs in Tab. 1. Benefiting from the stronger relation
comprehension ability, ASMv2 exhibits SoTA performance on these benchmarks.

Results of Visual Question Answering. On general VQA benchmarks, such
as VQAv2 [21] and GQA [25], our ASMv2 demonstrates superior overall perfor-
mance compared to LLaVA-1.5 [52] and VILA [46]. On the VQAv2 dataset, our
ASMv2 outperforms the LLaVA-1.5-13B by 1.0 points. Besides, our model also
achieves competitive performance with baselines on text-oriented VQA bench-
marks, including VizWiz-VQA [23] and TextVQA [69].
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Table 1: Results on 12 general visual-language benchmarks. Benchmark names
are abbreviated due to space limits. VQA-v2 [21]; GQA [25]; VizWiz [23]; SQAI:
ScienceQA-IMG [58]; VQAT: TextVQA [69]; POPE [42]; MME [18]; MMB: MM-
Bench [54]; MMBCN: MMBench-Chinese [54]; SEED: SEED-Bench [35]; LLaVAW:
LLaVA-Bench (In-the-Wild) [53]; MM-Vet [87]. ∗The training images of the datasets
are observed during training. The best performances are marked bold.

Model VQAv2 GQA VizWiz SQAI VQAT POPE MME MMB MMBCN SEED LLaVAW MM-Vet

BLIP-2 [37] 41.0 41.0 19.6 61.0 42.5 85.3 1293.8 - - 46.4 38.1 22.4
InstructBLIP-13B [15] - 49.5 33.4 63.1 50.7 78.9 1212.8 - - - 58.2 25.6
Shikra [8] 77.4* - - - - - - 58.8 - - - -
IDEFICS-9B [28] 50.9 38.4 35.5 - 25.9 - - 48.2 25.2 - - -
IDEFICS-80B [28] 60.0 45.2 36.0 - 30.9 - - 54.5 38.1 - - -
Qwen-VL [2] 78.8* 59.3* 35.2 67.1 63.8 - - 38.2 7.4 56.3 - -
Qwen-VL-Chat [2] 78.2* 57.5* 38.9 68.2 61.5 - 1487.5 60.6 56.7 58.2 - -
LLaVA-1.5-13B [52] 80.0* 63.3* 53.6 71.6 61.3 85.9 1531.3 67.7 63.6 61.6 70.7 35.4
VILA-13B [46] 80.8* 63.3* 60.6 73.7 66.6 84.2 1570.1 70.3 64.3 62.8 73.0 38.8
ASMv2-13B (ours) 81.0* 63.9* 58.1 87.1* 60.2 86.3 1621.0 74.4 64.3 66.3 78.9 41.3

Table 2: Accuracy scores on the Referring Expression Comprehension task.

Model RefCOCO RefCOCO+ RefCOCOg Avg.Val Test-A Test-B Val Test-A Test-B Val Test

OFA-L [76] 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.50 72.64
VisionLLM-H [78] - 86.70 - - - - - - -
Shikra-7B [8] 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 82.93
Shikra-13B [8] 87.83 91.11 81.81 82.89 87.79 74.41 84.64 83.16 84.21
Qwen-VL-7B [2] 88.55 92.27 84.51 82.82 88.59 76.79 85.96 86.32 85.73
MiniGPT-V2-7B [7] 88.06 91.29 84.30 79.58 85.52 73.32 84.19 84.31 83.82
Ferret-13B [82] 89.48 92.41 84.36 82.81 88.14 75.17 85.83 86.34 85.57
ASMv2-13B (ours) 90.56 94.24 86.24 84.81 90.83 76.89 87.52 88.26 87.42

Results of Multi-modal benchmarks. In recent comprehensive benchmarks,
which consist of a wide range of sub-tasks covering various fine-grained capa-
bilities, our model significantly outperforms the current SoTA MLLMs, such as
LLaVA-1.5 [52] and VILA [46]. Specifically, our model achieves an overall score of
74.4 on MMBench and 1621.0 on MME, surpassing VILA by 4.1 points and 50.9
points separately. Besides, ASMv2 also exhibits state-of-the-art performance on
SEED [35], LLaVA-Bench [53], and MM-Vet [87], outperforming baselines by a
large margin. These results demonstrate the general ability of our model.

5.2 Results on Region-level Benchmarks

To evaluate the region comprehension and grounding capability, we evaluate
ASMv2 on three representative region-level tasks, including (1) Referring Ex-
pression Comprehension [32, 59], which requires the model to localize the tar-
get object conditioned on the given description. (2) Region Captioning [33, 59],
which requires the model to generate a caption for a certain object in the image
conditioned on the given region. (3) Referring Question Answering [88], which
contains region referring in both questions and answers.
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Table 3: Results on the Region Captioning task. We mark the best performance
bold and the second-best underlined.

Model VG [33] RefCOCOg [59]

METEOR CIDEr METEOR CIDEr

GRiT [79] 17.1 142.0 15.2 71.6
SLR [85] - - 15.4 59.2
SLR+Rerank [85] - - 15.9 66.2
Kosmos-2 [62] - - 14.1 62.3
GPT4RoI-7B [95] 17.4 145.2 - -
GPT4RoI-13B [95] 17.6 146.8 - -
ASM-FT [77] 18.3 148.7 21.8 107.8
ASMv2-13B (ours) 17.9 153.5 21.7 114.7

Table 4: Results on Visual Commonsense Reasoning. Q, A, and R denote the
Question, Answer, and Rationale. X→Y means that the model needs to select the
correct option for Y conditioned on X. ∗The single-task fine-tuning setting.

Method Validation Acc. (%)

Q→A QA→R Q→AR

ViLBERT [57] 72.4 74.5 54.0
Unicoder-VL [36] 72.6 74.5 54.5
VLBERT [70] 75.5 77.9 58.9
ERNIE-ViL-L [83] 78.5 83.4 65.8
VILLA [19] 78.5 82.6 65.2
*GPT4RoI-7B [95] 87.4 89.6 78.6
ASMv2-13B (ours) 87.8 88.8 78.4
*ASMv2-13B (ours) 88.4 89.9 79.4

Results of Referring Expression Comprehension. Our ASMv2 achieves
state-of-the-art performance on the representative REC benchmarks [32,59]. As
shown in Tab. 2, our ASMv2 significantly outperforms current state-of-the-art
MLLMs, including Qwen-VL [2] and Ferret [82].

Results of Region Captioning. Our model demonstrates state-of-the-art per-
formance on the representative region captioning benchmarks, including VG [33]
and RefCOCOg [59]. As shown in Tab. 3, our model achieves a CIDEr score of
114.7 on RefCOCOg, which surpasses the current state-of-the-art model (i.e.
ASM-FT) by 6.9 points. On the VG dataset, our model also exhibits competi-
tive results compared to the current state-of-the-art model.

Results of Referring Question Answering. We evaluate the Referring Ques-
tion Answering (RQA) ability of ASMv2 on the Visual Commonsense Reasoning
(VCR) dataset [88], which evaluates the commonsense reasoning abilities in the
form of single-choice questions. The questions and candidate choices in VCR
contain region referring. The results are presented in Tab. 4. Although trained
in a multi-task setting, ASMv2 exhibits competitive performance compared to
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the current state-of-the-art model (i.e., GPT4RoI [95]), which is finetuned on the
VCR dataset in a single task setting. In addition, after the single task finetuning,
our model outperforms GPT4RoI by 0.8 points.

5.3 Results on Open-ended Scene Graph Generation

In this section, we evaluate the Relation Conversation capability of our model
through the Open-ended Scene Graph Generation task on the Panoptic Scene
Graph (PSG) dataset [81], which is a widely-used benchmark for the scene graph
generation. See Appendix C.2 for the results on the Predicate Classification task.

Baselines. Despite the powerful performance, most previous methods [75, 81,
101, 102] are constrained by pre-defined label sets and struggle to capture a
diverse range of visual concepts from natural language in an open-ended man-
ner. On the other hand, TextPSG [98] explores a methodology for generating
scene graphs in an open-ended manner, which first generates the region propos-
als and then asks BLIP [38] to predict the semantic tags and predicate labels
for these regions auto-regressively. Here, we consider traditional close-set scene
graph generation models and TextPSG as our baseline in OpenSGG.

Metrics. Following the common practice [81, 98], we report the triplet Recall
and mean Recall for every predicate category (mRecall) in the OpenSGG task.
Concretely, a scene graph consists of a set of triplets (subject, predicate,
object). A triplet is considered to be correct if the phrase labels are all correct
and the location of the subject and object should match the ground truth with
IoU greater than 0.5 respectively. We also report #Tuples to denote the average
number of predicted tuples for each generated scene graph.

Table 5: Recall scores on PSG. Gray
denotes that the model generates the scene
graphs in a close-ended manner.

Model #Tuples Recall mRecall

IMP [80] 20.0 16.5 6.5
MOTIFS [90] 20.0 20.0 9.1
VCTree [72] 20.0 20.6 9.7
GPSNet [48] 20.0 17.8 7.0
PSGFormer [81] 20.0 18.6 16.7

TextPSG [98] 50.0 4.8 -
TextPSG [81] 100.0 5.5 -
ASMv2 (ours) 9.2 14.2 10.3

Results. As shown in Tab. 5, our
ASMv2 demonstrates state-of-the-art
performance in the OpenSGG task.
Specifically, our ASMv2 significantly
outperforms TextPSG by 8.7 points
in recall while generating a signifi-
cantly fewer average number of tuples
compared to it (9.2 vs. 100.0). Note
that having more tuples generally im-
plies an advantage in computing recall.
When compared to traditional scene
graph generation models, which gener-
ate scene graphs in a close-ended man-
ner, ASMv2 also exhibits competitive
performance. Despite generating fewer tuples, our model maintains a competi-
tive recall of 14.2 and a mean recall of 10.3. Another factor negatively impact-
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ing the performance is that our ASMv2 generates scene graphs in an open-
ended manner while recall is calculated in an exact-match manner. There-
fore, the triplets (people, standing on, grass) and (person, standing
on, grass) are considered mismatched even though they represent the same
semantics. A more appropriate metric for this task will be left for future work.

5.4 Results on CRPE

Table 6: Accuracy scores on CRPE.
Model Exist. Subj. Pred. Obj. Overall

Qwen-VL [2] 85.11 45.66 38.19 31.60 38.48
LLaVA-1.5 [52] 88.69 57.44 54.24 55.21 55.63
ASMv2 (ours) 92.14 69.21 58.95 65.34 64.50

In this section, we evaluate the
relation comprehension ability of
our ASMv2 and current leading
MLLMs [2,52] using our proposed
CRPE benchmark. This bench-
mark consists of four splits: Ex-
istence, Subject, Predicate, and
Object. The Existence split evaluates the models’ object recognition ability while
the remaining splits are designed to evaluate the models’ relation comprehension
ability. In addition to reporting the performance of each split in the benchmark
individually, we also report the average score of the latter three splits as the
overall score for relation comprehension ability.

As shown in Tab. 6, the performance of existing MLLMs on the Existence
questions is significantly higher than on the Subject, Predicate, and Object ques-
tions. This suggests that these models have a more robust capability to recognize
objects within an image than to comprehend the relations between them. Specif-
ically, our ASMv2 shows a remarkable improvement in understanding object re-
lations compared to the other models. For example, ASMv2 achieves an overall
accuracy of 64.50, which is significantly higher than the 55.63 of LLaVA-1.5 and
the 38.48 of Qwen-VL. These results demonstrate that our model can compre-
hend the relations between the objects within the image better, benefiting from
the training of relation conversation data.

6 Conclusion

In this paper, we propose a novel task, termed Relation Conversation (ReC), to
challenge the model to understand the relations between the objects within the
image. We construct the All-Seeing Dataset V2 (AS-V2), which is a high-quality
ReC dataset to unlock the ReC ability of Multi-modal Large Language Models
(MLLMs) and the CRPE to quantitatively evaluate the relation comprehension
ability. Leveraging AS-V2 and other general multimodal corpora for training,
we introduce the All-Seeing Model v2 (ASMv2), which exhibits stronger relation
comprehension ability compared to existing leading MLLMs and achieves state-
of-the-art performance on the Open-ended Scene Graph Generation task and
various general image-level and region-level tasks. We hope that our work can
inspire more future research and contribute to the evolution towards artificial
general intelligence, equipping artificial intelligence systems with an “all-seeing
eye” to achieve a deeper understanding of the world.
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