
GeoGaussian: Geometry-aware Gaussian
Splatting for Scene Rendering

Yanyan Li1,2 , Chenyu Lyu3, Yan Di2, Guangyao Zhai2, Gim Hee Lee*1 , and
Federico Tombari*2,4

1 National University of Singapore, Singapore
2 Technical University of Munich, Germany

3 Tianjin University, China
4 Google, Zurich, Switzerland

https://yanyan-li.github.io/project/gs/geogaussian

Abstract. During the Gaussian Splatting optimization process, the scene
geometry can gradually deteriorate if its structure is not deliberately
preserved, especially in non-textured regions such as walls, ceilings, and
furniture surfaces. This degradation significantly affects the rendering
quality of novel views that deviate significantly from the viewpoints in
the training data. To mitigate this issue, we propose a novel approach
called GeoGaussian. Based on the smoothly connected areas observed
from point clouds, this method introduces a novel pipeline to initialize
thin Gaussians aligned with the surfaces, where the characteristic can
be transferred to new generations through a carefully designed densi-
fication strategy. Finally, the pipeline ensures that the scene geometry
and texture are maintained through constrained optimization processes
with explicit geometry constraints. Benefiting from the proposed archi-
tecture, the generative ability of 3D Gaussians is enhanced, especially
in structured regions. Our proposed pipeline achieves state-of-the-art
performance in novel view synthesis and geometric reconstruction, as
evaluated qualitatively and quantitatively on public datasets.

Keywords: Gaussian Splatting · Geometry-aware Densification · Geo-
metric Consistency

1 Introduction

Due to the impressive rendering quality of Neural Radiance Fields (NeRF) [25],
the area of photo-realistic novel view synthesis (NVS) has become a popular re-
search topic in the communities of computer vision, graphics, and robotics. While
NeRFs offer high-quality rendering, 3D Gaussian Splatting ([8, 18]) shows bet-
ter performance in terms of training speed and rendering quality. 3D Gaussian
Splatting is explicitly represented by a set of Gaussian points parameterized by
its position, orientation, and spherical harmonics parameters. An additional ras-
terization step re-projects these 3D Gaussians back to training images to capture
⋆ Equal senior author

https://orcid.org/0000-0001-7292-9175
https://orcid.org/0000-0002-1583-0475
https://orcid.org/0000-0001-5598-5212
https://yanyan-li.github.io/project/gs/geogaussian

2 Y. Li et al.

GeoGaussian (ours)Reference3DGS [18]

Fig. 1: Comparisons of novel view rendering and 3D Gaussian model on the Replica
Datasets. As highlighted in the second row, the proposed method shows a very clear
boundary between two low-textured walls, but 3DGS has blurring issues since the
geometry of its 3D Gaussian model is not accurate in this area.

scene geometry and appearance by using alpha-blending. However, in the Gaus-
sian Splatting optimization process, the geometry of 3D Gaussian models lacks
sufficient constraints especially in low-textured regions, leading to significant
degradation in rendering performance for novel views that deviate substantially
from the training data.

NVS methods typically represent 3D scenes implicitly [28, 42] or explic-
itly [4, 16] based on multiple 2D views and corresponding camera poses. Pre-
vious solutions for NVS tasks have primarily relied on 3D surface reconstruction
using technologies such as Structure-from-Motion [11], multi-view stereo [34],
TSDF [14], Marching Cubes [22], Poisson [16], and texturing [38]. While these
methods enable the rendering of new views in texture and depth based on 3D
surface models, achieving photo-realistic rendering quality remains challenging.
Since the impressive achievements of convolutional neural networks are made on
many tasks, such as point detection [6] and scene completion [40], deep learning-
based mesh representations [9] have been proposed to enhance view synthesis,
while the challenges for these mesh-based methods are to capture accurate ge-
ometry and appearance in complex scenarios. Compared to learning-based mesh
methods, NeRF [25] proposes a continuous volumetric function representation
using a multi-layer perceptron (MLP), which produces high-quality renderings
with impressive details. To address the heavy computational burden and inten-
sive memory consumption, recent improvements have been made using sparse
volumes [21], hash tables [27], and hierarchical sampling methods [2, 39]. De-

GeoGaussian 3

spite a significant reduction in training time with these methods, improving ren-
dering efficiency is still a pressing requirement for applications such as SLAM.
Recently, 3D Gaussian Splatting (3DGS) [18] has gained significant attention
in the community, which shows that the rendering speed in high-quality NVS
tasks can be made up to 150 FPS [8]. In the Gaussian Splatting optimization
process, approaches often prioritize image clarity over geometric fidelity. While
some viewpoints may render well, issues arising from confusing geometry can im-
pact rendering quality at certain viewpoints. To extract mesh surface from 3D
Gaussians, SuGaR [12] serves as a refinement module to jointly optimize mesh
and Gaussians. However, the method requires more GPU resources for training
compared with 3DGS.

In this paper, we propose a geometry-aware Gaussian Splatting method em-
phasizing rendering fidelity and geometry structure simultaneously. Initially, nor-
mal vectors are extracted from input point clouds, and then smoothly connected
areas are detected based on normals. For general regions, we follow the tradi-
tional initialization process [18] that represents every point as a sphere. However,
each point is parameterized as a thin ellipsoid with explicit geometric informa-
tion for smoothly connected areas. Specifically, the third value of the scale vector
S is fixed to make the ellipsoid thin. Additionally, the third column of rotation
matrix R decoupled from the covariance matrix Σ is initialized by the normal
vector, as shown in Figure 2. Based on the design, we encourage these thin el-
lipsoids to lie on the surface of smooth regions. Leveraging the thin ellipsoid
representation, our densification strategy containing split and clone steps oper-
ates within a well-constrained process. On the one hand, a large Gaussian point
can be split into two smaller co-planar Gaussians lying on the plane established
by the position and normal vectors of the large Gaussian, whereas traditional
approaches [8, 18,23] randomly position new Gaussians within the ellipsoid. On
the other hand, our Gaussian clone approach ensures that new generations have
to lie on the same plane with the original since the new Gaussian is also required
to align with the surface of the smooth region. The step is supported by accu-
mulating the gradient descent direction of the origin’s position µ, and then the
component of the direction that is perpendicular to the normal vector of origin
is decoupled to guide the position for the cloned Gaussian. Through the learn-
ing rate and direction, the Gaussian map undergoes densification for continuous
training. In the optimization module, we propose a new geometrically consis-
tent constraint for thin ellipsoids lying on the smooth areas by encouraging the
nearest neighbors to be co-planar, which are jointly optimized with the widely
used photometric residuals [18] in an iterative process. The contributions of the
paper are summarized as:

– A parameterization with explicit geometry meaning for thin 3D Gaussians is
employed in our carefully designed initialization and densification strategies
to establish reasonable 3D Gaussian models.

– A geometrically consistent constraint is proposed to encourage thin Gaus-
sians to align with the smooth surfaces.

4 Y. Li et al.

– Evaluations on the public datasets demonstrate that the proposed method
improves rendering quality compared to state-of-the-art Gaussian Splatting
methods.

2 Related Work

2.1 Map Reconstruction and Texturing

Traditional approaches to view synthesis typically involve 3D model reconstruc-
tion and texture mapping modules. 3D surface reconstruction can be achieved
using algorithm modules such as structure-from-motion [41], simultaneous local-
ization and mapping [19], and depth map fusion [3, 14]. After obtaining surface
meshes based on methods like Marching Cubes [22] and Poisson surface recon-
struction [16], another crucial step is to refine the texture of triangle faces based
on input visual images [20] or through a form of blending [1] between these im-
ages. Learning-based solutions for 3D reconstruction [10,24] and texturing [7,29]
tasks have also been proposed, representing high-frequency texture and employ-
ing techniques for natural blending.

2.2 Neural Rendering and Radiance Fields

Instead of explicitly representing scenes, NeRF [25] records environments using
MLP neural networks, opening new possibilities for high-quality view synthe-
sis based on volumetric ray tracing. However, limited by inference speed and
convergence difficulties, explicit structures such as voxels [21] or deep features
are incorporated into ray-based representations to accelerate rendering. Relu
fields [15] investigate grid-based representations to maintain the high-fidelity ren-
dering performances of MLPs while speeding up the reconstruction and reference
processes through fixed non-linearity on interpolated grid parameters. Instant-
NGP [27] proposes a multi-resolution hash table of trainable feature vectors to
improve neural networks for the same speeding-up goal of neural graphics primi-
tives. Despite the significant improvements achieved by these methods [5,21,31],
current approaches may not fully satisfy the requirements of real-time rendering
applications.

2.3 Gaussian Splatting in Rendering and Reconstruction

Recently, 3DGS [18], combining point-based splatting and blending techniques
for rendering, has achieved real-time speed with photo-realistic rendering quality.
To make the representation more compact, LightGS [8] proposes a strategy to
remove unimportant Gaussians based on the volume and opacity of each Gaus-
sian. Building on the results of 3DGS, SuGaR [12] extracts mesh faces from
unorganized 3D Gaussian maps, serving as an optional refinement module to
jointly optimize surface and Gaussians. However, this method requires signif-
icantly more GPU resources compared to 3DGS. In contrast to the architec-
ture of Colmap+GS solutions, 3D Gaussians working as the only representation

GeoGaussian 5

smooth area

y

z

x

3D Position: µ
Scales: S = [s1 s2 0.001]T

Rotation: R = [r1 r2 n]
Spherical Harmonics: C
Opacity: α

Parametrization of Thin Gaussians

Clone on Tangent space

normal

accumulated
direction

modified
direction

π

Split on Tangent space

Densification

Y Z

X

nearest
neighbors

Co-planar Constraint

Smooth Constraint

smooth area

y

z

x

3D Position: µ
Scales: S = [s1 s2 0.001]T

Rotation: R = [r1 r2 n]
Spherical Harmonics: C
Opacity: α

Parametrization of Thin Gaussians

Clone on Tangent space

normal

accumulated
direction

modified
direction

π

Split on Tangent space

Densification

Y Z

X

nearest
neighbors

Co-planar Constraint

Smooth Constraint

Fig. 2: Geometry-aware strategies of our GeoGaussian. In smoothly connected areas,
the parameterization of thin Gaussians contains clear geometry meanings in the
mean vector and covariance matrix. Furthermore, the densification operation for these
thin Gaussians encourages the new generations to lie in the tangent space established
by the position and normal vectors of the original Gaussian. Finally, these thin Gaus-
sians, measured by a training view, are used to establish smooth constraints with
photometric constraints in the optimization process.

are used in incremental tracking and mapping systems [17, 23, 44]. Gaussian-
SLAM [44] selects every 5th frame as a keyframe for training 3D Gaussians
based on RGB-D images. Compared with 3DGS and related refinements, our
method focuses on modeling geometry and achieving photo-realistic rendering
performance through redesigned parameterization and densification processes,
as well as geometry-aware constraints.

3 Our Methodology

3.1 3D Gaussian Splatting

In the widely used 3D Gaussian Splatting representation, the scene is built by a
set of anisotropic Gaussians. Each Gaussian point is characterized by attributes
including the mean µi

w and covariance Σi
w in the world coordinate frame, where

the mean vector and covariance matrix also represent the position and shape of
the ith Gaussian ellipsoid Gi. To ensure semi-positive definiteness, the covariance
matrix is represented by diagonal scaling matrix Si

w = Diag[si1 si2 si3] ∈ R3×3

and rotation matrix Ri
w = [ri1 ri2 ri3] ∈ SO(3) as follows:

Σi
w = Ri

wS
i
wS

i
w

⊺
Ri

w

⊺
, (1)

where SO(3) is the special orthogonal group.
In addition to the position and shape parameters, spherical harmonics coef-

ficients Ci
w ∈ R(m+1)2×3, where m is the degrees of the freedom, and opacity

αi
w ∈ R also play important roles in rendering the colored image. The color of

the target pixel can be synthesized by splatting and blending these N organized
Gaussian points that have overlaps with the pixel. First, the splatting operation

6 Y. Li et al.

is to form 2D Gaussians N (µI , ΣI) on the image planes from the 3D Gaussians
N (µw, Σw) in the world coordinates based on camera poses, i.e.:

µI = Π(Tcwµw), ΣI = JWcwΣwW
⊺
cwJ

⊺, (2)

where Tcw =

[
Wcw tcw
0 1

]
∈ SE(3) is the camera pose from the world to the

camera coordinate in the special Euclidean group, and Wcw and tcw are rota-
tional and translational components, respectively. J is the Jacobian matrix of
the projective transformation. The blending operation is then given as follows:

Cp =
∑
i∈N

ciαi
w

i−1∏
j=1

(1− αi
w), (3)

where ci and αi
w represent the color and opacity of the point, and the 3D Gaus-

sian Splatting and blending operations are differentiable. Based on optimization
solvers, Gaussian parameters can be trained gradually and supervised via pho-
tometric residuals.

3.2 Gaussian Initialization and Densification

Initialization. Surface normals are first extracted from point clouds using a
method [26], wherein unreliable normals are detected based on two rules: 1)
points with long distances from others, and 2) points whose neighbors within a
distance threshold have different normals with large angles with the point. This
leads to the creation of two groups of points: Sco and Sind, where Sco contains
points located on smooth surfaces while Sind comprises more individual points.

These sparse points are then fed to the Gaussian Initialization module. For
Gaussians initialized by Sind, we adopt an approach similar to that used in 3DGS
by using the distance between the point and its nearest neighbor to set the scale.
For Gaussians G related to Sco, we encode more geometric information in the
parameters as shown in Figure 2. Specifically, the scale vector has only 2 DoFs
since the value in the z-axis s3 (in the Gaussian coordinate frame) is fixed to
a small value to create a thin ellipsoid aligned with the surfaces. Additionally,
we assume that the third column r3 of the rotation matrix from the covariance
matrix Σ represents the normal while the other two columns are set as a group
of normalized basis vectors perpendicular to r3.

Densification in the tangential space. The general Gaussians initialized by
points from Sind are densified in the traditional manner, which involves splitting
a large ellipsoid into two smaller ones located randomly inside the ellipsoid.
However, the approach differs for thin Gaussians denoted as Gθ. We do the
following to ensure that the new clones and splits are aligned with the surface: 1)
Cloning. The gradient of the position is calculated over 10 iterations [18]. The
position µi+1 of the new Gaussian is obtained when the accumulated gradient
(δµi) exceeds the threshold γ. However, instead of being set along the direction

GeoGaussian 7

of the gradient, the new position of the clone Gaussian is determined as follows:

µi+1 = µi + δµi − r⊺3δµ
i, (4)

where µi is the position of the original Gaussian Gi
θ. Additionally, parameters

such as r3 are also cloned to the new Gaussian. 2) Splitting. The split process
also follows the rule of being co-planar. Due to our thin Gaussian representation,
the new position µi+1 lies on the plane established by the normal and position
vectors of Gi

θ, satisfying the equation [µi+1 | µi+1⊺ri+1
3 = µi⊺ri3, Gi+1

θ ∈ Sco].
Based on this method, the Gaussian clone occurs in the tangential space near
the original Gaussian point, and the split operation also ensures that the new
Gaussians lie in the tangential space.

3.3 View-dependent Optimization

The iterative optimization process is necessary to ensure that these Gaussians
have the ability to render photo-realistic images at given viewpoints. Following
the strategy of 3DGS [18], the goal of our designed loss functions is to create
correct geometry and adjust incorrectly positioned Gaussians. The photometric
residual between the rendered pixel ci and the ground truth pixel c̄i is represented
as:

Ei
pho = ∥ci − c̄i∥ = ∥f(G,Tcw)− c̄i∥, (5)

where f(G,Tcw) rasterizes and blends the relevant Gaussians (regular and thin
ellipsoids) to produce the color.

After selecting view-dependent thin Gaussians Gθ which are encouraged to
preserve smooth connections with their nearest neighbors, we propose a smooth-
ness loss function to further improve the geometry of the model. Only Gaussians
detected by the current view are considered in this function. We then utilize
the K-NN algorithm to detect the eight nearest neighbors around Gθ, which are
passed through a filter to remove outliers that have large angle differences by
comparing their normal vectors with that of Gθ. Consequently, the proposed
smooth constrain for optimizing position and normal vectors can be represented
as:

Egeo = β1∥r⊺3µ− 1

m

∑
j∈m

rj3
⊺
µj∥+ β2∥rj3 − r3∥2, (6)

where β1 and β2 are weights, and r⊺3µ shows the distance between the origin
of the world coordinate and the plane established by normal r3 and position µ
vectors of Gθ, while 1

m

∑
j∈m rj3

⊺
µj shows the average point-plane distance of

the neighborhood.
By jointly optimizing the normal alignment and depth consistency of the

Gaussian point tangent space in the neighborhood, we can obtain Gaussian
points with a smooth distribution and alignment on the scene surface.

Finally, the loss function L combines both photometric Epho and geometric
Egeo residuals as:

L = λ1

∑
∀k∈H×W

Ek
pho + λ2

∑
Gi
θ

Ei
geo, (7)

8 Y. Li et al.

where λ1 and λ2 are hyper-parameters, and H and W represent the height and
width of the image, respectively. Gi

θ is detected by the image.

4 Experiments

4.1 Implementation Details

In this section, we detail the experimental settings. The proposed GeoGaussian
approach is trained and evaluated on a desktop PC equipped with an Intel Core
i9 12900K 3.50GHz processor and a single GeForce RTX 3090 GPU. Throughout
all experiments, we maintain a consistent learning rate of 0.0002 for Gaussian
optimization and γ is set to 0.0002. We also use a photometric loss weighting of
0.8 and a geometric loss weighting of 0.3, while weights β1 and β2 are 0.05 and
0.01, respectively.

In the evaluation phase, we employ a standard procedure. Specifically, we
follow 3DGS [18] to train our models on public datasets for 30,000 iterations.
During the first 2,000 iterations, only photometric constraints are used in the
optimization process. Densification operations cease after 10,000 iterations. Ad-
ditionally, Gaussians with small opacity values (under 0.05) are removed from
the map. The list of nearest neighbors is updated every 100 iterations before
reaching 20,000 iterations. After 20,000 iterations, the update frequency is set
to 1,000 iterations as no more Gaussians are added to the map at that time.

4.2 Datasets and Metrics

Datasets. Three public datasets, including Replica [36], TUM RGB-D [37],
and ICL-NUIM [13], are utilized in the evaluation process. The Replica dataset
comprises 8 sequences featuring living room and office scenarios. Similarly, ICL-
NUIM is also a synthetic dataset that offers environments comparable to those
in Replica. We also select 4 sequences from the TUM RGB-D dataset, which
were captured in real-world settings unlike Replica and ICL-NUIM. These TUM
RGB-D sequences consist of distortion-free images, making them suitable as
references for evaluation.

Metrics. Following the popular evaluation protocol used in methods [18, 36],
standard photometric rendering quality metrics are employed in the experi-
ment section to evaluate the quality of novel view rendering. These metrics in-
clude Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), and Learned Perceptual Image Patch Similarity (LPIPS). Particularly,
PSNR evaluates on a color-wise basis. SSIM measures the similarity between two
images, which considers changes in structural information, luminance, and con-
trast that can occur with various types of distortion. LPIPS compares features
of two images extracted by a pre-trained neural network such as VGG-Net [35]
instead of comparing two images directly.

GeoGaussian 9

IC
L
-N

U
IM

O
ffi

ce
3

T
U

M
R

G
B

-D
f3/strtex-far

R
ep

lica
O

F
F
0

R
ep

lica
O

F
F
2

(a) 3DGS [18] (b) LightGS [8] (c) GeoGaussian (d) Reference

Fig. 3: Comparisons of novel view rendering on public datasets. At some challenging
viewpoints having bigger differences in translation and orientation motions compared
with training views, 3DGS and LightGS have issues with photorealistic rendering. (d)
shows the training view closest to the rendered one.

10 Y. Li et al.

Method Metric R0 R1 R2 OFF0 OFF1 OFF2 OFF3 OFF4 Avg.

Vox-
Fusion [43]

PSNR↑
SSIM↑
LPIPS↓

22.39
0.683
0.303

22.36
0.751
0.269

23.92
0.798
0.234

27.79
0.857
0.241

29.83
0.876
0.184

20.33
0.794
0.243

23.47
0.803
0.213

25.21
0.847
0.199

24.41
0.801
0.236

Point-
SLAM [32]

PSNR↑
SSIM↑
LPIPS↓

32.40
0.974
0.113

34.08
0.977
0.116

35.50
0.982
0.111

38.26
0.983
0.100

39.16
0.986
0.118

33.99
0.960
0.156

33.48
0.960
0.132

33.49
0.979
0.142

35.17
0.975
0.124

Gaussian-
Splatting
SLAM [23]

PSNR↑
SSIM↑
LPIPS↓

34.83
0.954
0.068

36.43
0.959
0.076

37.49
0.965
0.07

39.95
0.971
0.072

42.09
0.977
0.055

36.24
0.964
0.078

36.70
0.963
0.065

36.07
0.957
0.099

37.50
0.960
0.070

GeoGaussian
(ours)

PSNR ↑
SSIM↑
LPIPS↓

35.20
0.952
0.029

38.24
0.979
0.021

39.14
0.970
0.024

42.74
0.981
0.016

42.20
0.970
0.040

37.31
0.970
0.029

36.66
0.964
0.029

38.74
0.967
0.031

38.78
0.969
0.027

Table 1: Comparison of different solutions for novel view rendering on the Replica
dataset, GeoGaussian is fed by point clouds, initial camera poses, and monocular im-
ages, while other methods work in real-time with RGB-D streams. Results of Gaussian-
Splatting SLAM, Vox-Fusion, and Point-SLAM are taken from [23].

4.3 Scene Rendering Solutions

Solutions for NVS tasks can be generally classified into end-to-end and hybrid
methods. Gaussian Splatting SLAM [23] represents end-to-end methods that use
Gaussians as the map for incremental localization, reconstruction, and rendering
tasks. In contrast, Vox-Fusion [43] represents hybrid methods that integrate im-
plicit neural representations into traditional volumetric methods, and estimate
6-DoF camera poses following traditional pose estimation without using neural
embeddings saved in voxels. Similarly, our GeoGaussian starts from point clouds
and camera poses which can be generated by SLAM [30] and Structure-from-
Motion [33] methods, and uses differentiable 3D Gaussian representations for
rendering instead of neural implicit ones. Nonetheless, the big difference is that
methods such as Vox-Fusion operates online, while Gaussian Splatting optimiza-
tion functions similar to a global refinement module that requires more time and
unable to perform real-time optimization.

We put aside the all other differences between these methods to focus on
comparisons on the rendering task. Specifically, we compare the rendering re-
sults of our GeoGaussian against Gaussian-Splatting SLAM, Point-SLAM, and
Vox-Fusion on the same Replica dataset. As listed in Table 1, our proposed Ge-
oGaussian using offline Gaussian Splatting achieves the best novel view render-
ing results, especially in PSNR and LPIPS metrics. Point-SLAM is also very ro-
bust, especially in SSIM, but the LPIPS metric is worse than Gaussian-Splatting
SLAM. These results show that the Gaussian Splatting algorithm yield more im-
pressive performance in photo-realistic rendering problems compared with neural
representation methods used in Vox-Fusion and Point-SLAM.

GeoGaussian 11

4.4 Gaussian Splatting in NVS

In this section, our GeoGaussian is benchmarked against Gaussian Splatting
methods which are fed by the same inputs such as sparse point clouds, initial
camera poses, and monocular images based on the preprocessing method [30].
3DGS [18] is the most important baseline in this area, while LightGS [8] is a
refinement approach based on 3DGS that involves the pruning of insignificant
Gaussian points and further fine-tuning.

For the experiments, we feed the three methods with the same inputs to val-
idate their rendering performance as listed in Table 2. Additionally, we evaluate
these methods in sparse views, which is a significant metric for evaluating the
generality of the trained Gaussian models. Evaluating on a dataset that is too
similar to the training dataset can make it difficult to assess the generality of the
model. To address this issue, we first select the evaluation dataset at a frequency
of one frame every five frames. The remaining data is considered as the training
dataset, referred to as R1 (100%) as an example in the second row of Table 2 and
Figure 4. Similarly, we use only 10% of the training dataset for training, referred
to as R1 (10%). It is important to note that the removal process is uniformly
implemented across all sequences.

Methods 3DGS [18] LightGS [8] GeoGaussian
Data 10% 16.6% 50% 100% 10% 16.6% 50% 100% 10% 16.6% 50% 100%

R1
PSNR↑
SSIM↑
LPIPS↓

30.49
0.932
0.051

33.98
0.951
0.036

37.45
0.964
0.029

37.60
0.965
0.028

30.54
0.932
0.051

34.06
0.951
0.035

37.72
0.965
0.028

38.44
0.967
0.025

31.65
0.937
0.041

35.17
0.957
0.027

38.00
0.968
0.022

38.24
0.979
0.021

R2
PSNR↑
SSIM↑
LPIPS↓

31.53
0.935
0.050

35.82
0.959
0.031

38.53
0.968
0.028

38.70
0.968
0.029

31.54
0.935
0.049

35.93
0.959
0.031

38.78
0.968
0.027

39.07
0.968
0.028

32.13
0.943
0.041

36.81
0.963
0.025

38.84
0.969
0.024

39.14
0.970
0.024

OFF3
PSNR↑
SSIM↑
LPIPS↓

30.90
0.928
0.052

33.86
0.946
0.040

36.26
0.958
0.037

36.56
0.959
0.036

30.93
0.928
0.052

33.90
0.947
0.040

36.38
0.958
0.036

36.63
0.958
0.037

31.62
0.938
0.040

33.91
0.953
0.032

36.42
0.963
0.029

36.66
0.964
0.029

OFF4
PSNR↑
SSIM↑
LPIPS↓

29.55
0.920
0.070

32.98
0.941
0.049

37.70
0.962
0.037

38.48
0.964
0.035

29.51
0.920
0.070

32.97
0.941
0.049

37.95
0.962
0.036

38.59
0.964
0.036

31.90
0.936
0.050

34.61
0.953
0.036

38.30
0.966
0.030

38.74
0.967
0.031

Avg.
PSNR↑
SSIM↑
LPIPS↓

30.62
0.929
0.056

34.16
0.949
0.039

37.49
0.964
0.032

37.84
0.964
0.032

30.63
0.929
0.056

34.22
0.950
0.039

37.71
0.964
0.032

38.18
0.964
0.032

31.83
0.939
0.043

35.13
0.957
0.030

38.18
0.967
0.026

38.20
0.970
0.026

Table 2: Comparison of rendering on the Replica dataset. The position and orientation
of viewpoints used in training and evaluation are illustrated in Appendix.

Evaluation on Replica. Our proposed GeoGaussian demonstrates superior
rendering performance compared to other Gaussian Splatting-based methods in
the R1, R2, and OFF3 sequences, as shown in Table 2. Particularly in the R1
and R2 sequences, our method exhibits comprehensive improvements across all
three metrics. These environments consist mostly of less-textured regions, such
as single-color walls, where 3DGS [18] and its refinement method LightGS [8]
lack sufficient photometric constraints for their optimization processes. This is

12 Y. Li et al.

R1 (10%) R1 R2 (10%) R2 OFF3 (10%) OFF3 OFF4 (10%) OFF4
0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
G

au
ss

ia
n

P
oi

nt
s

(M
)

3DGS [18] LightGS [8] GeoGaussian

Fig. 4: Statistics of the number of Gaussians in sequences of Replica. To make the
comparison compact, more values are illustrated in Appendix.

evident in the first two rows of Figure 3, where the ceiling appears blurry in
these two methods but is well-preserved in our method.

Furthermore, the distributions of 3D Gaussians illustrate that the geometry
in our method is more reasonable compared to the results from 3DGS, with
flatter walls and clearer junction lines highlighted in Figure 3. As shown in the
OFF3 sequence, our 3D Gaussian model shows more generality and robustness
in rendering performance when the training data becomes sparser. Specifically,
the PSNR distance between 3DGS and ours is 0.1 in OFF3 (100%), while the
distance becomes 0.7 in OFF3 (10%). Similar improvements are witnessed in
R1, where the distance between these two methods in R1 (100%) is around
0.6, and this difference continues to increase in R1 (16.6%) to 1.2. Since our
evaluation dataset includes rich scenarios, these improvements demonstrate that
the proposed method has advantages in novel view rendering tasks by using
geometry-aware strategies.

In Figure 4, we present the number of Gaussians used for each sequence.
All methods are optimized for 30,000 iterations. LightGS received an additional
5,000 iterations based on the 25,000 models of 3DGS, following the official set-
tings of LightGS. Generally, 3DGS requires more Gaussians in average compared
to the other two methods. For example, 3DGS employs about one-fourth more
Gaussians than the other methods in OFF4, yet the rendering performance re-
mains similar across all three methods.

Evaluation on TUM RGB-D. In Table 3, sequences from TUM RGB-D are
used to evaluate Gaussian Splatting approaches. In sequences such as f3/cabinet
and f3/strtex-far, our method outperforms 3DGS and LightGS significantly. For
example, our method achieves a PSNR of 28.64 while 3DGS obtains 27.85 in
f3/strtex-far. As shown in the last row of Figure 3, the 3D Gaussian points in
our method are well-organized in structure, whereas the geometry is not pre-
served in 3DGS, appearing as a big blue ellipsoid passing through the wall. In
the cabinet sequence, characterized by a lack of textured regions, our proposed
method demonstrates impressive improvements in both sparse (10%) and full
(100%) training data scenarios. However, in the lag-cabinet sequences where the

GeoGaussian 13

camera moves around a cabinet placed in the middle of the scene, both 3DGS
and LightGS perform better than our GeoGaussian.

Method 3DGS [18] LightGS [8] GeoGaussian
Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

f3/cabinet (100%) 27.24 0.907 0.125 27.35 0.908 0.124 28.17 0.916 0.106
f3/cabinet (10%) 22.43 0.850 0.186 22.36 0.849 0.190 25.59 0.887 0.138
f3/strtex-far (100%) 27.85 0.896 0.073 27.90 0.896 0.073 28.64 0.907 0.064
f3/strtex-far (10%) 21.41 0.737 0.192 21.39 0.734 0.194 22.84 0.779 0.137

Avg. 24.73 0.848 0.144 24.75 0.847 0.145 26.31 0.872 0.111

Table 3: Rendering performance comparison on the TUM RGB-D datasets.

4.5 Ablation Studies

Sparse Views for Training. In this section, we present additional settings for
sparse view rendering evaluation as listed in Table 4. As the number of train-
ing images decreases from 50% to 10%, the performance of 3DGS deteriorates
significantly. In contrast, the GeoGaussian approach, leveraging the proposed
geometry-aware densification operations and constraints, demonstrates more ro-
bust rendering performance.

Method Metric 10%
(train/test)

12.5%
(train/test)

16.6%
(train/test)

25%
(train/test)

50%
(train/test)

3DGS [18]

PSNR↑
SSIM↑
LPIPS↓

30.49
0.932
0.051

33.15
0.944
0.039

33.98
0.951
0.035

36.58
0.961
0.028

37.45
0.964
0.028

GeoGaussian
(ours)

PSNR↑
SSIM↑
LPIPS↓

31.65
0.942
0.041

33.95
0.949
0.032

35.17
0.957
0.027

36.83
0.964
0.023

38.00
0.968
0.022

Table 4: Sparse view rendering on the R1 sequence of Replica dataset. The position
and orientation of viewpoints used in training and evaluation are given in Appendix.

Training and Evaluation. Figure 5 illustrates the PSNR results collected dur-
ing training and evaluation iterations. In Figure 5a, our GeoGaussian achieves
significantly better results in the first 15K iterations than 3DGS. This improve-
ment can be attributed to the accuracy provided by our proposed initialization
and densification modules, which help to achieve better convergence. Similar
phenomena can be seen in Figure 5b, the performance of GeoGaussian is more
robust in both sparse (10%) and full (100%) training data scenarios. In Fig-
ure 5c, 3DGS tends to overfit the training views, while our approach limits the
extent of overfitting and prevents test results from degrading rapidly.

14 Y. Li et al.

2 7 15 30
25

27

29

31

33

35

Iterations(K)

P
S
N
R

GeoGaussian-Training
GeoGaussian-Evaluation

3DGS-Training
3DGS-Evaluation

(a) f3/strtex_far

1 2 3 4 5 6 7

20

30

40

50

Iterations(K)

P
S
N
R

GeoGaussian-100%
GeoGaussian-10%

3DGS-100%
3DGS-10%

(b) OFF4

2 7 15 30
18

23

35

47

59

Iterations(K)

P
S
N
R

GeoGaussian-Training
GeoGaussian-Evaluation

3DGS-Training
3DGS-Evaluation

(c) Room 2(10%)

Fig. 5: Rendering performance in training and evaluation using TUM RGB-D (a),
Replica (b), and ICL-NUIM (c) datasets.

5 Conclusion

In this paper, we introduce a novel approach called GeoGaussian, which em-
phasizes the importance of preserving accurate geometry in Gaussian models
to enhance their representation in 3D space. Our method first gives Gaussian
parameters a clearer geometric meaning. The third parameter of the scale vector
is used to control thickness, while the third column of the rotation matrix speci-
fies the normal direction of the thin ellipsoid, where the initial normal direction
is extracted from the initial point clouds. Additionally, we propose a carefully
designed densification approach to effectively organize the newly generated ellip-
soids. In the optimization module, we encourage ellipsoids in the neighborhood
to lie in a co-planar area, further enhancing the representation quality. Experi-
mental results on public datasets demonstrate that our method achieves superior
performance in terms of geometry accuracy and photo-realistic novel view ren-
dering compared to state-of-the-art approaches. In the future, we plan to explore
more comprehensive solutions for improving the geometry of Gaussian models.
This will involve incorporating depth, normals, and camera poses into the 3D
Gaussian Splatting optimization process, reducing the reliance on point cloud
normal vectors.

Acknowledgement. This research work is supported by the Agency for Sci-
ence, Technology and Research (A*STAR) under its MTC Programmatic Funds
(Grant No. M23L7b0021).

GeoGaussian 15

References

1. Allene, C., Pons, J.P., Keriven, R.: Seamless image-based texture atlases using
multi-band blending. In: 2008 19th international conference on pattern recognition.
pp. 1–4. IEEE (2008)

2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-nerf:
Anti-aliased grid-based neural radiance fields. arXiv preprint arXiv:2304.06706
(2023)

3. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: Real-
time globally consistent 3d reconstruction using on-the-fly surface reintegration.
ACM Transactions on Graphics (ToG) 36(4), 1 (2017)

4. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from
photographs: A hybrid geometry-and image-based approach. In: Seminal Graphics
Papers: Pushing the Boundaries, Volume 2, pp. 465–474 (2023)

5. Deng, B., Barron, J.T., Srinivasan, P.P.: Jaxnerf: an efficient jax im-
plementation of nerf. URL http://github. com/googleresearch/google-
research/tree/master/jaxnerf (2020)

6. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: Self-supervised interest
point detection and description. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops. pp. 224–236 (2018)

7. Dong, X., Dong, J., Sun, G., Duan, Y., Qi, L., Yu, H.: Learning-based texture syn-
thesis and automatic inpainting using support vector machines. IEEE Transactions
on Industrial Electronics 66(6), 4777–4787 (2018)

8. Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: Lightgaussian: Un-
bounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245 (2023)

9. Feng, Y., Feng, Y., You, H., Zhao, X., Gao, Y.: Meshnet: Mesh neural network
for 3d shape representation. In: Proceedings of the AAAI conference on artificial
intelligence. vol. 33, pp. 8279–8286 (2019)

10. Gao, J., Chen, W., Xiang, T., Jacobson, A., McGuire, M., Fidler, S.: Learning de-
formable tetrahedral meshes for 3d reconstruction. Advances In Neural Information
Processing Systems 33, 9936–9947 (2020)

11. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo
for community photo collections. In: 2007 IEEE 11th International Conference on
Computer Vision. pp. 1–8. IEEE (2007)

12. Guédon, A., Lepetit, V.: Sugar: Surface-aligned gaussian splatting for effi-
cient 3d mesh reconstruction and high-quality mesh rendering. arXiv preprint
arXiv:2311.12775 (2023)

13. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for rgb-d visual
odometry, 3d reconstruction and slam. In: 2014 IEEE international conference on
Robotics and automation (ICRA). pp. 1524–1531. IEEE (2014)

14. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton,
J., Hodges, S., Freeman, D., Davison, A., et al.: Kinectfusion: real-time 3d recon-
struction and interaction using a moving depth camera. In: Proceedings of the 24th
annual ACM symposium on User interface software and technology. pp. 559–568
(2011)

15. Karnewar, A., Ritschel, T., Wang, O., Mitra, N.: Relu fields: The little non-linearity
that could. In: ACM SIGGRAPH 2022 Conference Proceedings. pp. 1–9 (2022)

16. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceed-
ings of the fourth Eurographics symposium on Geometry processing. vol. 7, p. 0
(2006)

16 Y. Li et al.

17. Keetha, N., Karhade, J., Jatavallabhula, K.M., Yang, G., Scherer, S., Ramanan,
D., Luiten, J.: Splatam: Splat, track & map 3d gaussians for dense rgb-d slam.
arXiv preprint arXiv:2312.02126 (2023)

18. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (July
2023), https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

19. Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for rgb-d cameras. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2100–
2106. IEEE (2013)

20. Lempitsky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. In:
2007 IEEE conference on computer vision and pattern recognition. pp. 1–6. IEEE
(2007)

21. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
Advances in Neural Information Processing Systems 33, 15651–15663 (2020)

22. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. In: Seminal graphics: pioneering efforts that shaped the field,
pp. 347–353 (1998)

23. Matsuki, H., Murai, R., Kelly, P.H.J., Davison, A.J.: Gaussian Splatting SLAM
(2024)

24. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 4460–4470
(2019)

25. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

26. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. VISAPP (1) 2(331-340), 2 (2009)

27. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1–
15 (2022)

28. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 3504–3515 (2020)

29. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture
fields: Learning texture representations in function space. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4531–4540 (2019)

30. R. Yunus, Y.L., Tombari, F.: Manhattanslam: Robust planar tracking and mapping
leveraging mixture of manhattan frames. In: 2021 IEEE international conference
on Robotics and automation (ICRA) (2021)

31. Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: Derf: Decom-
posed radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14153–14161 (2021)

32. Sandström, E., Li, Y., Van Gool, L., Oswald, M.R.: Point-slam: Dense neural point
cloud-based slam. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 18433–18444 (October 2023)

33. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

GeoGaussian 17

34. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and
evaluation of multi-view stereo reconstruction algorithms. In: 2006 IEEE computer
society conference on computer vision and pattern recognition (CVPR’06). vol. 1,
pp. 519–528. IEEE (2006)

35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

36. Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J.,
Mur-Artal, R., Ren, C., Verma, S., et al.: The replica dataset: A digital replica of
indoor spaces.(2019). arXiv preprint arXiv:1906.05797 2(8), 9 (2019)

37. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for
the evaluation of rgb-d slam systems. In: 2012 IEEE/RSJ international conference
on intelligent robots and systems. pp. 573–580. IEEE (2012)

38. Waechter, M., Moehrle, N., Goesele, M.: Let there be color! large-scale texturing of
3d reconstructions. In: Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. pp. 836–850.
Springer (2014)

39. Wang, P., Liu, Y., Chen, Z., Liu, L., Liu, Z., Komura, T., Theobalt, C., Wang,
W.: F2-nerf: Fast neural radiance field training with free camera trajectories. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 4150–4159 (2023)

40. Wang, Y., Tan, D.J., Navab, N., Tombari, F.: Forknet: Multi-branch volumetric
semantic completion from a single depth image. In: Proceedings of the IEEE/CVF
international conference on computer vision. pp. 8608–8617 (2019)

41. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M.:
âstructure-from-motionâphotogrammetry: A low-cost, effective tool for geoscience
applications. Geomorphology 179, 300–314 (2012)

42. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: Disn: Deep implicit sur-
face network for high-quality single-view 3d reconstruction. Advances in neural
information processing systems 32 (2019)

43. Yang, X., Li, H., Zhai, H., Ming, Y., Liu, Y., Zhang, G.: Vox-fusion: Dense tracking
and mapping with voxel-based neural implicit representation. In: 2022 IEEE In-
ternational Symposium on Mixed and Augmented Reality (ISMAR). pp. 499–507.
IEEE Computer Society, Los Alamitos, CA, USA (oct 2022)

44. Yugay, V., Li, Y., Gevers, T., Oswald, M.R.: Gaussian-slam: Photo-realistic dense
slam with gaussian splatting. arXiv preprint arXiv:2312.10070 (2023)

	GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering

