
PPAD: Iterative Interactions of Prediction and
Planning for End-to-end Autonomous Driving

Supplementary Material

Zhili Chen1† , Maosheng Ye1 , Shuangjie Xu1 ,
Tongyi Cao2 , and Qifeng Chen1B

1HKUST 2DeepRoute.AI
{zchenei, myeag, shuangjie.xu}@connect.ust.hk,

tongyicao@deeproute.ai, cqf@cse.ust.hk

1 Metrics on Subtasks Evaluation

In Tab. 3 of the main paper, the detection evaluation metrics of mean Average
Precision (mAP) and the final nuScenes Detection Score (NDS) are based on
the nuScene 3D detection benchmark [1]. We followed [3,4] to evaluate map con-
struction with mean average precision (mAP). In the motion forecasting subtask,
we adopt the same metrics, minimum Average Displacement Error (minADE),
minimum Final Displacement Error (minFDE), and Miss Rate (MR), as [2,3] to
evaluate the performance of our approach.

2 Noisy Trajectory Training Details

During training, we create noisy trajectories from the ground truth motion la-
bels. Each timestep of the noisy trajectories is considered as the starting po-
sition for each iteration of the prediction and planning processes. Under our
PPAD framework, the model aims to learn to predict the correct next move by
interacting with the surrounding agents and environments, neglecting the noisy
starting positions. In practice, we create Nnoisy = 5 noisy trajectories for the
ego vehicle. We use the size of the ego vehicle (Wego, Hego) as the noise scales,
corresponding to x and y trajectory axes. Then, we sample a random tensor
from the uniform distribution with a dimension of [Nnoisy, Tfut, 2] ranging from
[−1, 1]. We multiply the random tensor with the noise scales (Wego, Hego) and
consider the resulting tensor as the noisy offsets. Finally, the noisy trajectories
are obtained by adding the noisy offsets to the ground truth, which are offsetting
from the ground truth centers by at most Wego meters along the x−axis and
Hego meters along the y−axis.

We calculate the noisy planning losses between the resulting predictions from
the noisy inputs with the ground truth. We then take the average of separately
computed noisy planning losses as the Lnoisy

P lan in Eqn. 8.

https://orcid.org/0000-0002-8272-156X
https://orcid.org/0000-0001-8470-685X
https://orcid.org/0000-0003-0150-7068
https://orcid.org/0000-0003-2157-1526
https://orcid.org/0000-0003-2199-3948


2 Z. Chen et al.

3 Additional Ablation Studies

Same as Sec. 4.3, the following experiments adhere to the progressive training
pipeline as proposed in VAD [3], in which we first train the perception tasks
for 48 epochs and then train the whole model for another 12 epochs to conduct
different ablation studies for the PPAD.
Effect of Key Objects Attention Distance Ranges The hierarchical dy-
namic key objects attention is proposed to understand the the dynamic surround-
ing driving agents and the environments in a coarse-to-fine manner. Tab. 1 shows
the ablation study, which was conducted by setting different distance ranges. We
use the distance range set of {+∞ m, 15 m, 7.5 m}, which achieves the best per-
formance in Tab. 1, as our model’s default setting.

Distance Range L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

{+∞ m, 7.5 m, 3.75 m} 0.33 0.56 0.87 0.59 0.08 0.12 0.35 0.19
{+∞ m, 15 m, 7.5 m, 3.75 m} 0.34 0.59 0.91 0.61 0.11 0.18 0.41 0.23

{+∞ m, 15 m, 7.5 m} 0.31 0.56 0.87 0.58 0.08 0.12 0.38 0.19

Table 1: The ablation study of different distance ranges for conducting the hierarchical
dynamic key objects attention.

Effect of the Noisy Trajectory Number As shown in Tab. 2, we conducted
the ablation study on training by introducing a different number of noisy tra-
jectories. The Tab. 2 shows that the performance is the best when we utilize 5
noisy trajectories when training.

Num. Noisy Traj. L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

0 0.35 0.59 0.89 0.61 0.08 0.14 0.32 0.18
1 0.33 0.57 0.88 0.59 0.14 0.15 0.37 0.22
10 0.33 0.57 0.88 0.59 0.12 0.17 0.40 0.23
5 0.31 0.56 0.87 0.58 0.08 0.12 0.38 0.19

Table 2: The ablation study on training the model by utilizing a different number of
noisy trajectories as predictions.

Effect of Planning Losses Weights The planning losses comprise the plan-
ning loss calculated from the PPAD’s normal planning predictions and the plan-
ning loss of the predictions from the noisy trajectories. We conducted the ab-
lation study on the weights of the planning losses in Tab. 3. Among different
settings, we can balance the planning losses best when we set the ζ1 = 0.6 and
ζ2 = 0.4.
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Planning Loss Weights L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

ζ1 = 0.4, ζ2 = 0.6 0.35 0.60 0.93 0.62 0.09 0.17 0.43 0.23
ζ1 = 0.8, ζ2 = 0.2 0.33 0.57 0.88 0.59 0.52 0.64 0.93 0.70
ζ1 = 0.6, ζ2 = 0.4 0.31 0.56 0.87 0.58 0.08 0.12 0.38 0.19

Table 3: The ablation study on the weights ζ1 and ζ2 of the planning loss in Eqn. 8.

4 Additional Qualitative Results

Please refer to the video clips in the same zip file accompanied with this supple-
mentary paper.
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