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Abstract. In the supplementary material, we provide information about
the implementation details of our method, along with details about the
baselines, experimental settings, additional results and the discussion of
limitations and potential negative social impact of our method. We first
describe the implementation details of our approach in Appendix A1.
Then in Appendix A2 we present additional details on the baseline model
implementations and their adaptation to our setting. Next, we explain in
more detail our experimental setting and datasets in Appendix A3. Af-
ter that, we showcase additional experiments, including comaparison to
additional learning-based (CalibNet [8], LCCNet [15]) and NeRF-based
(MOISST [7]) calibration methods, additional results and visualizations
in Appendix A4. Finally, we analyze the limitations of our model and
discuss the future works and potential negative social impact in Ap-
pendix A5. Please visit https://waabi.ai/unical for an overview of
our methodology and video results for multi-sensor calibration.

A1 UniCal Details

Scene Representation Model: Our scene representation model is based on a multi-
resolution feature grid and MLP network. Following [16], we employ a spatial hash
function to map each feature grid to a fixed number of features, with the hash
table size set to 221. To obtain the signed distance value s and appearance feature
f from the interpolated feature (Eq. 1 in main paper), the MLP network consists
of two layers, with a hidden size of 64. For distant regions outside the scene
volume, we adopt an inverted sphere parameterization similar to NeRF++ [27].

Camera and LiDAR Intensity Decoder: The camera RGB decoder Dcam (Eq. 3
in main paper) and the LiDAR intensity decoder Dlidar (Eq. 5 in main paper)
are both three layer MLPs. They take the queried appearance feature f and view
direction encoding d as input and output the RGB color and LiDAR intensity.
To account for variations in exposure and color tone across different sensors,
we learn a per-sensor linear mapping over the intensity channel. We found this
simple model to be effective in capturing these variations in practice.
⋆ Indicates equal contribution. † Work done while an intern at Waabi.

https://waabi.ai/unical


2 Z. Yang et al.
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Fig.A1: Convergence of sensor alignment metrics and pose metrics. The cal-
ibration typically converges within around 10K iterations (≈ 30 minutes on an A5000
GPU) for both MS-Cal and PandaSet datasets. Left: Convergence of LiDAR-Camera
re-projection error (pixel) on MS-Cal checkerboard data and LiDAR-LiDAR registra-
tion error (cm) on MS-Cal outdoor data. Middle: Convergence of sensor pose error
on MS-Cal dataset. Right: Convergence of sensor pose error on PandaSet dataset.

Rendering Details: To perform efficient volume rendering, we leverage the geom-
etry priors from LiDAR observations to identify near-surface regions, enabling
the evaluation of the radiance field exclusively within these areas. This signifi-
cantly reduces the number of required samples and radiance queries. Specifically,
we generate an occupancy grid for the scene volume using the aggregated LiDAR
point clouds similar to [26], with a voxel size set to be 0.5 m. We sample query
points with a fixed step of 10 cm for regions inside the scene volume, and sample
an additional 16 points for the distant sky region during volume rendering.

Sensor Pose Representation: The choice of sensor pose parameterization plays a
crucial role for pose-optimizing NeRFs. For instance, certain parameterizations
of rotation, such as Euler angles, are known to lack continuity over the SO(3)
manifold, posing challenges in the learning process. To address this, we use a
continuous 6D representation [31] to parameterize the sensor rotation and 3D
vector to parameterize the sensor translation.

Rolling Shutter Modelling: LiDAR sensors usually accumulate measurements
over time, it takes non-negligible time to finish the scan of a full sweep. If the
data collection platform is in motion during this period, the LiDAR scan may
become distorted due to changes in the sensor pose throughout the scan, known
as the rolling shutter effect. To accurately render the LiDAR sweep and model
the rolling shutter effect, we interpolate the vehicle pose Pveh(t) for each LiDAR
laser at the firing timestamp t and composite it with the sensor extrinsic to
obtain the per ray sensor pose, we then generate the LiDAR ray using Eq. 4 in
main paper for volume rendering.
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Run-time ↓

MLCC 1 hr
ICP + Edge and Plane + PGO 3 hr (18 sensor pairs * 10 min)

SC-NeRF 1 day
INF 1 day
Ours 30 min
Table A1: Comparison of calibration time on the MS-Cal dataset.

Surface Alignment Distance: To compute the surface alignment distance (Eq.
12 in main paper), we first select candidate image pairs that have an overlap-
ping field-of-view. Then we run SuperPoint [4] and LightGlue [13] to identify
the correspondences between the image pairs. During training, we randomly se-
lect a image for each camera sensor and its candidate pair image to compute
the alignment loss in each iteration. We filter out correspondences with a re-
projection error ∥π(p) − u∥2 > 50 for PandaSet [25] and ∥π(p) − u∥2 > 20
for our collected MS-Cal dataset. We also filter out correspondences with a ray
termination probability

∑N
i=1 wi < 0.5.

Ray Sampling Details: During the coarse-to-fine ray sampling phase, we run
SuperPoint [4] to detect 2048 keypoints for each camera image and progressively
apply Gaussian blur to create the blurred heat maps. The initial Gaussian blur
kernel has a σ = 40 and the final gaussian blur kernel has a σ = 5.

Training Details: We employ a multi-stage training schedule. For the initial 2000
iterations, the model is trained with uniform ray sampling, and transit to coarse-
to-fine ray sampling from iteration 2000 until the end of training. Throughout
the training process, we utilize the Adam optimizer with a initial learning rate
of 0.01 for the scene model and 0.0001 for the sensor poses. The learning rates
are exponentially decayed by 0.1 for the scene model and by 0.01 for the sensor
poses. During the training, we dynamically adjust the number of sample rays in
each iteration to ensure a fixed sample points of 219. The allocation of rays is
evenly distributed among sensors to ensure an equal number of sampled rays for
each sensor. Regarding the loss weights in the learning objective, we set Lrgb = 1,
Lint = 0.1, Ldepth = 0.1, Lalign = 0.001, and Lreg = 0.01. We train the model for
30K iterations in total. Notably, we observe that calibration typically converges
within around 30 minutes on an A5000 GPU. Fig. A1 shows the convergences
of LiDAR-Camera re-reprojection error, LiDAR-LiDAR registration error, and
sensor pose accuracy for the initial 10k iterations (≈ 30 minutes). However, we
opt to extend the training to enhance calibration further.

Run-time and Resources: Table A1 reports the calibration runtimes compared to
other methods. Our approach is more efficient than the other NeRF-based base-
lines due to our efficient scene representation and rendering, as well as the surface
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alignment constraints. While classical calibration methods are in principle fast,
they operate on each sensor pair and the time scales linearly unless parallelized
for multi-sensor setups. Additionally, existing public implementations of classical
calibration such as MLCC [14] or Edge and Plane [28] can be slow, complicating
direct comparisons. Besides improved performance, UniCal is more scalable as it
does not require expensive infrastructure and operational overhead. This allows
calibration in any location without needing to build calibration sites.

A2 Baseline Implementation Details

A2.1 Classical Calibration Baselines

Point-to-Plane ICP: Point-to-Plane ICP [21] is a commonly used algorithm
for LiDAR odometry and LiDAR-LiDAR calibration that is typically more effi-
cient and exhibits better average performance [19] than point-to-point ICP. As
these algorithms are widely available, we employ the implementation present in
Open3D [29]. We run the Point-to-Plane ICP to calibrate each LiDAR pair with
sufficient co-visible field-of-views. The calibration is conducted on the five sta-
tionary outdoor scenes that include a variety of poles, walls, and distant objects
for calibration.

MLCC: MLCC [14] is a targetless sensor extrinsic calibration method for cam-
era and LiDAR sensors. We leverage this framework to perform LiDAR-LiDAR
calibration. Specifically, MLCC first uses an adaptive voxelization technique to
extract and match LiDAR feature points, subsequently formulating the multi-
LiDAR extrinsic calibration problem as a LiDAR Bundle Adjustment (BA) prob-
lem. We employ the implementation from the official repo4 to conduct calibration
on our outdoor collects, yielding LiDAR-LiDAR calibration results. We empir-
ically found the MLCC performs slightly worse than Point-to-Plane ICP [21],
possibly due to the absence of distinctive structures/features in the outdoor
scene data.

Edge and Plane: For LiDAR-camera calibration, we use a custom implementa-
tion of a commonly-used target-based method [28]. This approach optimizes for
both plane and edge correspondences given known dimensions of a checkerboard
target. Improvements over the existing utility available in the MATLAB toolbox
involve better target segmentation and edge correspondence matching between
identified image edges and extracted point cloud edges. We exploit more accu-
rate initial CAD estimates for coarse bounding box segmentation and use the
known laser scan lines as priors for target edge detection. This approach ensures
we can reject poor matches in low co-visible regions. To improve robustness, we
ensure a variety of target poses are captured and cover the full field-of-view of
each camera. The calibration is performed in an indoor environment to control
for lighting conditions and improve target visibility.
4 https://github.com/hku-mars/mlcc

https://github.com/hku-mars/mlcc
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Mutual Information: Another approach for LiDAR-camera calibration is to
leverage the correlation between passive material reflection of visible light and
LiDAR reflectivity of near infrared wavelengths. A popular approach is to max-
imize the mutual information [18] of the grayscale image and the intensity of
LiDAR returns. We employ a modified implementation of [23] across 10 sta-
tionary outdoor scenes for each co-visible LiDAR-camera pair. This approach
includes image pre-processing steps including a gaussian blur with a standard
deviation of 5 pixels and histogram equalization. We limit the optimization space
to within 20 cm and 2 degrees of the initial guess for each translational and ro-
tational DoF.

Pose Graph Optimization: To unify LiDAR-camera [28], LiDAR-LiDAR [2], and
LiDAR-INS [1, 5] calibration results, we employ a global pose graph optimiza-
tion [3,29] to align the full sensor setup. As the methods employ different sensing
and registration modalities, we unify the pose graph optimization with empirical
weights to ensure that traversal of the calibration graph is fully self-consistent.
Pose-graph optimization allows for the averaging across multiple registrations
of the same sensors, across sensors, and across registration methods. As the
modalities operate in different domains, however, the process requires careful
tuning of the relative information matrices of each edge, which is a tedious and
time-consuming process.

A2.2 Neural Rendering Calibration Baselines

Self-Calibrating NeRF: SC-NeRF [9] jointly optimizes the neural field, cam-
era pose, intrinsics, and distortion model. In our experiments, we modified the
training algorithm to jointly optimize multiple cameras by randomly sampling a
camera at each iteration, sampling rays and computing the loss for the selected
camera. To ensure that the extrinsics can be properly evaluated against the
ground truth, we do not optimize the intrinsics and distortion parameters when
training. To match our robot sensor platform setting, we learn a fixed (sensor
to vehicle) transformation for each camera from the (given) ground truth vehi-
cle poses at each timestep rather than learning the individual camera to world
transformations at each timestep. In our experiments, we use the NeRF++ [27]
backbone and the same settings as their Tanks and Temples [11] evaluation with
a total of 1.5 million training iterations. We only replace their scene normaliza-
tion factor with 100 and 60 for Pandaset [25] and MS-Cal respectively to reflect
the larger scene sizes.

Implicit Neural Fusion: INF [30] first jointly learns a neural field and pose for
a LiDAR sensor, then learns a radiance field and transformation from LiDAR
frame to camera frame. In our experiments, we again modified the training algo-
rithm to learn on multiple LiDARs and multiple cameras by sampling a sensor
at random at each training iteration, and sampling rays and computing the loss
as usual. For both LiDARs and cameras, we learn the fixed (sensor to vehicle)
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Fig.A2: MS-Cal dataset sensor setup and captured data. We show the LiDAR
and camera data on the static outdoor collect.

transformation from the (given) ground truth vehicle pose at each time step, in-
stead of learning the per-frame sensor to world transformation as was originally
done for LiDAR. We also elected to replace their internal pose representation
with 6DoF [31] as we found that the original pose representation was not well de-
fined for the initial sensor extrinsics. We also run all experiments with a pinhole
camera intrinsics model to match the cameras present in PandaSet and MS-Cal
datasets. In our experiments, we base the hyperparameters on the settings for
their outdoor scene. For both datasets, we set the max depth and scene normal-
ization factor for the depth network to 150m. For Pandaset, we train the density
model for 300k iterations and for MS-Cal we train for 750k iterations. For the
color model, we set the scene normalization factor to 150m, but set the far range
to 50m as we found that this helped with stability. We also lowered the learning
rate of the camera poses to 5e−4. We train the color model for 1.2 million and
1.6 million iterations for Pandaset and MS-Cal respectively, to compensate for
the additional cameras present in these datasets.

A3 Experiment Details

A3.1 Multi-Sensor Calibration Dataset

We collect a MS-Cal dataset to study the calibration performance of our pro-
posed method and baselines. Additionally, we investigate the impact of driving
trajectories on the calibration performance. The data collection vehicle is a Class
8 truck equipped with five mechanical spinning LiDARs. Among these, two are
long-range LiDARs (with a range of up to 200m) positioned on the left and right
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Camera Type Camera Name Paired LiDAR Names

Narrow FoV Stereo-Left Long-Range-Left, Long-Range-Right
Stereo-Right Long-Range-Left, Long-Range-Right

Medium FoV
Front Long-Range-Left, Long-Range-Right
Rear-Left Long-Range-Left, Medium-Range-Left
Rear-Right Long-Range-Right, Medium-Range-Right

Wide FoV
Front Long-Range-Left, Long-Range-Right, Medium-Range-Front
Left Medium-Range-Left
Right Medium-Range-Right

Table A2: List of LiDAR-camera pairs for computing re-projection error on
MS-Cal checkerboard data.

Narrow FoV Cameras Medium FoV Cameras Wide FoV Cameras

Stereo-Left Stereo-Right Front Rear-Left Rear-Right Front Left Right

Mutual Info [17] 58.75 40.10 12.59 16.87 37.46 52.55 56.50 27.89
Edge and Plane [28] 11.15 9.63 2.28 6.67 12.59 11.11 14.63 11.65
Pose Graph Optim [29] 20.46 9.68 2.89 7.77 13.75 10.14 12.86 11.31

SC-NeRF [9] 115.81 114.98 13.83 36.82 45.09 28.66 86.82 34.17
INF [30] 54.66 24.84 3.43 15.56 63.21 57.20 120.69 61.59
Ours 7.78 8.74 2.82 6.89 12.94 9.91 15.97 12.68

Table A3: LiDAR-camera re-projection error (in pixel) on MS-Cal checker-
board data. We report the breakdown metric for each camera sensor. The average
metric is in Tab. 1 in main paper.

sides of the truck. The remaining three are medium-range LiDARs (with a range
of up to 50m) mounted at the front, left, and right sides of the truck to provide
near-range sensing. The LiDAR setup ensures comprehensive 360◦ coverage. In
addition to LiDARs, the data collection vehicle is equipped with eight cameras.
These include three wide-angle cameras oriented towards the front, left, and
right. Furthermore, three medium-angle cameras are placed to capture views
from the front, rear left, and rear right. Lastly, two long-range stereo cameras
are positioned at the front to provide far-distant observations. Please refer to
Fig. A2 for a visual representation of the sensor setup and the data captured.
The dataset includes indoor data and outdoor data. For the indoor data, the data
collection vehicle remains stationary, while a checkerboard is positioned at var-
ious locations and orientations for camera-LiDAR pair calibration. One collect
is utilized for optimizing classical calibration methods, while another is held out
for evaluating LiDAR-camera sensor alignment metrics. For the outdoor park-
ing lot data, we collected both stationary and dynamic trajectories, including
eight stationary scenes and four "figure-8" ∞ loops. Two ∞ loops were selected
for training neural-rendering methods, and five stationary scenes were used for
classical LiDAR alignment calibration. The remaining ∞ loops and stationary
scenes were reserved for evaluating the calibrations. To delve into the influence
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LiDAR Name Paired LiDAR Name

Long-Range-Left Long-Range-Right, Medium-Range-Left, Medium-Range-Front
Long-Range-Right Long-Range-Left, Medium-Range-Right, Medium-Range-Front

Medium-Range-Front Long-Range-Left, Long-Range-Right, Medium-Range-Left, Medium-Range-Right
Medium-Range-Left Long-Range-Left, Medium-Range-Front
Medium-Range-Right Long-Range-Right, Medium-Range-Front

Table A4: List of LiDAR-LiDAR pairs for computing registration error on
MS-Cal outdoor data.

Long Range LiDAR Medium Range LiDAR

Left Right Front Left Right

Point-to-Plane ICP [2] 2.535 2.521 3.056 3.042 2.942
MLCC [14] 2.842 2.829 3.215 3.318 3.194
Pose Graph Optim [29] 2.660 2.702 3.170 3.180 3.167

INF [30] 6.559 6.800 9.626 12.526 11.158
Ours 2.516 2.612 3.078 3.018 3.064

Table A5: LiDAR-LiDAR registration error (in cm) on MS-Cal outdoor
data. We report the breakdown metric for each LiDAR sensor. The average metric is
in Tab. 1 in main paper.

of driving trajectories on calibration performance, we also collect six additional
outdoor dynamic trajectories. These trajectories include two flower loops, two
circular loops, one S curve, and one straight path. Please refer to Fig. A8 for an
illustration of different trajectories.

A3.2 Urban Driving Dataset

To evaluate our method on urban driving dataset, we choose public available real-
world PandaSet [25], which contains 103 urban driving scenes captured in San
Francisco. Each scene spans 8 seconds, equivalent to 80 frames sampled at 10Hz.
The data collection platform consists of a 360◦ mechanical spinning LiDAR as
well as a forward-facing LiDAR, along with six cameras. These cameras are facing
front, front-left, left, back, front-right, and right. We calibrate all the sensors,
including the two LiDARs and six cameras. Please see Fig. 1 in main paper
for the sensor setup. To quantitatively evaluate our approach against baseline
methods that are computationally intensive to train, we selected scenes that have
few dynamic actors as the calibration logs. Our selected logs also have different
driving trajectories (e.g . incline, turning) and feature rich geometric elements
in the scene (e.g . parked vehicles). We selected four logs 028, 039, 040, 053
for calibration training. We chose two scenes for reconstruction evaluation: 034,
056. This necessitated the training of eight reconstruction and rendering models
for each baseline.
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Fig.A3: Visualization of LiDAR-Camera alignment on MS-Cal checker-
board data for each camera sensor. We colored the detected checkerboard edge
from both LiDAR point cloud and camera images. Additionally, the LiDAR points on
the checkerboard plane are colored with intensity value.

A3.3 Reference Calibration for Pose Accuracy Metrics

To evaluate the pose accuracy metrics, we report the average rotation and
translation error between the reference and the estimated calibrations. We now
describe how we obtain the reference calibration for PandaSet and MS-Cal
datasets.

PandaSet Dataset: For PandaSet [25], we use their provided calibration file5

as the reference for ground truth. It is noted that this file exclusively contains
relative poses between different sensors, but does not provide a reference pose

5 https://github.com/scaleapi/pandaset-devkit/blob/master/docs/static_
extrinsic_calibration.yaml

https://github.com/scaleapi/pandaset-devkit/blob/master/docs/static_extrinsic_calibration.yaml
https://github.com/scaleapi/pandaset-devkit/blob/master/docs/static_extrinsic_calibration.yaml
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Fig.A4: More qualitative comparison on PandaSet dataset. We show the pro-
jection of LiDAR and camera images for each camera sensor. Please zoom-in to see the
mis-calibrations.

of the sensors to the vehicle. To establish the pose between the sensors and the
vehicle frame of reference, we run Iterative Closest Point (ICP) algorithm be-
tween the raw LiDAR (in sensor coordinates) and the pose-processed LiDAR
(in vehicle coordinates) on the static log 004. This process enabled us to deter-
mine the SE(3) transform between the 360◦ mechanical spinning LiDAR and the
vehicle frame. In log 004, the data collection vehicle remains stationary, elimi-
nating rolling shutter effects. The computed rotation from the 360◦ mechanical
spinning LiDAR to the vehicle frame (FLU convention) is represented in quater-
nion as: {w:-6.9577e-01, x:5.8054e-03, y:5.2777e-03, z:-7.1823e-01}.
The translation is given by: {x:7.8202e-01, y:1.1396e-04, z:1.8596e+00}
in meters.

MS-Cal Dataset: For our collected MS-Cal dataset, we utilized both classical cal-
ibration and brute-force blackbox optimization to establish the ground-truth ref-
erence. We first calibrate each LiDAR-LiDAR pair using Point-to-Plane ICP [2]
on the outdoor stationary collects, and we calibrate each LiDAR-camera pair us-
ing Edge and Plane [28] correspondences on the indoor checkerboard colects, and
we calibrate the long-range LiDAR to Inertial Navigation System (INS) based on
LiDAR odometry [1,5]. Subsequently, we run pose graph optimization to derive
the optimal global alignment for full sensor calibration. Finally, we run black-
box optimization [20] to search the reference calibration that minimizes both
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Fig.A5: More qualitative comparison on PandaSet dataset. We show the pro-
jection of LiDAR and camera images for each camera sensor. Please zoom-in to see the
mis-calibrations.

LiDAR-camera re-projection error (evaluated on the indoor checkerboard data)
and LiDAR-LiDAR registration error (evaluated on the outdoor static data) on
the evaluation collects. The search space for optimization was identified by ana-
lyzing the range of pose discrepancies between the different evaluated calibration
methods.

A3.4 Evaluation Metric Details

For the LiDAR-camera alignment metric, we report the average re-projection
error measured in pixels between the corners of the checkerboard planes derived
from the LiDAR points and those in the images. This assessment is conducted in
a 1080×1920 resolution image. For the LiDAR-LiDAR alignment metric, we
compute the average Point-to-Plane distance (cm) for all inlier correspondences
for each LiDAR pair on the stationary evaluation scenes. To identify inlier corre-
spondences, we set a maximum correspondence distance of 30cm. Regarding the
pose accuracy metrics, we report the average rotation error (in degree) and
translation error (in meter) between the reference calibration and the estimated
calibration. Since some of the baseline methods we compare against do not per-
form calibration with respect to a reference point on the vehicle, we designate a
root sensor and align its calibrated pose with its reference before computing the
metric. Specifically, for PandaSet , the root sensor is set as the 360◦ mechanical
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Fig.A6: More qualitative comparison on MS-Cal dataset. We show the pro-
jection of LiDAR and camera images for each camera sensor. Please zoom-in to see the
mis-calibrations.

spinning LiDAR, while for the MS-Cal dataset, it is the long-range mechani-
cal spinning LiDAR. For the rendering metrics, we train a neural rendering
model [26] for each rendering scene, considering the calibration result from each
calibration scene. This entails training a total of Ncalib ×Nrender neural render-
ing models for each baseline. Each model is trained on every other frame and
evaluated on the remaining frames. The reported rendering metrics represent the
averages across the Ncalib×Nrender models for each baseline. Note that to ensure
fair comparison, the neural rendering method is fixed across all methods, and
only the input calibration from each evaluated method changes - We optimizing
the neural rendering model given the evaluated calibration result.
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Fig.A7: More qualitative comparison on MS-Cal dataset. We show the pro-
jection of LiDAR and camera images for each camera sensor. Please zoom-in to see the
mis-calibrations.

A4 Additional Experiments and Analysis

In this section, we provide additional quantitative and qualitative results, ad-
ditional comparison to learning-based (CalibNet [8], LCCNet [15]) and NeRF-
based (MOISST [7]) methods, analysis on the calibration initialization and driv-
ing trajectory, the feature-ness of the scenes, and additional ablation study. We
also show that UniCal improved calibration enables more realistic reconstruction
and simulation of driving scenes.

A4.1 Additional Sensor Alignment Results

Tab. A2 shows all the LiDAR-camera pairs used to compute re-projection error,
we report the LiDAR-camera re-projection error for each camera in Tab. A3.
Additionally, Tab. A4 shows all the LiDAR-LiDAR pairs used to compute reg-
istration error, and the corresponding LiDAR-LiDAR registration error for each
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Method Stereo-Left Camera Stereo-Right Camera

Rotation↓ Translation↓ Rotation↓ Translation↓

CalibNet [8] 5.83± 2.93◦ 14.36± 6.37 cm 5.77± 2.93◦ 14.22± 6.37 cm
LCCNet [15] 0.17± 0.45◦ 1.29± 1.94 cm 1.52± 0.71◦ 52.49± 0.51 cm
Ours 0.12± 0.07◦ 2.16± 0.49 cm 0.12± 0.05◦ 1.96± 0.87 cm

Table A6: Comparison of calibration accuracy to learning-based methods on
KITTI-odometry dataset. 10◦ rotation error and 20 cm translation error are added
on each axis. CalibNet [8] and LCCNet [15] are both trained on stereo left camera, we
also report metrics on stereo right camera.

Perturbation Method Front-Right Camera LiDAR

Rotation↓ Translation↓ Rotation↓ Translation↓

Rotation 2◦
MOISST 0.09± 0.01◦ 1.6± 0.3 cm 0.39± 0.09◦ 9.2± 1.9 cm
Ours 0.06± 0.01◦ 0.9± 0.2 cm 0.26± 0.05◦ 1.5± 0.4 cm

Rotation 5◦
MOISST 0.07± 0.05◦ 1.7± 0.5 cm 0.40± 0.14◦ 9.9± 2.3 cm
Ours 0.07± 0.01◦ 0.9± 0.2 cm 0.31± 0.08◦ 1.8± 0.5 cm

Rotation 10◦
MOISST 15.81± 0.02◦ 127.2± 0.6 cm 17.07± 0.13◦ 104.4± 1.7 cm
Ours 0.11± 0.04◦ 1.6± 0.6 cm 0.37± 0.20◦ 1.8± 0.5 cm

Transl 20 cm MOISST 0.09± 0.02◦ 1.8± 0.4 cm 0.46± 0.1◦ 8.7± 1.5 cm
Ours 0.06± 0.01◦ 1.2± 0.2 cm 0.19± 0.02◦ 2.1± 0.5 cm

Transl 50 cm MOISST 0.09± 0.02◦ 1.7± 0.5 cm 0.5± 0.06◦ 7.8± 1.2 cm
Ours 0.06± 0.01◦ 1.1± 0.3 cm 0.20± 0.01◦ 2.3± 0.9 cm

Transl 100 cm MOISST 0.09± 0.02◦ 1.7± 0.3 cm 0.43± 0.08◦ 8.8± 2.4 cm
Ours 0.06± 0.01◦ 1.2± 0.2 cm 0.21± 0.02◦ 2.5± 0.7 cm

Table A7: Comparison of calibration accuracy to MOISST [7] on KITTI-
360 dataset with different calibration initialization. Our method can recover
from large rotational error (10◦) while MOISST failed to get a satisfactory calibration.

LiDAR is detailed in Tab. A5. Please refer to Fig. A3 for a visual comparison of
the LiDAR-camera alignment on the MS-Cal checkerboard data for each cam-
era sensor. It can be seen from the figure that our method consistently achieves
better sensor alignment compared to baseline methods across all sensors.

A4.2 Additional Qualitative Results

For more qualitative comparisons of projections of LiDAR points and camera
images, please refer to Fig. A4 and Fig. A5 for examples from the PandaSet
dataset. Additionally, we show qualitative results from our collected data on
urban driving scenes in Fig. A6 and Fig. A7.
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Fig.A8: Illustration of different driving trajectories in MS-Cal dataset. Ar-
rows indicate the driving direction, and numbers indicate driving order.

Driving Trajectory Camera Pose LiDAR Pose Rendering Quality

Rotation↓ Translation↓ Rotation↓ Translation↓ PSNR↑ SSIM↑ Depth↓

Straight path 0.374 0.046 0.075 0.013 29.59 0.845 0.137
Circular loop 0.271 0.098 0.065 0.030 31.75 0.898 0.040
S curve 0.210 0.050 0.054 0.008 31.83 0.899 0.037
∞ loop 0.186 0.033 0.036 0.008 31.96 0.903 0.035
Flower loop 0.178 0.041 0.039 0.009 31.97 0.904 0.035

Table A8: Analysis of various driving trajectories on MS-Cal dataset. Rotational
errors are measured in degrees, while translation errors are measured in meters.

A4.3 Additional Comparison with Learning-based Methods

Learning-based approaches [8,15,22,24] formulate extrinsic prediction from cam-
era and LiDAR observations as a supervised learning task. They are effective on
the trained sensor configurations/scenes similar to those scene in training and are
fast to run. We compare to LCCNet [15]6 and CalibNet [8]7 using the provided
pre-trained model. We follow the same setting as in [8, 15] to use the odometry
branch of the KITTI [6] dataset. Tab. A6 shows the results on sequence 00.
LCCNet and CalibNet pre-trained models are trained on stereo left camera, we
report the calibration accuracy results on both stereo-left camera and stereo-
right camera by intializeing the calibration with rotation error perturbations
of 10◦ and translation errors of 20 cm on each axis. We use 10 different seeds
and compute the error statistics over these 10 runs. LCCNet’s performance is
good on trained stereo left camera, but degrades on unseen stereo right camera,
indicating that learning-based methods do require re-training when the sensor
configuration changes and also requires access to the GT calibration for training.

6 https://github.com/IIPCVLAB/LCCNet
7 https://github.com/gitouni/CalibNet_pytorch

https://github.com/IIPCVLAB/LCCNet
https://github.com/gitouni/CalibNet_pytorch
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Correspondance Loss Camera Pose LiDAR Pose Rendering Quality

Rotation↓ Translation↓ Rotation↓ Translation↓ PSNR↑ SSIM↑ LPIPS↓

No 0.856 0.614 0.047 0.015 23.89 0.681 0.500
Projected Ray Dist 0.550 0.622 0.047 0.015 24.02 0.689 0.492
Surface Alignment Dist 0.267 0.122 0.048 0.015 25.14 0.727 0.450

Table A9: Comparison of Surface Alignment Distance and Projected Ray
Distance on PandaSet dataset. Rotational errors are measured in degrees, while trans-
lation errors are measured in meters.

Sensors Camera Pose LiDAR Pose

Rotation↓ Translation↓ Rotation↓ Translation↓

Full 0.267 0.122 0.048 0.015
Camera-only 0.308 0.133 - -
LiDAR-only - - 0.050 0.017

Table A10: Camera-only and LiDAR-only calibration results on PandaSet .
Rotational errors are measured in degrees, while translation errors are measured in
meters.

A4.4 Analysis on Calibration Initialization and Comparison to
NeRF-based Method MOISST [7]

We also study the calibration initialization and compare to MOISST [7]. Specifi-
cally, we follow the same setting as in MOISST [7] and report results on KITTI-
360 [12] NVS training sequence 1. We consider the front-left (stereo-left) camera
as reference sensor and apply up to ±100 cm translation and ±10◦ rotation
offsets on all axes to simulate spatial calibration errors, respectively. For each
perturbation level, we use 10 different seeds and compute the error statistics over
these runs. Tab. A7 shows the calibration results and comparison to MOISST [7]
with different translation perturbation and rotation perturbation initialization.
Our method can recover accurate calibration from large rotational and transla-
tion errors compared to MOISST [7] due to our additional calibration-inspired
enhancements, such as surface alignment constraints.

A4.5 Analysis on Driving Trajectory

To study the calibration performance on different driving patterns, we run our
method on the straight path, circular loop, S curve, ∞ loop, and flower loop
on our collected MS-Cal dataset. Tab. A8 shows the results for each driv-
ing trajectory. It can be seen from the tables that straight path and circular
loop exhibit inferior performance compared to other trajectories, possibly due
to under-constrained observations and incomplete sensor overlap. This implies
that running ∞ or flower loops is more favorable for multi-sensor calibration.
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Original Scene Scene with Removed Feature

Fig.A9: We remove LiDAR points and camera pixels of objects from existing scenes
to simulate the change of scene featureness. Left: Camera image and LiDAR point
cloud of original scene. Right: Scene after removing actors, with corresponding camera
image and LiDAR point cloud. We show the Camera and LiDAR pose error w.r.t. the
reference below the figures.

Rendering Model Calibration PSNR↑ SSIM↑ LPIPS↓ Depth↓

Rasterization [10] Original 20.91 0.661 0.526 -
UniCal 21.27 0.666 0.523 -

Raytracing [26] Original 24.54 0.696 0.474 0.049
UniCal 25.23 0.730 0.449 0.049

Table A11: Scene reconstruction and rendering with dataset original and
UniCal-refined calibration for rasterization-based 3D-GS [10] and raytracing-based
UniSim [26].

A4.6 Performance on Feature-less Scenes

Our method assumes that there is interesting scene geometry with which to re-
construct, and may have challenges on empty scenes with little to no geometry
features. We analyze our method’s performance when reducing features in the
scene by removing annotated actor observations from an existing scene (Fig-
ure A9). Specifically, we leverage annotated bounding boxes to identify actors
within the scene (e.g . vehicles, motorcycles, pedestrians, and construction items),
and subsequently remove corresponding camera pixels and LiDAR points. Fig-
ure A9 shows a comparison of UniCal’s performance on the original scene and
the scene with removed features, utilizing PandaSet Log-040. The performance
drop is small even upon the removal of all annotated objects within the scene.

A4.7 Additional Ablation Study

We further study the effectiveness of the surface alignment loss (Eq. 12 in the
main paper) as compared to the projected ray distance proposed in SC-NeRF [9].
The projected ray distance measures the distance between the corresponding
rays from pairs of camera images but falls short in ensuring that the 3D struc-
ture inferred from these correspondences aligns accurately with the underlying
scene representation. Tab. A9 presents a comparison of surface alignment dis-
tance and projected ray distance. The table reveals that optimizing the projected
ray distance alone faces challenges in recovering accurate camera rotation and
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translation. Additionally, we show the camera-only and LiDAR-only calibration
results in Tab. A10. The results demonstrate that leveraging multiple sensor
modalities leads to better performance.

A4.8 UniCal Improves Scene Reconstruction

We find that with UniCal, we can further refine the calibration from the existing
reference provided by PandaSet to achieve better scene reconstruction and ren-
dering. We jointly learn the calibration using the calibration logs on PandaSet to
obtain the refined sensor calibration, and compare this refined calibration with
the original calibration on evaluation logs for novel view synthesis. Table A11
shows that for both raytracing-based UniSim [26] model and rasterization-based
3D Gaussian Splatting [10] model, UniCal’s refined calibration consistently leads
to better scene reconstruction and novel viewpoint rendering.

A5 Limitations and Future Works

Our method focuses on calibrating the sensor extrinsics offline and currently
assumes that the intrinsics and trajectory are provided. We also focus on cal-
ibrating using static scenes and do not explicitly model changes in lighting or
motion. We note that we focus on calibration of LiDAR and camera sensors
and exclude calibration of other sensors, such as the IMU sensor. As noted in
Table A8, our method also has performance variation depending on the trajec-
tory driven. UniCal also assumes that there is interesting scene geometry with
which to reconstruct, and may have challenges on empty scenes with little to
no geometry features. Future work will involve extending the method to reduce
these assumptions for further robustness and scalability.

Potential Negative Social Impact: Our methods are valuable for self-driving sen-
sor calibration. We acknowledge that there might be privacy concerns arising
from data collection used for running UniCal, which can be mitigated through
data anonymization techniques. While UniCal significantly reduces costs and
operational overhead for calibrating large SDV fleets, we recognize that there
may be situations where the calibration results deviate from the reality. Holistic
and thorough evaluation of autonomy safety before deploying is critical.
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