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1 Datasets and Metrics

1.1 Data Preprocessing

ScanNet. To prepare data from the ScanNet [4] dataset, we follow the same
experiment setting shown in [9], which provides 18 scenes from ScanNet with
RGB images and depth maps both in the resolution of 240 × 180. Specifically,
we uniformly sample 18 scenes whose number of views is more than 50 from the
testing set following [9].
ArkitSences. Similarly, we prepare the ArkitSences [2] dataset by preprocessing
the RGB images and depth maps into the resolution of 240 × 180 as the same
experiment setting shown in [9]. Then, we uniformly sample 100 views per scene,
so the number of percentages in the experiments will be the number of views we
used for initializing a mesh (e.g., 5% means 5 views). For sampling the scenes
for evaluation, we consider the official testing set which contains 549 scenes, and
select the 189 scenes that were captured without hand-held camera rotation.
Finally, we uniformly sample 20 scenes from them for evaluation.

1.2 Metric Calculation

We follow [9] to compute evaluation metrics shown on the tables. For each scene,
a certain percentage of images (5%, 10%, 20%, or 50%) will be uniformly sampled
for all the images from this scene as input sparse observations, and the rest of
them will be used as testing images for computing metrics. Note that the in-
order camera poses of testing images will serve as prefined camera trajectories
for two baseline methods to inpaint their meshes. Even if there exist holes on
the generated meshes of T2R+RGBD and RGBD2, these holes are outside the
trajectories which won’t influence the quantitative results.

1.3 Geometric Metrics

We evaluate the geometric quality by comparing depth renderings from the gen-
erated meshes with ground-truth depth maps in the testing sets (see Sec. 4.1 in
the main paper). In addition, the depth MSE measures the geometric consistency
of a scene since ground-truth depth maps come from the same scene and should
be geometry-consistent. In [9], bi-directional Chamfer Distance is used as an
alternative for evaluating the geometric quality. However, we observed that the
ground-truth mesh generated by back-projecting ground-truth images may not
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Table 1: Additional quantitative results of geometry quality on ScanNet.
We report one-directional Chamfer Distance (one-directional CD), which shows the
distance between each point in the ground-truth mesh and its nearest neighbor in the
generated mesh. GenRC can generate more geometrically correct meshes when sparse
observations are given (i.e., 5%, 10%, 20%).

Methods
One-directional CD(↓)

5% 10% 20% 50%

T2R+RGBD [7] 0.091 0.031 0.018 0.014

RGBD2 [9] 0.073 0.018 0.011 0.005
Ours 0.050 0.018 0.009 0.007

capture the whole scene. As a result, the bi-directional Chamfer Distance metric
will also penalize our method when our generated meshes are more complete.
Hence, we report one-directional Chamfer Distance (the distance between each
point in the ground-truth mesh and its nearest neighbor in the generated mesh)
in Tab. 1. Our method outperforms other state-of-the-art methods, especially
when input observations are sparse.

1.4 Baseline Implementation

We utilized the official codebases of RGBD2 [9] and Text2Room [7] and con-
ducted experiments on them for evaluation. In particular, we modify Text2Room [7]
as T2R+RGBD to complete the mesh from sparse RGBD inputs by initializing
the mesh for Text2Room and utilizing the camera poses of testing images as
the predefined camera trajectory. For T2R+RGBD, the text prompt to Stable
Diffusion [10] is “a simple and clean room in the style of S∗”, where S∗ is the
textual token from textual inversion.

2 Method Details

2.1 Text Prompt

We utilize textual inversion [6] to extract the token S∗ to represent the style of a
room and use it in text prompts for Stable Diffusion, as described at Sec. 3.3 in
the main paper. The following templates are used to extract the token S∗ that
represents the style of a room:

– “a S∗ room”,
– “the S∗ room”,
– “one S∗ room”,
– “a room in the style of S∗”,
– “the room in the style of S∗”,
– “one room in the style of S∗”.
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(a) Initialized mesh (b) After panorama (c) After completion

Fig. 1: Mesh completion. As described in Sec. 3.7 in the main paper, our mesh
completion method can further complete the temporal mesh after RGB and depth
panorama inpainting by sampling additional camera poses facing existing holes on the
mesh.

Then, we utilize the extracted S∗ in text prompts for Stable Diffusion. Note
that we use a fixed input prompt: “a simple and clean room in the style of S∗”.
for all image inpainting, so GenRC doesn’t require any scene-specific or detailed
prompts shown in previous works [5, 7].

2.2 E-Diffusion

For E-Diffusion, we consider 8 rectangular views with the field of view as 98
degrees, which ensures the stitched panorama is fully covered by these views.
The noise ϵ used to obtain xi

t−1 in Eq. (3) in the main paper is sampled randomly
from the Gaussian distribution of unit variance every two steps.

For the input of MultiDiffusion [1] used in texture refinement, we stitch the
eight perspective views together as one equirectangular panorama of 2048 ×
1024 pixels and only keep the region with latitude between -45 and 45 degrees,
resulting in a panoramic image of 2048 × 512 pixels. For MultiDiffusion, we
consider 16 sliding windows with window size of 512 × 512 pixels and step size
of 128 pixels.

2.3 Mesh Completion

We demonstrate our mesh completion method for the generation of a complete
room-scale mesh. To this end, we will iteratively select 30 camera poses to patch
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Table 2: Sensitivity Analysis of Camera Trajectories. The metrics of RGBD2
dramatically decline without in-order camera trajectories which are composed of closely
adjacent camera poses. While T2R+RGBD performs a higher depth MSE, given shuf-
fled trajectories, the decreasing visual metric reflects it generates structures that are
not similar to the ground truth. However, GenRC can still effectively generate cross-
view consistent room structures even if given camera trajectories are not in order.

Methods
PSNRcolor(↑) MSEdepth(↓) CSinput(↑)

in-order shuffled in-order shuffled in-order shuffled

T2R+RGBD [7] 11.6 11.2 0.88 0.76 0.72 0.75

RGBD2 [9] 12.2 10.7 0.72 1.72 0.69 0.66
Ours 12.9 12.7 0.59 0.77 0.74 0.75

up the remaining holes in the mesh. To select an optimal camera pose in each it-
eration, we first find the bounding box that covers the scene mesh and randomly
sample 200 camera poses centered within the central 80% of the bounding box
in the horizontal direction and central 10% of the bounding box in the vertical
direction. The elevation angles are between 15 and -15 degrees. Given the in-
painting ratio as the ratio of unobserved pixels to total pixels in the rendered
image and the back-face ratio as the ratio of pixels that are rendered from the
back of the mesh, we filter out the camera poses with inpainting ratio greater
than 50%, back-face ratio greater than 1%, or minimum depth less than 1m.
Then, we select the camera poses with the highest product of inpainting ratio
and minimum depth. Finally, we move the selected camera poses backward as
long as the criteria we use to filter out camera poses are satisfied, which helps
include as much information as possible into the field of view. We showcase the
effectiveness of our proposed mesh completion method (mentioned in Sec. 3.7 in
the main paper) qualitatively in Fig. 1.

3 Sensitivity Analysis of Camera Trajectories

In comparison to GenRC which aims to generate a panorama covering most parts
of the scene, RGBD2 and T2R+RGBD iteratively generate the scene following
a pre-designed camera trajectory composed of closely adjacent camera poses. In
addition, these methods should start from a viewpoint where a certain portion
of the mesh exists to ensure appearance and geometric consistency.

In this analysis, we test each method on the extremely sparse observations
as 3% on the ScanNet dataset to analyze the sensitivity when the given cam-
era trajectories are not composed of closely adjacent camera poses. To this end,
we randomly shuffle the originally “in-order” camera trajectories, which are the
sequences of camera poses of testing images, to “shuffled” camera trajectories.
In Tab. 2, we can observe that, without “in-order” camera trajectories com-
posed of closely adjacent camera poses, the visual metrics of both RGBD2 and
T2R+RGBD decline while GenRC’s performance almost remains the same. Es-
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Fig. 2: Sensitivity Analysis of Camera Trajectories. In comparison to GenRC
which aims to generate a panorama covering most parts of the scene, T2R+RGBD
and RGBD2 iteratively generate the scene and require pre-designed camera trajectories
composed of closely adjacent camera poses to ensure reasonable cross-view geometry.
In addition, these methods should start from a viewpoint where a certain portion of the
mesh exists to ensure appearance and geometric consistency. For instance, T2R+RGBD
and RGBD2 may produce inconsistent geometries that cannot close the scene (as shown
in the red boxes) and produce unreasonable room structures that are not perpendicular
to the ground (as shown in the blue boxes). In contrast, GenRC can still generate
cross-view consistent and complete room structures even if given camera trajectories
are arbitrary.

pecially, the decreasing PSNR and increasing depth mean square error reflect
that RGBD2 fails to reconstruct the reasonable appearance and geometry of a
scene. Even if T2R+RGBD shows the higher mean square of depth while using
shuffled trajectories, the decreasing visual metric reflects it generates structures
that are not similar to the ground truth. For instance, as shown in Fig. 2, we
can observe that T2R+RGBD and RGBD2 may generate inconsistent geome-
tries that cannot close the scene and produce unreasonable room structures that
are not perpendicular to the ground. Thanks to the continuous geometry pro-
vided by panorama inpainting (Sec 3.4 and Sec 3.5 in the main paper), the big
portion of a mesh has been completed after the RGBD inpainting and therefore
GenRC can effectively generate cross-view consistent room structures even if
camera trajectories are arbitrary.

4 More Results

4.1 Qualitative Results on ScanNet

Refer to Sec. 4.3 in the main paper, GenRC outperforms two baseline methods
on the ScanNet dataset when sparse observations are provided, which can be
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Fig. 3: Comparison with baselines on ScanNet. We project generated meshes
to panoramas to demonstrate the portions of meshes that are completed. In compar-
ison to the prior method RGBD2 [9], GenRC can generate more complete meshes
and high-fidelity images due to RGB and depth inpainting of GenRC. Besides, while
T2R+RGBD [7] achieves high-fidelity texture, it may generate cross-view inconsistent
geometry and artifacts. Please refer to Sec. 4.3 in the main paper for more quantitative
discussions.

attributed to our proposed panorama inpainting technique that generates cross-
view consistent panoramas, as described in Sec. 3.4 in the main paper. We project
generated meshes to panoramas in Fig. 3 to demonstrate that the big portions
of meshes are completed through our panorama inpainting.

4.2 Qualitative Results on ArkitScenes

Refer to Sec. 4.4 in the main paper, GenRC demonstrates superior performance
in both visual and geometric metrics on the ArkitScenes dataset. In Fig. 4, we can
observe that when it comes to cross-domain data, RGBD2 [9] and T2R+RGBD [7]
cannot successfully produce reasonable room structures when the input obser-
vation is sparse (i.e., 5%). Refer to the 5% results of RGBD2 and T2R+RGBD
in Fig. 4, the 3D geometries are inconsistent along with unreasonable room struc-
tures that are not perpendicular to the ground. These point out the limitation
of iterative methods which could still fail even given predefined trajectories. In
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Fig. 4: Cross-domain results on ArkitScenes. We project generated meshes to
panoramas. When it comes to cross-domain data, RGBD2 [9] and T2R+RGBD [7]
may generate unreasonable room structures, especially when the input observations
are sparse (5%). In contrast, GenRC can still generate cross-view consistent room
meshes. Please refer to Sec. 4.4 in the main paper for more quantitative discussions.

contrast, GenRC can still generate visually pleasing room appearance and 3D
consistent room structures even if the input observations are sparse and without
predefined trajectories.

4.3 Qualitative Results of Ablation Studies

GenRC generates high-fidelity and cross-view consistent panoramas via E-Diffusion,
texture refinement, and textual inversion (refer to Sec. 3.3 and 3.4 in the main
paper). We demonstrate the importance of these components by removing one
of them at a time and the results are shown in Fig. 5.

4.4 More Ablations

We provide additional ablation studies on hyperparameter selection of E-Diffusion
(refer to Sec. 3.4 in the main paper): (1) the number of views used while E-
Diffusion and (2) the number of denoising steps for texture refinement. As shown
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Fig. 5: Ablation studies on panorama inpainting and textual inversion. Di-
rectly applying MultiDiffusion [1] for panorama inpainting (referred to as w/o E-
Diffusion) can produce high-resolution panoramas. However, they don’t satisfy the ge-
ometry of equirectangular projection (e.g., the edges between walls and ceilings appear
straight in the red boxes). In addition, directly performing our proposed E-Diffusion
without texture refinement causes blurry results. Without textual inversion, the Stable
Diffusion [10] model may generate objects (e.g., beds in the blue boxes) that are irrel-
evant to input images. Our method with all components can produce more detailed,
stylistically coherent, and geometrically correct results. Please refer to Sec. 4.5 in the
main paper for more quantitative discussions.

in Tab. 3 and Tab. 4, we consider 8 views in E-Diffusion and set the number
of denoising steps for texture refinement as 20 out of 50 denoising steps in the
reverse diffusion process.

5 Future Works

When a scene is cluttered with many objects, our approach may not complete
the geometry of all 3D objects. We can further complete 3D objects through 3D
object completion techniques such as [3, 8, 11,12] in future works.
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