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1 Novel View Rendering

In the evaluation section, we present a comprehensive set of experiments to eval-
uate the performance of our method. Here, we provide additional quantitative
and qualitative results to further demonstrate the effectiveness of our approach.

1.1 Replica Sequences

In Table 2 (see Section 4.1), we compare novel view rendering performance using
the R1, R2, OFF3, and OFF4 sequences. Additionally, we conduct experiments
on four additional sequences (R0, OFF0, OFF1, and OFF2) in this section.
Following the same setup as described in the section of Gaussian Splatting in
NVS (see Section 4.4), we evaluate the rendering performance of 3DGS, LightGS,
and GeoGaussian using three metrics, as shown in Table 5.
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(a) R0 (100%) (b) OFF0(100%) (c) OFF1(100%) (d) OFF2(100%)

Fig. 6: Gaussian models generated by GeoGaussian (ours) and 3DGS on the Replica
sequences.
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methods 3DGS LightGS GeoGaussian
data 10% 16.6% 50% 100% 10% 16.6% 50% 100% 10% 16.6% 50% 100%

R0
PSNR↑
SSIM↑

LPIPS↓

27.24
0.875
0.070

31.14
0.928
0.040

34.54
0.949
0.031

35.10
0.952
0.032

27.23
0.875
0.070

31.21
0.929
0.040

34.68
0.950
0.031

35.28
0.953
0.031

28.84
0.899
0.057

31.77
0.931
0.036

34.66
0.949
0.028

35.23
0.952
0.029

OFF0
PSNR↑
SSIM↑

LPIPS↓

31.61
0.927
0.062

35.99
0.959
0.034

41.70
0.979
0.018

42.67
0.981
0.017

31.63
0.927
0.062

36.00
0.959
0.034

41.82
0.979
0.018

43.08
0.981
0.016

32.42
0.924
0.053

36.34
0.960
0.030

42.11
0.980
0.016

42.74
0.981
0.017

OFF1
PSNR↑
SSIM↑

LPIPS↓

34.81
0.943
0.060

38.39
0.956
0.046

42.27
0.972
0.036

42.88
0.974
0.035

34.83
0.943
0.060

38.43
0.956
0.045

42.43
0.972
0.036

43.01
0.974
0.035

34.86
0.939
0.061

38.35
0.952
0.045

41.89
0.968
0.039

42.17
0.970
0.039

OFF2
PSNR↑
SSIM↑

LPIPS↓

28.27
0.911
0.074

32.91
0.948
0.043

36.72
0.964
0.033

37.34
0.966
0.033

28.25
0.911
0.073

32.85
0.948
0.045

36.95
0.965
0.032

37.49
0.967
0.033

29.52
0.925
0.054

33.97
0.955
0.032

36.90
0.968
0.028

37.32
0.970
0.029

Avg.
PSNR↑
SSIM↑

LPIPS↓

30.48
0.914
0.067

34.61
0.948
0.041

38.81
0.966
0.030

39.50
0.968
0.029

30.49
0.914
0.066

34.87
0.948
0.041

38.97
0.967
0.029

39.72
0.969
0.029

31.41
0.922
0.056

35.11
0.950
0.036

38.89
0.966
0.028

39.37
0.968
0.029

Table 5: Comparison of rendering on the Replica dataset.

The 3D Gaussian models obtained by GeoGaussian and 3DGS are repre-
sented in Figure 6. Benefiting from the proposed densification method and geo-
metric constraints, our method, GeoGaussian, preserves the reasonable geometry
of environments. For example, the walls in Figure 6b and 6c are very thin, but
the geometry is very noisy in the corresponding models of 3DGS.

Viewpoints in training and evaluation. In Table 2, we also evaluate the
relationship between rendering performance and the sparsity of training views.
Therefore, we visualize the position and orientation of viewpoints used in training
and evaluation in Figure 7.

(a) OFF3 (10%) (b) OFF3 (16.6%) (c) OFF3 (50%) (d) OFF3 (100%)

Fig. 7: Viewpoints are used during training and evaluation, where the red camera is
used for evaluation.

As shown in Figure 7, when the views used in training become sparse from
OFF3(100%) to OFF3(10%), the scenarios seen from the training frames are
difficult to cover from evaluation viewpoints. Therefore, the structure of the
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models plays an important role in maintaining the rendering performance as
illustrated in Table 2 (see Section 4.4).

1.2 ICL-NUIM Sequences
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(a) ICL-NUIM Room 2(10%)
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(b) ICL-NUIM Office 3(10%)

Fig. 8: Comparison of Rendering performance in training and evaluation datasets.

methods 3DGS LightGS GeoGaussian
data 10% 16.6% 50% 100% 10% 16.6% 50% 100% 10% 16.6% 50% 100%

Room 1
PSNR↑
SSIM↑

LPIPS↓

40.09
0.971
0.022

40.39
0.973
0.023

40.59
0.973
0.024

40.79
0.973
0.025

40.25
0.972
0.021

40.53
0.974
0.022

41.03
0.974
0.023

41.26
0.974
0.023

40.58
0.974
0.019

41.21
0.976
0.019

41.51
0.977
0.019

41.43
0.976
0.019

Room 2
PSNR↑
SSIM↑

LPIPS↓

23.31
0.777
0.251

30.15
0.906
0.080

37.33
0.965
0.023

39.10
0.974
0.017

23.28
0.775
0.252

30.18
0.906
0.080

37.51
0.965
0.022

39.23
0.974
0.017

25.23
0.841
0.142

31.26
0.925
0.059

37.70
0.968
0.023

39.46
0.975
0.018

Office 2
PSNR↑
SSIM↑

LPIPS↓

26.24
0.844
0.145

29.82
0.896
0.078

35.54
0.943
0.036

37.88
0.962
0.024

26.22
0.843
0.146

29.77
0.896
0.078

35.58
0.943
0.035

37.99
0.962
0.023

28.35
0.874
0.100

32.34
0.917
0.055

36.76
0.952
0.026

38.54
0.967
0.017

Office 3
PSNR↑
SSIM↑

LPIPS↓

19.28
0.718
0.219

22.86
0.848
0.143

32.20
0.950
0.044

36.04
0.975
0.017

19.19
0.716
0.219

22.82
0.847
0.143

32.21
0.949
0.044

36.06
0.975
0.016

21.42
0.769
0.145

27.06
0.907
0.082

33.52
0.966
0.024

36.19
0.977
0.015

Avg.
PSNR↑
SSIM↑

LPIPS↓

27.23
0.827
0.159

30.80
0.905
0.081

36.41
0.967
0.031

38.45
0.971
0.020

27.23
0.826
0.159

30.82
0.905
0.087

36.58
0.957
0.031

38.63
0.971
0.019

28.89
0.864
0.101

32.96
0.931
0.053

37.37
0.965
0.024

38.90
0.973
0.017

Table 6: Comparison of rendering on the ICL-NUIM dataset.

As we mentioned in the Experiment section (see Section 4.2), the four se-
quences are used to evaluate these Gaussian Splatting approaches. As listed in
Table 6, the proposed method shows robust rendering performance in different
training settings compared with state-of-the-art Gaussian Splatting methods.
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When the number of training frames is reduced, our method shows more ro-
bust performance since our models have better geometry to alleviate overfitting
problems in rendering tasks. For example, our model trained on ICL-O3 (10%)
achieves a PSNR of 21.42, while models of 3DGS and LightGS obtain 19.28 and
19.19, respectively.

(a) 3DGS (b) LightGS (c) GeoGaussian (d) Reference

Fig. 9: Comparisons of novel view rendering on the ICL-NUIM datasets. In these
scenarios, 3DGS and LightGS struggle with photorealistic rendering. As depicted in
(d), the two training views surrounding the novel view.

As we mentioned in the Experiment section (see Section 4.2), the four se-
quences are used to evaluate these Gaussian Splatting approaches. As listed in
Table 6, the proposed method shows robust rendering performance in different
training settings compared with state-of-the-art Gaussian Splatting methods.
When the number of training frames is reduced, our method shows more ro-
bust performance since our models have better geometry to alleviate overfitting
problems in rendering tasks. For example, our model trained on ICL-O3 (10%)
achieves a PSNR of 21.42, while models of 3DGS and LightGS obtain 19.28 and
19.19, respectively.

In an extreme case, when we observe the training process of these methods
on ICL-O3 (10%), as shown in Figure 8, it is evident that Gaussian Splatting
methods tend to overfit the training views due to the limited number of training
views. However, our method maintains a certain level of generalization ability
based on geometry constraints. For example, as the model improves its rendering
results on the training dataset, the performance on the test dataset does not
decrease significantly, as shown in Figure 8a.

1.3 TUM RGB-D Sequences

Structured environments from the TUM RGB-D dataset are utilized to evaluate
rendering performance in Section 4.4. For a comprehensive evaluation of our
method in general scenarios, we test it on the f3/lag-cabinet and f3/long-office
sequences, which are non-structured Scenes, as shown in Table 7.
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methods 3DGS LightGS GeoGaussian
data 10% 16.6% 50% 100% 10% 16.6% 50% 100% 10% 16.6% 50% 100%

f3/lag-cabinet
PSNR↑
SSIM↑

LPIPS↓

20.05
0.772
0.226

23.27
0.831
0.143

24.63
0.864
0.123

24.87
0.866
0.127

20.09
0.773
0.225

23.32
0.832
0.142

24.74
0.865
0.123

24.89
0.867
0.126

20.85
0.804
0.178

22.22
0.833
0.158

24.15
0.863
0.130

24.79
0.868
0.125

f3/long-office
PSNR↑
SSIM↑

LPIPS↓

16.67
0.598
0.336

18.88
0.686
0.246

23.54
0.812
0.148

24.33
0.832
0.139

16.69
0.600
0.335

18.93
0.689
0.245

23.66
0.813
0.146

24.43
0.835
0.138

18.89
0.643
0.279

20.55
0.736
0.196

24.56
0.833
0.128

25.12
0.843
0.125

Avg.
PSNR↑
SSIM↑

LPIPS↓

18.31
0.685
0.281

21.07
0.758
0.194

24.08
0.838
0.135

24.60
0.849
0.133

18.39
0.686
0.280

21.12
0.760
0.193

24.20
0.839
0.134

24.66
0.851
0.132

19.87
0.723
0.228

21.38
0.748
0.177

24.35
0.848
0.129

24.95
0.850
0.125

Table 7: Comparison of rendering on the non-structured sequences on the TUM RGB-
D dataset.

(a) Real scene (b) 3DGS (c) GeoGaussian(ours)

Fig. 10: Scene of the lag-cabinet sequence and render quality.

As mentioned in Section 4.4, the proposed method is not as effective as
3DGS and LightGS in the lag-cabinet sequence. This is because the far walls in
this sequence cannot be accurately captured based on point clouds, making it
challenging to obtain good normal vectors from the point clouds.

2 Model Reconstruction

In this section, we present more quantitative results in the comparison of 3D
Gaussian models. Based on the ground truth mesh models provided by the
Replica dataset, we align these mesh models with point clouds from Gaussian
models, where we randomly sample three points in each Gaussian ellipsoid.

methods R0 R1 R2 OFF0 OFF1 OFF2 OFF3 OFF4 Avg.

3DGS mean
std

0.026
0.066

0.025
0.081

0.042
0.146

0.017
0.050

0.019
0.055

0.039
0.201

0.032
0.066

0.032
0.112

0.029
0.097

GeoGaussian
(ours)

mean
std

0.018
0.032

0.014
0.016

0.015
0.028

0.020
0.042

0.029
0.067

0.013
0.024

0.018
0.020

0.014
0.023

0.018
0.031

Table 8: Comparison of reconstruction performance on the Replica dataset.
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(a) R0 (b) R1 (c) R2

(d) OFF0 (e) OFF1 (f) OFF2

(g) OFF3 (h) OFF4

Ground truth mesh
Red points from 3DGS
Green points from GeoGaussian

(i) Description

Fig. 11: Reconstruction error visualization.

SuGaR 3DGS Ours

Fig. 12: Comparison in dense mesh modelling of Replica OFF0.
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As illustrated in Table 8, the proposed method achieves better performance in
mean and standard errors compared to 3DGS. Specifically, in the R2 sequence,
the standard error of our method is 0.028, while the corresponding value for
3DGS is 0.146, which is 5 times worse than ours. Additionally, in OFF2, the
mean error of 3DGS is 3 times greater than ours.

As shown in Figure 11, the point clouds from 3D Gaussians are aligned
with mesh models, where the green and red points represent GeoGaussian and
3DGS, respectively. It is evident that points from our method align well with
the model surface, indicating that our Gaussians are distributed according to the
structure and texture of the training views. In contrast, the points from 3DGS are
distributed more uniformly around the training perspective. This indicates that
3DGS is more inclined to perform densification along the angle of the training
line of sight, while our method is more focused on training a highly versatile
model rather than overfitting to the training perspectives.

In Figure 12, the mesh reconstruction results of 3DGS and our method are
obtained by feeding Gaussian points into the Poisson reconstruction and tex-
turing algorithms [3]. In low-textured regions, such as door and floor areas, the
proposed method demonstrates robust and accurate performance in reconstruct-
ing dense models.

3 Performance in Wild Scenes and Limitations

Fig. 13: Our depth render result in Mip-NeRF360 Bicycle.

To evaluate the performance of the proposed approach in wild scenes, ad-
ditional popular datasets [1, 2] are used to test GeoGaussian and 3DGS in this
section. As shown in Figure 13 and 14, we compare our method with 3DGS in
wild scenarios, demonstrating that GeoGaussian is more robust and converges
faster since our method requires only local smooth regions instead of large plane
features. In 3DGS, 3D Gaussians are optimized via photometric residuals, result-
ing in floaters in texture-less regions. As shown in Figure 14, while the rendering
result of 3DGS is acceptable, the 3D geometry is clearly not well reconstructed.
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This phenomenon has been witnessed in other indoor sequences (see Figure 6
and 11).

To solve the problem, our system introduces geometric constraints in the
initialization, densification, and optimization modules. This design enhances the
quality of scene geometry, leading to robust rendering performance (Figure 3).
However, there are limitations to this approach, summarized as follows:

– The geometric constraints degenerate if few smooth regions are detected;
– Incorrect geometric residuals can occur when fake smooth regions are ini-

tialized as thin Gaussians, although the effect of outliers is controllable.

Fig. 14: 2D and 3D results in Truck [2] and Garden scenes [1].
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4 Initialization and Densification

0 1 2 3 4 5 6 7 10

20

30

40

50

Iterations(K)

P
S
N
R

GeoGaussian-100%
GeoGaussian-10%

3DGS-100%
3DGS-10%

(a) ICL-NUIM Room 2
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Fig. 15: Rendering performance in the first 10,000 iterations.

In Figure 15, the rendering performance of 3DGS and GeoGaussian ap-
proaches in the first 10,000 iterations is presented. Our method stops increasing
Gaussians after 10,000 iterations, while 3DGS continues to increase Gaussians
until 15,000 iterations. Therefore, the densification progress mainly occurs in the
first 10,000 iterations, where Gaussians are initialized and dramatically densified
under the supervision of photometric and geometric constraints.

As shown in Figure 15, the PSNR performance increases rapidly in the first
10,000 iterations for both 3DGS and GeoGaussian methods. But, our method
is easy to train, especially in sparse view rendering tasks like ICL-NUIM Room
2(10%) and ICL-NUIM Office 2(10%).
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