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Fig. 1: Unsupervised canonical maps. We show predictions from our fully unsuper-
vised method SHIC, which finds correspondences between a rigid 3D template and a
natural image. Correspondences are color-coded by assigning a distinct color to each
template surface point. Our approach is highly data-efficient; the elephant, T-Rex, and
Appa models above are trained on only 2800, 480, and 180 images, respectively.

Abstract. Canonical surface mapping generalizes keypoint detection
by assigning each pixel of an object to a corresponding point in a 3D
template. Popularised by DensePose for the analysis of humans, authors
have since attempted to apply the concept to more categories, but with
limited success due to the high cost of manual supervision. In this work,
we introduce SHIC, a method to learn canonical maps without manual su-
pervision which achieves better results than supervised methods for most
categories. Our idea is to leverage foundation computer vision models
such as DINO and Stable Diffusion that are open-ended and thus possess
excellent priors over natural categories. SHIC reduces the problem of
estimating image-to-template correspondences to predicting image-to-
image correspondences using features from the foundation models. The
reduction works by matching images of the object to non-photorealistic
renders of the template, which emulates the process of collecting manual
annotations for this task. These correspondences are then used to super-
vise high-quality canonical maps for any object of interest. We also show
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that image generators can further improve the realism of the template
views, which provide an additional source of supervision for the model.

1 Introduction

Correspondences play an important role in computer vision, with applications to
pose estimation, 3D reconstruction, retrieval, image and video editing and many
more. In this paper, we consider the problem of learning dense keypoints for any
given type of objects without manual supervision. Keypoints identify common
object parts, putting them in correspondence, and providing a key abstraction in
the analysis of the objects’ geometry and pose. While keypoints are usually small
in number, dense keypoints [9] are a generalization that considers a continuous
family of keypoints indexed by the surface of a 3D template of the object. Dense
keypoints provide more nuanced information than sparse ones and have found
numerous applications in computer vision and computer graphics.

Despite their utility, learning keypoints, especially dense ones, remains labour-
intensive due to the need to collect suitable manual annotations. Because of
this, most keypoint detectors are limited to specific object classes of importance
in applications, such as humans [9,16,33,49]. Methods that generalize to more
categories either have limited performance [17,18], or require a significant amount
of manual annotations for each class [24,25]. They cannot scale to learning (dense)
keypoints for the vast majority of object types in existence.

In contrast, foundation models such as DINO [4], CLIP [31], GPT-4 [27],
DALL-E [32], and Stable Diffusion [35] are trained from billions of Internet images
and videos with almost no constraints on the type of content observed. While
these models do not provide explicit information about the geometry of objects,
we hypothesise that they may do so implicitly and may thus be harnessed to
generalize geometric understanding to more object types.

In this paper, we test this hypothesis by utilizing off-the-shelf foundation
models to learn automatically high-quality dense keypoints. Given a single
template mesh for an object class (e.g ., a horse or a T-Rex) to define the index
set for the keypoints, and as few as 1,000 masked example images of the given
class, we learn a high-quality image-to-template mapping.

Our method builds on recent advances in self-supervised image-to-image
matching algorithms which, by using features from DINO [4] and the Stable
Diffusion encoder [35], can generalize surprisingly well across images of different
modalities or styles, such as natural images, animations or abstract paintings.
Our idea is to reduce the problem of matching images to the 3D template to the
one of matching images to rendered views of the template. Namely, we render a
view of the 3D template and, given a query location in the source image, we find
the corresponding vertex as a visual match on the rendered images. The template
renders are not photorealistic, so the matching process emulates the process
of manually annotating dense keypoints in prior works [9, 24]. We contribute
several ideas to robustly pool information collected from different renders of the
template, including accounting for visibility.
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The approach we have described so far is training-free, as it uses only off-the-
shelf components, but it is slow and the resulting correspondences lack spatial
smoothness as they are established greedily. Our second step is thus to use these
initial correspondences to supervise a more traditional dense keypoint detector in
the form of a canonical surface map [9, 18, 38]. We utilize the Canonical Surface
Embedding (CSE) representation of [25], which was designed to learn a mapping
for several proximal object classes together (e.g ., cow, dog and horse), and can
also efficiently represent image-to-template and image-to-image mappings by
learning cross-modal embeddings. The most important result is that we can
outperform the original manually-supervised model of [25] on their animal classes
without using any supervision. This means that we can also learn maps for entirely
new classes, such as T-Rex or Appa (a flying bison from a TV show), essentially
at no cost (Fig. 1).

Finally, we note a further use of foundation models for our application: the
generation of photorealistic synthetic images of the object. In particular, we show
that a version of Stable Diffusion conditioned on depth can be used to texture
the 3D images of the template, significantly narrowing the synthetic-to-real gap.
These images are good enough to be used to supervise the dense pose map directly,
with full synthetic supervision. We show that, while this is no substitute for
utilizing real images as described above, it does improve the final performance
further.

2 Related work

Unsupervised image-to-image correspondences. Many authors have sought to
establish correspondences between images without manual supervision to address
the cost of obtaining labels for this task. Early methods generate training data
by applying synthetic warps to images [5, 22, 34,40, 41], or use cycle consistency
losses [14,36,42,43]. GANs have also been used to supervise dense visual align-
ment [29]. Recent advances in self-supervised representation learning [4, 28] and
generative modelling [35] have boosted the quality of unsupervised semantic
correspondences significantly. For instance, [1] establish correspondences by seek-
ing matches between DINO features, and [13,19,21,37,50] use Stable Diffusion
instead. Similarly, [7, 23] use diffusion features to find mesh-to-mesh correspon-
dences. [50] show that DINO and Stable Diffusion features are complementary,
the first capturing precise but sparse correspondences and the second the general
layout, and propose to combine them. In our work, we use the SD-DINO [50]
features for matching images.

Animal pose estimation. While most works on pose estimation focus on humans [2,
3, 8, 9, 26,45], several authors have attempted to estimate the pose of animals by
detecting [53], matching [15] or reconstructing [46, 47] them, or predicting the
parameters of parametric models [54–56]. However, these methods do not scale
well as they need annotations for each type of animal considered. Our method is
most similar to [17, 18] in that we only require a template shape and a collection
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Fig. 2: Image-to-template correspondences using 2D renderings. Using an
unsupervised semantic correspondence method, we can find correspondences between
an image of an object and a rendering of its 3D template. Here we show the similarity
heatmap from the source location (annotated in red) to all pixel locations in the target
image using SD-DINO [50].

of images to learn image-to-shape correspondences. However, our method achieves
much better performance, while still using fewer images for training.

Image-to-template correspondences. Finding correspondences between images
and a 3D template is useful for understanding the geometry of deformable objects,
with several applications. For instance, it is used in biology to study the behaviour
of animals [30, 44]. Most prior works focus on humans [9, 16, 33, 49] due to the
availability of large-scale datasets of densely annotated image-template pairs, such
as DensePose-COCO [9]. Similar datasets exist for animals, such as DensePose-
LVIS [25], but are much smaller and still only cover a handful of animal classes.
To learn image-to-shape correspondences, [17,18] parametrise a 3D shape as a 2D
uv map, and use cycle consistency to try to learn correspondences automatically,
whereas [17] also learn to predict articulation. Similarly to [25], we use the CSE
representation for learning the correspondences. However, differently from [25],
our method does not rely on any human-annotated data.

3 Method

In this section, we describe SHIC, our method for learning dense keypoints
without manual supervision. First, in Sec. 3.1 we recall the notion of dense
keypoints, canonical surfaces and canonical surface maps. Then, in Sec. 3.2 we
discuss using self-supervised features to establish dense semantic correspondences
between pairs of images, lift those to dense keypoints in Sec. 3.3, and use the
latter to supervise a canonical map in Sec. 3.4. Finally, in Sec. 3.5, we show how
an image generator can produce realistic views of the template, which further
improves results.
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3.1 Canonical surface maps

Let I ∈ R3×Ω be an image supported by the grid Ω = {1, . . . ,H} × {1, . . . ,W}.
The image contains an object of a given type, such as a cat, and the goal is to
assign an identity to each pixel u ∈ UI of the object, where UI ⊂ Ω is the object
mask in image I. The identification is carried out by a mapping fI : UI → M
that assigns each pixel u to a corresponding index fI(u) in a set M . The set
M ⊂ R2 is a 2D surface embedded in R3, and is interpreted as a (fixed and rigid)
3D template of the object. The template M is also called a canonical surface
and the function fI a canonical surface map. The same canonical surface M is
shared by all objects of that category. In this way, by mapping two images I and
J to the same template, one can also infer a mapping between the images.

In practice, we approximate the surface M by a mesh supported by a finite set
of K vertices V = {x1, . . . , xK} ⊂ M and triangular faces F . Hence the canonical
map is a function fI : Ω → V ⊂ M . This slightly simplifies the formulation as
both index sets Ω and V are finite. We also note that the value fI(u) is undefined
if pixel u ∈ Ω − UI does not belong to the object.

In prior works, learning the canonical map f often requires hundreds of
thousands of manually specified image-to-template correspondences. In the next
sections, we will show how to learn this mapping automatically instead.

3.2 Unsupervised image-to-image correspondences

In order to learn the canonical map f automatically, we start by establishing
correspondences between pairs of images I and J in an unsupervised fashion.
We do so by first computing D-dimensional dense features Φ ∈ RD×Ω using
a pre-trained network. Then, we associate each query location u in the source
image I to the location vu in the target image J with the most similar feature
vector based on the cosine similarity, i.e.,

vu = argmax
v∈Ω

SIJ(u, v) where SIJ(u, v) =
ΦI(u) · ΦJ(v)

∥ΦI(u)∥2 ∥ΦJ(v)∥2
.

The quality of the correspondences depends on the quality of the feature extractor
Φ. In particular, by using the unsupervised features by [50], it is possible to
establish good correspondences between a (real) image I of the object and a
rendering of the 3D template M .

This is illustrated in Fig. 2, where we show the cosine similarity heatmaps
between a feature at a query location u of in the source image I and all locations
in several 3D renders of the template. While the correspondences correctly
identify the type of body part (paw), two problems are apparent: (i) there is
left-right ambiguity, which is common for unsupervised semantic correspondence
methods [51], (ii) when the correct match is not visible (as on the top of Fig. 2,
where only the back paws are visible), the correspondence will always be wrong. In
the next section, we lift these image-based correspondences into correspondences
with the template M , which also alleviates these issues.
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Fig. 3: Zero-shot image-to-template correspondences. From left to right: an
image I with a selected pixel u; several views Ji of the synthetic template; corresponding
renderings and similarities SIJi(u, v) as functions of the target locations v ∈ Ω; the
final similarities ΣI(u) visualized as a heatmap on top of the canonical surface M . The
maximizer of the latter (red dot) identifies the vertex xk that best corresponds to the
selected pixel u in the source image I (i.e., base of the left ear of the cat).

3.3 Unsupervised image-to-template correspondences

Given the source image I and a pixel u, we now consider the problem of finding the
vertex xk in the template M that best represents it. In order to do so, we develop
a similarity measure between pixels and vertices, utilizing the image-to-image
similarity metric of Sec. 3.2. We first generate N different views Ji = Rend(M, ci),
i = 1, . . . , N , of the canonical surface M by rendering it from viewpoints ci
(camera parameters). For each view Ji, we project each vertex xk to its closest
location in the mask UJi

, defining

vi(k) = argmin
v∈UJi

∥v − π(xk, ci)∥, (1)

where π(xk, ci) is the camera projection function. We also denote by Vi ⊂ V the
subset of vertices xk that are visible in view Ji.

Given this notation, we can define a new score Σ measuring the compatibility
between each location u in the source image I and each vertex xk ∈ V in the
canonical surface, and corresponding matches x̃, as follows:

ΣI(u, xk) = pool
i:xk∈Vi

SIJi
(u, vi(k)), x̃(u, I) = argmax

xk∈V
ΣI(u, xk). (2)

The goal of the pooling operator is to assess the compatibility between pixel u
and vertex xk into a single score that consolidates the information collected from
the different viewpoints ci. Note that only the views where the vertex is visible
are pooled. In practice, we set the pooling operator to average or max pooling.

Illustration. Figure 3 illustrates the similarity maps SIJi between the source
image I and various views Ji of the rendered 3D object, as well as the result ΣI

of mapping and pooling them on the canonical surface itself. We see that the
correct semantic parts on the shape are identified (ears), and the base of the left
ear is selected as the most similar to the query u.
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Template realism and rendering function. The
template M captures the typical shape of the
object. Mathematically, its main purpose is to
define the topology of the object’s surface, but
the latter is usually topologically equivalent to
a sphere [38]. In dense pose [24] there are two
reasons for not using a sphere. The first is that
the metric of the template surface can be used to regularize correspondences (e.g.,
by capturing an approximate notion of how far apart physical points are). The
second is that renders of the template are given to human annotators to establish
correspondence with the template. Our method can be seen as automatizing
the annotation step. Just like for manual annotation, it does not require a
photorealistic rendition of the template. However, it does not mean that all
renditions are equally good from the viewpoint of the matching network. Inspired
by previous work on image generation [6], we find that rendering a normal map
of the 3D template results in better matches than rendering a shaded version of
the same (see the embedded figure). We discuss realistic rendering in Sec. 3.5.

3.4 Unsupervised canonical surface maps

Here, we show how to learn the canonical surface map f from the image-to-
template correspondences constructed in Sec. 3.3. An overview is in Fig. 4.

Continuous Surface Embeddings. Following [24, 25], we represent the map f
via Continuous Surface Embeddings (CSEs). CSE assign embedding vectors
eI(u), e(xk) ∈ RD to each image pixel u and each mesh vertex xk so that the
correspondences are defined by maximizing their similarity:

fI(u) = argmax
xk∈V

p(xk|u, I), where p(xk|u, I) =
exp(⟨eI(u), e(xk)⟩)∑K
t=1 exp(⟨eI(u), e(xt)⟩)

. (3)

Learning the CSE model thus amounts to learning the vertex embeddings e(xk)
as well as a corresponding dense feature extractor eI .

The vertex embeddings are optimized directly as there is a single template
mesh. However, due to the large number of vertices, they are not assumed to
be independent but to form a smooth (vector) function over the mesh surface.
This way, the number of parameters required to express them can be reduced
significantly. Collectively, all embeddings e(xk), k = 1, . . . ,K, form an embedding
matrix E ∈ RK×D. The latter is decomposed as the product E = UC where
U ∈ RK×Q is a smooth and compact functional basis (akin to Fourier components
defined on the mesh) such that Q ≪ K. Following [24, 25], we use the lowest
eigenvectors of the Laplace-Beltrami operator (LBO) of the mesh M to form U .
The only learnable parameters are C ∈ RQ×D, which are few.

The other component is the feature extractor eI(u). For this, we encode the
source image I ∈ R3×H×W with a frozen self-supervised encoder (DINO [28]),
before decoding it with a CNN back to the original resolution to the required
feature tensor eI ∈ RD×H×W .
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Fig. 4: CSE dense pose predictor. We jointly train a deep network Φ and a matrix
C, that transforms LBO eigenvectors to a shared D-dimensional space. We use pseudo-
ground truth, obtained as described in Sec. 3.3 for supervision. The image encoder is a
frozen pre-trained DINO ViT, and the decoder we learn is a CNN.

Training formulation. We train our model with several losses. The first one
simply uses the pseudo-ground-truth correspondences x̃(u, I) of Eq. (2) in Eq. (3).
We pose this as a classification problem, where given a query location u in image
I is matched probabilistically to the pseudo-ground-truth x̃(u, I) using the cross-
entropy loss: Lpseudo(I) = − 1

|UI |
∑

u∈UI
log p(x̃(u, I)|u, I). Additionally, we use

the distance-aware loss of [25]: Ldist(I) = − 1
|UI |

∑
u∈UI

∑
x∈V d(x, x̃)p(x|u, I),

where d(x, x̃) is the geodesic distance between the vertex x and the pseudo
ground-truth x̃, which discourages placing probability mass far from x̃.

As noted in Sec. 3.3, there is some ambiguity because of the symmetry of most
animals, where the matches are confused between left and right. To reduce this
ambiguity, we use a cycle consistency loss [24], where given a starting location
u, we match it to a vertex xk in the mesh, and then matching that back to
the image, results in the probability p(v|u, I) =

∑
xk∈V p(v|xk, I)p(xk|u, I) of

landing to a location v. Here p(v|xk, I) is the same as p(xk|v, I) from Eq. (3) up
to renormalization. We close the image-shape-image cycle and supervise using
Lcyc(I) =

∑
u∈UI

∑
v∈UI

∥u− v∥p(v|u).

To further reduce the left-right ambiguity, we assume that the template V
has a bilateral symmetry (true for most categories). Then, for each vertex x ∈ V ,
let xF ∈ V be its symmetric one (for meshes which are not exactly symmetric,
we let xF be the closest approximation to the symmetric version of x). Given an
image I and a pixel u, denote by IF and uF their horizontal flips. Suppose that
u is the pixel that corresponds to vertex x in image I. Then one can show [39]
that pixel uF must correspond to vertex xF in image IF , leading to the loss:
Leq(I) =

1
|UI |

∑
u∈UI

∑
x∈V |p(x|u, I)− p(xF |uF , IF )|.
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Fig. 5: Realistic rendering of the template. We create synthetic data for pixel-
vertex correspondences by generating photorealistic images from depth renders. The
corresponding vertices we obtain from the projections of vertices on the image.

3.5 Increasing the realism of synthetic data

The renders Ji of the 3D template M can be used to supervise the canonical
map f directly because we know the 2D location vi(k) of each vertex xk in image
Ji based on Eq. (1). With this, we can write the loss:

Lsyn(Ji, vi) = − 1

K

K∑
k=1

∑
i:Vk∈i

log p(xk|vi(k), Ji) (4)

The very limited diversity and realism of the renders Ji makes this loss unin-
teresting, but, as shown in Fig. 5, we can use a powerful image generator to
significantly augment the realism of such renders.

To do this, we first render a depth image of the template M from a random
viewpoint c. We also sample a random background image and predict its depth
using [48], blend the foreground and background depth images, and use the
depth-to-image ControlNet [52] of [48] to generate photorealistic image Ji of the
template. We prompt the depth-to-image model (i) using the object’s class name,
e.g., “horse”, and (ii) specifying the viewpoint (“front”, “side”, or “back”), which
we heuristically obtain from the camera location w.r.t. the 3D template M .

The results are photo-realistic renders Ji of the template. Note that the
appearance of different renders is not consistent, but this is a feature rather than
an issue in our case because we need to learn an image-to-template map, which is
invariant to details of the appearance. The main limitation is that the template
is fixed, so there is no diversity in terms of pose and 3D shape. Hence, we expect
loss Eq. (4) to be complementary rather than substitutive of the one above.

3.6 Learning formulation

Given a dataset D of masked training images of the object, our loss is:

L =
1

|D|
∑
I∈D

(αLpseudo(I) + βLcyc(I) + γLdist(I) + δLeq(I)) + ζ

N∑
i=1

Lsyn(Ji, vi),

where α, β, γ, δ and ζ are coefficients set empirically.
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Method Supervision Horse Sheep Bear Zebra Cow Elephant Giraffe Average

CSE [25] S 24.1 32.0 35.7 24.9 25.4 26.1 18.0 26.6
Zero-shotSD−DINO U 37.2 41.4 48.2 32.0 32.3 36.0 26.3 36.2
SHIC (Ours) U 23.3 30.3 33.0 23.3 22.7 23.9 18.1 24.9
Table 1: Evaluation on DensePose-LVIS. We compare the supervised (S) method
of [25] to our unsupervised method (U) and our adaptation of SD-DINO to DensePose
described in Sec. 3.3. We evaluate [25] using their published weights. We measure
geodesic error (lower is better).

Method Supervision Cow Sheep Horse Average

Rigid-CSM [18] S 28.5 31.5 42.1 34.0
A-CSM [17] S 29.2 39.0 44.6 37.6
CSE [25] S 51.5 46.3 59.2 52.3

Rigid-CSM [18] U 26.3 24.7 31.2 27.4
A-CSM [17] U 26.3 28.6 32.9 29.3
SHIC (Ours)im2im U 69.1 55.9 58.7 61.2
SHIC (Ours)im2m2im U 73.5 73.5 63.1 70.0

Table 2: PCK-Transfer on PF-Pascal. We compare against prior work on image-
to-image semantic correspondences. We predict image-to-image correspondences either
by directly predicting the correspondences or by performing image-to-vertex-to-image
matching. We use the reported numbers from [17,18,25], and evaluate using PCK-0.1.

4 Experiments

We evaluate our method for learning canonical maps automatically, without
manual keypoints supervision, against unsupervised and supervised prior work.

4.1 Implementation details

To obtain the image-to-shape similarities Σ, we use N = 72 renderings of the
template shape (using the surface normal style), render the surface normals,
and compute the image-to-image similarities S using the features from [50]. For
each rendered image, we automatically get the pixel-to-vertex matches from
the camera projection function. Finally, we aggregate the similarities across all
views using max pooling. During training, we randomly select 100 foreground
points from each image and their corresponding vertices from Σ. Following [25],
we use the lowest Q = 64 eigenvectors of the LBO of the template mesh and
use dimensionality D = 16 for the joint image-shape embedding space. For
the image encoder Φ, we use a frozen DINO-v2 [28] backbone, followed by
a decoder consisting of 5 convolutional layers. We did not do any tuning of
the parameters in the final formulation of the loss. We used values for the
loss hyper-parameters that make the losses roughly of similar scale, namely
α = 0.1, β = 0.002, γ = 0.002, δ = 0.001, ζ = 0.1. All models and code will be
released upon acceptance of the paper.
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ZS-DINO                 CSE                     Ours 

Fig. 6: Mapping a textured mesh. We map a textured mesh over the image using
the predicted dense correspondences.

4.2 Training data

For most of our evaluations, we consider the DensePose-LVIS dataset [25], which
applies DensePose to a variety of animal classes. Of those, we consider the horse,
sheep, bear, zebra, cow, elephant and giraffe classes1. The DensePose-LVIS data
contains a total of 6k images of these categories, as well as a reference 3D template
for each category. Knowledge of the 3D template is necessary to interpret the
annotations in the dataset, as well as to compute the geodesic distances required
for evaluation. Every animal has up to three manually annotated pixel-template
correspondences to the corresponding template. We use these annotations only
for evaluation. We only train our models on cropped animals from DensePose-
LVIS [25]. The number of instances for each class varies from 2,899 for horses
(most) to 735 for bears (least). In comparison, competing methods train on
more images. [17] train on combined PASCAL and ImageNet images, and the
supervised method of [25] is trained on DensePose-LVIS and DensePose-COCO,
the latter of which consists of 5 million image-to-template annotations for humans.
Likely due to the density of the pseudo-ground truth, our method only needs a
much smaller amount of data and can be trained with as few as a few hundred

1 For the classes cat and dog, we could not obtain the 3D templates from [25] and could
therefore not use the annotated image-to-template correspondences for evaluation.
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Ablation DensePose-LVIS

Ours 24.9

Pooling mean (instead of max) 26.6

Data
w/o Synth data 25.6
w/o LVIS 33.8
w/o pseudo GT 65.8

Table 3: Data and other ablations. First,
we ablate the pooling function used to con-
struct Σ, and evaluate mean instead of max
pooling. Next, we compare the data we use —
we remove (1) synthetic data, (2) natural im-
ages, (3) the pseudo ground truth for natural
images. In (3), we still use natural images for
Leq and Lcyc, but do not use the pseudo-GT
for Lpseudo and Ldist.

Ablation DensePose-LVIS

Ours 24.9

Losses

w/o Lpseudo 27.3
w/o Ldist 25.8
w/o Leq 25.6
w/o Lcyc 25.8
w/o Leq & Lcyc 26.1

Table 4: Ablating the losses. We
assess the contributions of the losses re-
moving them one at a time. On the last
row, we remove Leq and Lcyc to show
that although both address symmetry,
they are complementary. Ablating Lsyn

falls under Tab. 3 (w/o Synth data) as
it uses different data. We show the av-
erage score over all classes.

images (e.g ., bear class from DensePose-LVIS, or the models we show in Fig. 1).
Similarly to CSM [17,18] and CSE [25], we use masks for training.

4.3 Evaluation

We evaluate our models and CSE [25] on DensePose-LVIS using the geodesic error.
We normalize the maximum geodesic distance on each mesh to 228, following [10,
24], and use a heat solver to obtain all vertex-to-vertex geodesic distances.
Additionally, we use PF-PASCAL [12] to evaluate our model on keypoint transfer.
PF-PASCAL consists of pairs of images with annotated salient keypoints (e.g .,
left eye, nose, etc.), and we evaluate image-to-mesh-to-image correspondences
using the image-to-image annotations. We use the test split of [50] and evaluate
using PCK 0.1, following prior work [17,25,50].

Image-to-shape correspondences. In Tab. 1 we compare the quality of the image-
to-template correspondences established by SHIC, by our zero-shot method based
on SD-DINO, and by CSE [25], which is supervised, on the DensePose-LVIS
dataset. The most important result is that SHIC learns better canonical maps
than CSE despite using no supervision. While the training images of SHIC and
CSE are the same and the pseudo-ground truth is noisy (Zero-shotSD-DINO is
what we use for supervision), this result can be explained by the fact that our
automated supervision is significantly denser than the manual labels collected
by [25] (just three per image).

We show some qualitative results on this dataset in Fig. 6, where we color
every point on the image according to the corresponding color on the mesh. The
regularity of the remapped texture illustrates the quality of the correspondences.
Once more, the learned canonical map (ours) is significantly better than the
pseudo-ground truth (SD-DINO). Compared to CSE, SHIC performs similarly
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Fig. 7: Image-to-image correspondences. We show image-to-image correspondences
on PF-PASCAL, which we find using pixel-to-vertex-to-pixel matching. The heatmaps
on the shape show the similarity from the source image location to every vertex.

and tends to have a more regular structure on the heads. We show more qualitative
evaluations and failure cases in the Appendix.

Ablation study. We ablate the components of our method in Tab. 3 and Tab. 4.
When using mean pooling instead of max pooling for obtaining the pseudo-ground-
truths, we see a significant drop in performance. This is because image-to-image
correspondences are more reliable when the objects are in similar poses, and
with max pooling we only get contribution from the most similar view. Next,
we look at the importance of different sources of supervision. When we remove
the pseudo-ground-truth from our synthetic pipeline (Sec. 3.5), the model loses
performance. When we exclude all natural images (w/o LVIS), and only train
on synthetically generated data, we see a more pronounced drop in performance.
Finally, we exclude the pseudo-ground-truth from SD-DINO (Sec. 3.3) and thus
only train with the synthetic data and the cycle consistency and equivariance
losses on natural images. In this case, the model learns a degenerate solution,
where for natural images it only predicts vertices on one side of the shape (i.e., left
or right). Such degenerate solutions have been observed by [42] for unsupervised
image-to-image matching when using cycle consistency losses. This shows the
importance of using our pseudo-ground-truth. Finally, we ablate the losses we
use in Tab. 4. All losses are necessary for the final performance. We find that
Lpseudo, where we frame pixel-to-vertex matching as a multi-class classification
problem, has a bigger contribution than the distance-aware loss Ldist of [25].
Additionally, we see that both losses that address symmetry, Leq and Lcyc,
improve performance, and are complementary to each other.

Keypoint transfer. Next, we evaluate SHIC on the PF-PASCAL [56] in Tab. 2.
In this dataset, one evaluates the quality of image-to-image correspondences
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instead of image-to-template. There are two ways of using our method to induce
image-to-image correspondences. The first is to use the learned canonical maps,
transferring points from one image to the template and then back to the other
image. The second is to directly match the image-based CSE embedding learned
in Sec. 3.4. The key findings from our results are: (1) SHIC outperforms the
supervised versions of Rigid [18] and Articulated [17] CSM, as well as CSE [25]
and greatly outperforms all unsupervised approaches. (2) The image-to-image
correspondences induced by the canonical maps are significantly better than the
ones induced by the image-based CSE embeddings, once again illustrating the
importance of the canonical maps. We show qualitative examples in Fig. 7.

Novel classes. SHIC can be trained on any class as long as there is a collection
of a few hundred images and a suitable template mesh. In Fig. 1 we show
qualitative results from a model we train on two classes — T-Rex and Appa,
a six-legged flying bison from Avatar: The Last Airbender, using 480 and 180
manually collected images, respectively. We extract masks for training using the
open vocabulary segmentation method of [20]. Although the 3D template for
Appa is toy-like and does not resemble the images closely, and we only use 180
images, SHIC still manages to learn useful correspondences. This is a considerable
advantage of our method over supervised previous work, as it can be trained
from a small number of images and without human supervision. This allows the
construction of general-purpose shape correspondence models for almost any
category.

5 Conclusion

We have introduced an unsupervised method to learn correspondence matching
between a 3D template and images. Critically, this model can be trained without
supervision and from less than 200 images, which makes it applicable to a vast
number of objects. This is a significant step beyond previous work that required
lots of manually labelled correspondences. We hope that SHIC will enable many
downstream tasks where learnt robust correspondence estimation was previously
impossible.

Ethics. We utilize the DensePose-LVIS dataset [24] and PF-PASCAL [11] for eval-
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