
1

A Overview

Our contributions can be summarized as follows:

– Content and Style Latent Space (FDiff):
We propose a Diffusion training framework FDiff for obtaining the disentan-
gled content and style latent spaces that correspond to different semantic
factors of an image. This lets us control these factors separately to perform
reference-based image translation as well as controllable generation and im-
age manipulation.

– Generalized Composable Diffusion Model (GCDM):
We extend Composable Diffusion Models (CDM) by breaking the conditional
independence assumption to allow for dependency between conditioning in-
puts. This results in better generations in terms of realism and extended
controllability.

– Timestep Scheduling:
We leverage the inductive bias of diffusion models and propose timestep-
dependent weight schedules to compose information from content and style
latent codes for better translation.

Here is a list of contents in Supplementary material.

1. We provide a full derivation of GCDM formulation in Section B.
2. We next show a derivation that the GCDM PDF p̃ is proportional to a nested

geometric average of different conditional distributions in Section C.
3. Preliminaries on Diffusion Models are provided in Section D.
4. We explain the training details in Section E.
5. We visualize the learned style and content space in Section F; PCA results

are provided in the main paper. Here, we additionally provide latent inter-
polation and KNN results.

6. We also show additional experiment results on timestep scheduling strategy
in Section G.

7. We finally provide some additional results such as text2image synthesis and
reference-based image translation in Section H.

2

B Derivation for Definition 1

B.1 Classifier-free Guidance [7]

Assuming we have a single condition c, CFG formulation can be derived by:

∇xt log p(xt|c) = ∇xt log p(xt, c) (1)
∇xt log p(xt, c) = ∇xt log p(xt)p(c|xt) (2)

= ∇xt
log p(xt)

p(xt|c)
p(xt)

(3)

= ∇xt
log p(xt) + (∇xt

log p(xt|c)−∇xt
log p(xt)) (4)

= ϵ(xt, t) + (ϵ(xt, t, c)− ϵ(xt, t)) . (5)

In practice, ϵ(xt, t) + α (ϵ(xt, t, c)− ϵ(xt, t)) is used where α is a temperature
controlling the condition effect. Please note that we use c to represent a given
single condition.

B.2 Composable Diffusion Models [11]

∇xt
log p(xt|zc, zs) = ∇xt

log p(xt, zc, zs) (6)
∇xt

log p(xt, zc, zs) = ∇xt
log p(xt)p(zc, zs|xt), assuming zc |= zs|x (7)

= ∇xt
log p(xt)p(zc|xt)p(zs|xt) (8)

= ∇xt
log p(xt)

p(xt|zc)
p(xt)

p(xt|zs)
p(xt)

(9)

= ∇xt
log p(xt) +

∑
i={c,s}

(∇xt
log p(xt|zi)−∇xt

log p(xt))

(10)

= ϵ(xt, t) +
∑

i={c,s}

(ϵ(xt, t, zi)− ϵ(xt, t)) (11)

Similar to the Classifier-free Guidance, hyperparameters for controlling the
weight of each condition are used, i.e., ϵ(xt, t)+

∑
i={c,s} αi (ϵ(xt, t, zi)− ϵ(xt, t)).

Now we introduce how to derive the components of GCDM formulation.

3

B.3 Generalized Composable Diffusion Models

For brevity purposes, we omit the term that is canceled out because it is constant
w.r.t. xt, e.g., ∇xt

log p(zc, zs) = 0 and ∇xt
log p(zc) = 0.

∇xt
log p(xt|zc, zs) = ∇xt

log p(xt, zc, zs) (12)
∇xt

log p(xt, zc, zs) = ∇xt
log p(xt)p(zc, zs|xt),NOT assuming zc |= zs|x (13)

= ∇xt
log p(xt)p(zc|zs, xt)p(zs|xt) (14)

= ∇xt
log p(xt)p(zs|xt)

(
p(zs|zc, xt)p(zc|xt)

p(zs|xt)

)
(15)

= ∇xt
log p(xt)p(zs|xt)p(zc|xt)

(
p(zs|zc, xt)

p(zs|xt)

)
(16)

= ∇xt
log p(xt)p(zs|xt)p(zc|xt)

(
p(zc, zs|xt)

p(zc|xt)p(zs|xt)

)
(17)

= ∇xt
log

p(xt|zs)p(xt|zc)
p(xt)

 p(xt|zc,zs)
p(xt)

p(xt|zc)p(xt|zs)
p(xt)2

 (18)

= ∇xt log
p(xt|zs)p(xt|zc)

p(xt)

(
p(xt|zc, zs)p(xt)

p(xt|zc)p(xt|zs)

)
(19)

= −∇xt
log p(xt) +∇xt

log p(xt|zs) +∇xt
log p(xt|zc) (20)

+∇xt
log p(xt|zc, zs) +∇xt

log p(xt)− (∇xt
log p(xt|zc) +∇xt

log p(xt|zs))
= −ϵ(xt, t) + ϵ(xt, t, zs) + ϵ(xt, t, zc)

+ ϵ(xt, t, zc, zs) + ϵ(xt, t)− (ϵ(xt, t, zc) + ϵ(xt, t, zs)) (21)

By rearranging the terms in Eq. (21) and adding hyperparameters α, λ and
{βc, βs}, the proposed GCDM method in Definition 1 in the main paper can be
obtained.

Clarification of Eq. (17) and Eq. (18). By Bayes Theorem, Eq. (17) be-
comes

∇xt
log

p(xt)
p(xt|zs)p(zs)

p(xt)

p(xt|zc)p(zc)
p(xt)︸ ︷︷ ︸

1○

 p(xt|zc,zs)p(zc,zs)
p(xt)

p(xt|zc)p(zc)p(xt|zs)p(zs)
p(xt)2

︸ ︷︷ ︸

2○

 .

By rearranging 1○ and 2○ separately, the above equation becomes

4

= ∇xt
log

p(zs)p(zc)
p(xt|zs)p(xt|zc)

p(xt)︸ ︷︷ ︸
rearranged from 1○

 p(xt|zc,zs)
p(xt)

p(xt|zc)p(xt|zs)
p(xt)2

(
p(zc, zs)

p(zc)p(zs)

)
︸ ︷︷ ︸

rearranged from 2○

 .

By canceling out p(zc)p(zs) in the first and the last term and by rearranging
the equation, we can obtain Eq. (18), i.e.,

= ∇xt
log

�����p(zs)p(zc)

p(xt|zs)p(xt|zc)
p(xt)

 p(xt|zc,zs)
p(xt)

p(xt|zc)p(xt|zs)
p(xt)2

(
p(zc, zs)

�����p(zc)p(zs)

)
= ∇xt

log

p(xt|zs)p(xt|zc)
p(xt)

 p(xt|zc,zs)
p(xt)

p(xt|zc)p(xt|zs)
p(xt)2

 p(zc, zs)

= ∇xt log

p(xt|zs)p(xt|zc)
p(xt)

 p(xt|zc,zs)
p(xt)

p(xt|zc)p(xt|zs)
p(xt)2

︸ ︷︷ ︸

Eq. (18)

+
��������:0
∇xt log p(zc, zs),

where ∇xt log p(zc, zs) = 0 because it is constant w.r.t. xt.

5

C Derivation for Corollary 1

The derivation starts from GCDM formulation proposed in Definition 1 in the
main paper.

∇xt
log p̃α,λ,βc,βs

(xt|zc, zs) ≜ ϵ(xt, t) + α
[
λ(ϵ(xt, t, zc, zs)− ϵ(xt, t)︸ ︷︷ ︸

∇xt log p(zc,zs|xt)

) (22)

+ (1− λ)
∑

i={c,s}

βi

(
ϵ(xt, t, zi)− ϵ(xt, t)︸ ︷︷ ︸

∇xt log p(zi|xt)

)]
.

Given the fact that ϵ(xt, t) = ∇xt log p(xt), taking integral w.r.t. xt to the equa-
tion yields:

log p̃α,λ,βc,βs
(xt|zc, zs) = log p(xt) + α

[
λ(log p(xt|zc, zs)− log p(xt)) (23)

+ (1− λ)
∑

i={c,s}

βi

(
log p(xt|zi)− log p(xt)

)]
+ C ,

where C is a constant. Merging all the terms with log:

log p̃α,λ,βc,βs(xt|zc, zs) =

log exp(C) + log
(
p(xt)

(
p(xt|zc, zs)

p(xt)

)αλ (
p(xt|zc)βcp(xt|zs)βs

p(xt)βc+βs

)α(1−λ))
(24)

Taking exponential to the above equation:

p̃α,λ,βc,βs(xt|zc, zs)

= exp(C)p(xt)

(
p(xt|zc, zs)

p(xt)

)αλ (
p(xt|zc)βcp(xt|zs)βs

p(xt)βc+βs

)α(1−λ)

(25)

= exp(C)p(xt)
(1−αλ−α(1−λ)(βc+βs))p(xt|zc, zs)αλ

(
p(xt|zc)βcp(xt|zs)βs

)α(1−λ)
.

(26)

Given the fact that βc + βs = 1,

p̃α,λ,βc,βs
(xt|zc, zs)

= exp(C)p(xt)
(1−α)

[
p(xt|zc, zs)λ

(
p(xt|zc)βcp(xt|zs)(1−βc)

)(1−λ)
]α

. (27)

Since the exponential function is always positive,

6

p̃α,λ,βc,βs
(xt|zc, zs) ∝ p(xt)

(1−α)

[
p(xt|zc, zs)λ

(
p(xt|zc)βcp(xt|zs)(1−βc)

)(1−λ)
]α

,

(28)

which is the same as Corollary 1 in the main paper.

D Preliminaries on Diffusion Models

Diffusion Models [6, 17] are one class of generative models that map the com-
plex real distribution to the simple known distribution. In high level, DMs aim
to train the networks that learn to denoise a given noised image and a timestep
t. The noised image is obtained by a fixed noising schedule. Diffusion Mod-
els [6, 17] are formulated as pθ(x0). The marginal pθ(x0) can be formulated as a
marginalization of the joint pθ(x0:T) over the variables x1:T , where x1, ...xT are
latent variables, and p(xT) is defined as standard gaussian. Variational bound of
negative log likelihood of pθ(x0) can be computed by introducing the posterior
distribution q(x1:T |x0) with the joint pθ(x0:T). In Diffusion Models [6, 17], the
forward process q(x1:T |x0) is a predefined Markov Chain involving gradual ad-
dition of noise sampled from standard Gaussian to an image. Hence, the forward
process can be thought of as a fixed noise scheduler with the t-th factorized com-
ponent q(xt|xt−1) represented as: q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where

βt is defined manually. On the other hand, the reverse or the generative pro-
cess pθ(x0:T) is modelled as a denoising neural network trained to remove noise
gradually at each step. The t-th factorized component pθ(xt−1|xt) of the reverse
process is then defined as, N (xt−1|µθ(xt, t), Σ(xt, t)). Assuming that variance
is fixed, the objective of Diffusion Models (estimating µ and ϵ) can be derived
using the variational bound [6, 17] (Refer the original papers for further details).

Following Denoising Diffusion Probabilistic Models [6] (DDPM), Denoising
Diffusion Implicit Model [18] (DDIM) was proposed that significantly reduced
the sampling time by deriving a non-Markovian diffusion process that general-
izes DDPM. The latent space of DDPM and DDIM has the same capacity as
the original image making it computationally expensive and memory intensive.
Latent Diffusion Models [16] (LDM) used a pretrained autoencoder [3] to reduce
the dimension of images to a lower capacity space and trained a diffusion model
on the latent space of the autoencoder, reducing time and memory complexity
significantly without loss in quality.

All our experiments are based on LDM as the base diffusion model with
DDIM for sampling. However the techniques are equivalently applicable to any
diffusion model and sampling strategy.

7

E Implementation Details

We build our models on top of LDM codebase1. For FFHQ and LSUN-church,
we train our model for two days with eight V–100 GPUs. The model for AFHQ
dataset is trained for one and a half days with the same device. All models are
trained for approximately 200000 iterations with a batch size of 32, 4 samples
per GPU without gradient accumulation. All models are trained with 256×256
images with a latent z size of 3×64×64. The dimensions of content code zc is
1×8×8 while that of style code zs is 512×1×1. t1, t2 and t3 from Eq. 1 in the
main paper are timestep embeddings learned to specialize according to the latent
code they are applied for to support learning different behavior for content and
style features at different timesteps. We also experimented with different sizes
for content and style code and chose these for best empirical performance. The
content encoder takes as input z and outputs zc following a sequence of ResNet
blocks. The style encoder has a similar sequence of ResNet blocks followed by a
final global average pooling layer to squish the spatial dimensions similar to the
semantic encoder in [14].

To support GCDM during sampling, we require the model to be able to
generate meaningful scores and model the style, content and joint distributions.
Hence, during training we provide only style code, only content code and both
style and content code all with probability 0.3 (adding up to 0.9) and no con-
ditioning with probability 0.1 following classifier–free guidance literature. This
helps learn the conditional and unconditional models that are required to use
the proposed GCDM formulation. The code will be released upon acceptance of
the paper.

During sampling, without reverse DDIM, if all the joint, conditionals, and
unconditional guidance are used, sampling time for a single image is 10 seconds.
With reverse DDIM to get xT where T is the final timestep, it takes 22 seconds.
This might be lesser if reverse DDIM is stopped early and generation happens
from the stopped point. Specific hyperparameters used to generate results in the
main paper and appendix are provided in Table. 1.

E.1 Experimental Setup

Datasets
We train different models on the commonly used datasets such as AFHQ [2],
FFHQ [8] and LSUN-church [19].
Baselines

DiffuseIT: The most similar work to ours based on diffusion models is Dif-
fuseIT [9] that tackles the same problem formulation. We compare our results
with DiffuseIT using their pretrained model and default parameters.

DiffAE+SDEdit: Since Diffusion Autoencoder [14] does not directly sup-
port image-to-image translation, we combine that with SDEdit [12]. The input
image for the reverse process is x600 (chosen empirically) obtained as q(x600|xc)

1 https://github.com/CompVis/latent-diffusion

https://github.com/CompVis/latent-diffusion

8

Table 1: Hyperparameters used to generate the figures in the main paper and ap-
pendix. Timestep scheduling is only used in the sampling process. The parenthesis
in the second column indicates the number of steps we used for sampling. Note that
βc = 1− βs.

Main paper

Dataset sampler xT α λ βs a b scheduler
FFHQ DDIM+SDEdit (60) reverse DDIM 1.5 0.9 1.0 0.025 550 sigmoid

LSUN-church DDIM (100) q(x991|x0) 2.0 0.5 0.0 - - -
AFHQ DDIM+SDEdit (60) q(x591|x0) 3.0 0.75 1.0 - - -

Appendix

FFHQ DDIM (100) reverse DDIM 1.5 0.9 1.0 0.025 550 sigmoid
LSUN-church DDIM (100) reverse DDIM 5.0 0.5 0.0 0.025 600 sigmoid

by running the forward process on the content image. The semantic feature zsem
from the semantic encoder of DiffAE is used given the style image xs.

DiffAE+MagicMix: We also combine MagixMix [10] with DiffAE. Simi-
lar to DiffAE+SDEdit, this model takes x600 from xc as input and zsem from
xs as conditioning. Additionally, at each timestep, the approximated previous
timestep x̂t−1 is combined with xt−1 from the content image xc, i.e., x̂t−1 =
vx̂t−1 + (1 − v)q(xt−1|xc). For this experiment, v = 0.5 is used and the noise
mixing technique is applied between t = [600, 300].

SAE: Swapping Autoencoder [13] based on GAN [4] is also evaluated. Since
the available pretrained model is on a resolution of 512, we resize the generated
results to 256 for a fair comparison.

DEADiff: The sampling method of DEADiff [15] only uses the style rep-
resentation (Fig. 2 in their paper). To see the performance of both style and
content, we give both representations during the inference stage (Note that Fig.
7 in their paper is not from the content representation but from depth Con-
trolNet [20]). We did not finetune the model specifically for facial data since
adjusting the facial dataset to their training data settings is infeasible (e.g., two
images with the same style but with a different subject, and two images with
the same subject but with a different style).

StarGAN v2: The training and sampling process of StarGAN v2 [2] requires
gender attributes of the image. Since FFHQ does not have attribute labels, we
use their pretrained models on CelebA-HQ. When sampling, we preprocess and
label the test images by using a pretrained gender classifier (c.f. EasyFace).
The training and sampling process of StarGAN v2 requires gender attributes of
the image. Since FFHQ does not have attribute labels, we use their pretrained
models on CelebA-HQ. When sampling, we preprocess and label the test images
by using a pretrained gender classifier (c.f. EasyFace).
Evaluation Metrics

FID: We use the commonly used Fréchet inception distance (FID) [5] to en-
sure the generated samples are realistic. We follow the protocol proposed in [2]
for reference-based image translation. To obtain statistics from generated images,

9

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝛼 = 1Content Style 𝛼 = 2 𝛼 = 3

W.O. reverse DDIM

𝜆 = 0.9

With reverse DDIM

𝜆 = 0.6 𝜆 = 0.3DiffuseIT SAE

Fig. 1: Comparisons between with and without reverse DDIM sampling for FFHQ
model. We use the proposed GCDM and timestep scheduling during sampling. We
can clearly see better identity preservation than not using reverse DDIM, on par with
SAE [13] while still providing better controllability.

2000 test samples are used as the content images, and five randomly chosen im-
ages from the rest of the test set are used as style images for each content image
to generate 10,000 synthetic images.

LPIPS: Even though FID evaluates the realism of the generations, the model
could use just content and ignore style (or vice versa) and still get good FID.
Following [2], we use LPIPS score obtained by measuring the feature distances
between pairs of synthetic images generated from the same content image but
with different style images. Higher LPIPS indicates more diverse results.
Ideally, the models incorporate enough style information from different style im-
ages for the same content image (increasing LPIPS) but without going out of
the real distribution (decreasing FID).

E.2 Identity Preservation

We notice that when the proposed sampling technique is used with randomly
sampled noise xT for reference based image translation or manipulation, partic-
ularly on FFHQ dataset, that the identity of the content image is not preserved.
This is an important aspect of image manipulation for faces. One of the ways
to preserve better identity is to use the deteministic reverse DDIM process de-
scribed in [14] to obtain xT that corresponds to a given content image. To do
this, we pass the content image to both the content and style encoders as well
as the diffusion model to get xT that reconstructs the content image. This xT is
then used along with content code from content image and style code from style
image to generate identity preserving translation.

10

Table 2: Quantitative comparison between the variants of ours with and without
reverse ddim.

w/o reverse ddim w/ reverse ddim

Ours(α = 1.0) Ours(α = 2.0) Ours(α = 3.0) Ours(λ = 0.9) Ours(λ = 0.6) Ours(λ = 0.3)
FID 20.38 23.68 26.45 11.99 13.40 15.45

LPIPS 0.53 0.57 0.6 0.34 0.42 0.49

The comparisons between with and without reverse DDIM during sampling
are provided in Table 2. We can see that with reverse DDIM, we can expect
to get more realistic results (lower FID) while the less diverse results (lower
LPIPS). Fig. 1 also shows comparisons between with and without reverse DDIM.
In contrast to SAE [13] that preserves better identity by trading of magnitude
of style applied, our approach provides the ability to control the magnitude of
identity preservation and style transfer independently.

Additional comparisons between with and without reverse DDIM are pro-
vided in Fig. 2 and 3. We can see that the results with reverse DDIM better
preserve the content identity while applying the style reasonably. On the other
hand, the results without reverse DDIM have a stronger impact on style with
lesser identity preservation, which could be preferable in non-face domains such
as abstract or artistic images or for semantic mixing.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content StyleContent Style

with reverse DDIM without reverse DDIM

Fig. 2: Comparisons between with
and without DDIM reverse sampling
method in FFHQ dataset.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content StyleContent Style

with reverse DDIM without reverse DDIM

Fig. 3: Comparisons between with
and without DDIM reverse sampling
method in LSUN-church dataset.

11

F Extent of Controllability

In this Section, we present the rich controllability of our proposed framework.
The latent space exploration by PCA is presented in the main paper. Interpo-
lation results are shown in Section F.1. Further analysis of the latent space by
KNN is reported in Section F.3.

F.1 Interpolation

We conducted experiments on latent space interpolation in order to analyze the
effects of the content, the style, and xT during the sampling process. All the
results use reverse DDIM with content image to get xT .

Fig. 4 shows the content-only interpolation results where style feature zs and
noise xT are fixed to the image in the first column. The gray box on the top
indicates the fixed input while zc is interpolated between the two images in the
first two columns. From the figure, we can see that the style information and the
person’s identity are maintained while pose and facial shape are changed.

Fig. 5 shows the case xT obtained from reverse DDIM of the images in the
first two columns is interpolated while the style and content features are fixed
to the image in the first column. The content (e.g., pose, facial shape) and the
style (e.g., beard, eyeglasses, and facial color) are maintained while stochastic
properties change. We can see that identity is not entirely tied to xT but the
stochasticity causes changes in the identity. This could be an evidence of why
using reverse DDIM to fix xT preserves better identity.

Fig. 6 visualizes the style interpolation while the content and xt are fixed
to the first image. The person’s identity, pose, and facial shape are preserved
while the facial expression, gender, and age are smoothly changed validating our
results.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝑥(") 𝑥($) 𝑧%
(") 𝑧%

($)

0.25 0.5 0.75

𝑥(") 𝑥($) 𝑧%
(") 𝑧%

($)Spherical Interpolation

0.25 0.5 0.75

Spherical Interpolation
𝑧&
" , 𝑥'

(") 𝑧&
" , 𝑥'

(")

Fig. 4: Content interpolation results. Style and xT are obtained from images in the
first column while content code is interpolated between images in column 1 and column
2. We can see how content-specific factors vary smoothly.

12

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝑥(") 𝑥($)
𝑧%
" , 𝑧&

(")

𝑥'
(") 𝑥'

($)

0.25 0.5 0.75

𝑥(") 𝑥($)

0.25 0.5 0.75

Spherical Interpolation
𝑧%
" , 𝑧&

(")

𝑥'
(") 𝑥'

($)Spherical Interpolation

Fig. 5: xT interpolation results where style and content are obtained from images in
the first column while xT is interpolated between reverse DDIM of both images. We can
see stochastic changes causing mild identity changes. Fixing xT to the content image
hence provides better identity preservation for image translation and manipulation.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝑥(") 𝑥($) 𝑧%
(") 𝑧%

($)Spherical Interpolation

0.25 0.5 0.75

𝑥(") 𝑥($) 𝑧%
(") 𝑧%

($)Spherical Interpolation

0.25 0.5 0.75

𝑧&
" , 𝑥'

(") 𝑧&
" , 𝑥'

(")

Fig. 6: Style interpolation results when content and xT are obtained from images in
the first column. We can see smooth changes in the semantic attributes such as age,
gender, smile, eyeglasses, etc. allowing for effective style manipulations.

F.2 Information Encoded in Each Latent Space

We analyze the role of the denoising network ϵ and the encoders Ec and Es by
analyzing what information is encoded in the latent spaces. Fig. 7 and Fig. 8
show the results of fixing the content while varying the style images (and vice
versa). xT is fixed as well to reduce the stochasticity. The remaining stochasticity
comes from the white noise at each timestep during the reverse process. From
the results, we can see that the structure information is maintained while style
information changes according to the style image (and vice versa) as we intended.

F.3 Interpreting the Latent Spaces based on KNN

We additionally perform K Nearest Neighbor (KNN) experiments to understand
what features are encoded in the content and style latent representations. We
pass 10000 unseen images through the style and the content encoders to get zc
and zs. We then compute the distance of an arbitrary sample with the entire
validation set and sort the 10000 distances.

13

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style
Same !!~#(0, ')

Content Style
Same !!~#(0, ')

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style
Same !!~#(0, ')

Content Style
Same !!~#(0, ')

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style
Same !!~#(0, ')

Content Style
Same !!~#(0, ')

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style
Same !!~#(0, ')

Content Style
Same !!~#(0, ')

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style
Same !!~#(0, ')

Content Style
Same !!~#(0, ')

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style
Same !!~#(0, ')

Content Style
Same !!~#(0, ')

Fig. 7: Reference-based image translation results on LSUN-church.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style ! = 0.9 ! = 0.5 (−)Style (+)

(a) Style-effect control by GCDM (b) Semantic control by style-feature-only interpolation (c) Semantic control by applying PCA

Red
skin

Pale
skin

Wavy
hair

Straight
hair

Big
eyes

Small
eyes

Young
Female

Old
Male

0.2 0.4 0.6 0.8 1.0

Fig. 8: Visualizations of a wide spectrum of our generation given a fixed content with
different styles.

The results are shown in Fig. 9 and Fig. 10. The first column denotes the
input image while the rest of the columns show the top 10 images that have the
closest content or style features indicated by zc (first row within each macro row)
and zs (second row within each macro row) respectively. The second column is
the same image. We can see that the content feature mainly contains the pose
and the facial shape information while the style has high-level semantics, such
as wearing eyeglasses, gender, age, accessories, and hair color.

14

© 2022 Adobe. All Rights Reserved. Adobe
Confidential.

Input Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

𝑧!

𝑧"

𝑧!

𝑧"

𝑧!

𝑧"

Fig. 9: KNN results of the content and the style features showing what semantic
attributes content and style codes encode.

© 2022 Adobe. All Rights Reserved. Adobe
Confidential.

Input Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

𝑧!

𝑧"

𝑧!

𝑧"

𝑧!

𝑧"

Fig. 10: KNN results of the content and the style features showing what semantic
attributes content and style codes encode.

15

G Timestep Scheduling

G.1 Training an Implicit Mixture-Of-Experts

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝜆 = 0.9 𝜆 = 0.5 𝜆 = 0.9 𝜆 = 0.5

Trained with
scheduler

Trained w.o.
scheduler

Fig. 11: Effects of using the proposed timestep scheduling in training.

Our timestep scheduling approach proposed in Sec 3.2 in the main paper was
applied only during sampling for results in the main paper. We trained a model
with timestep scheduling applied during training to analyze how it affects the
behavior of our framework. Fig. 12 shows the comparisons between the models
trained with and without the scheduler. For the results trained with scheduler,
we used a = 0.1 and b = 529 (SNR−1(0.1)) for both training and sampling.
As can be seen in the third and fourth columns (i.e., trained with scheduler),
the style effects are relatively small although given λ is controlled. It is because
the style encoder is trained to be injected only in the early timesteps (0-528),
which makes the style representations learn limited features (e.g., eyeglasses are
not encoded in the style, as shown in the second row). However, we observe
better disentanglement of the content and the style spaces compared to using
the timestep scheduling only during sampling. We believe this is because, using
timestep scheduling to vary the conditioning input at each timestep implicitly
trains the model to specialize to the varied conditioning, implicitly learning a
mixture–of–experts like model [1]. We believe this could be a promising avenue
for future research.

G.2 Experiment with different timestep schedules

We compare the different timestep schedulers illustrated in Fig. 12 during sam-
pling. Note that these schedules are not used for training. In the exclusive
scheduling, the style weight is one if t ≤ 550 and zero otherwise. The content
weight is applied when style weight is not applied. In the linear scheduling, the
style weight linearly decreases from 1 at t = 0 to 0 at t = 999 while the content

16

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

SigmoidLinear Exclusive

Fig. 12: Plots for different timestep scheduling strategies. The illustrated plot of the
sigmoid scheduler is from a = 0.025 and b = 550. Bigger a makes it similar to the
exclusive scheduler while smaller a makes it close to the linear scheduler. The blue line
indicates the weight scheduler for the style and the red line is for the content.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Sigmoid (a=0.025, b=550) Exclusive (550)Linear

Fig. 13: Comparisons between different timestep schedulers during sampling. Sigmoid
has a softer schedule with more controllability and thus results are more natural gen-
erations compared to the other techniques.

weight increases linearly from 0 to 1. The sigmoid scheduling is the one proposed
in Eq. 11 in the main paper.

The comparison results are shown in Fig. 13. We can observe that the exclu-
sive scheduling shows either magnified style or unnatural generations compared
to the sigmoid scheduling. Since it is difficult to exactly define the role of each
timestep, naively separating the point where to exclusively apply the content
and style yields undesirable results. The linear schedule does not work for all
images and has limited control. However, the sigmoid scheduling provides a softer
weighting scheme leading to better generations, and has additional controls to
get desired results.

17

H Additional Results

In this Section, we provide additional results of our proposed framework. Fig. 14
shows example generations using CDM and GCDM from the same model. CDM
consistently shows worse results than GCDM in reference-based image transla-
tion. We can see that by assuming conditional independence, CDM unnaturally
overlaps the content and style features.

Fig. 15 shows the effect of the starting point xT given same content and
style codes. Fig. 16 shows the additional results on FFHQ dataset. Fig. 17 shows
the results of multiple style and single content, and vice versa on LSUN church
dataset. Fig. 18 shows the hyperparameters used for CDM and GCDM on Stable
Diffusion V2.

© 2022 Adobe. All Rights Reserved. Adobe
Confidential.

Content Style CDM GCDM

Fig. 14: Comparisons between GCDM and CDM demonstrating that CDM can out-
put unnatural images while GCDM can generate realistic images. We use DDIM [18]
sampler, and the reverse process is done from T = 600 inspired by SDEdit [12]. z600 is
obtained by q(z600|ELDM (xc)) using the content image. xT is randomly sampled.

18

© 2022 Adobe. All Rights Reserved. Adobe
Confidential.

Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

Content Style Different 𝑥!~𝑁(0, 𝐼)

Fig. 15: Example showing the role of the denoising network during sampling when
content and style codes are unchanged. xT is randomly sampled. The images show
that the denoising network play a role in stochasticity since the outputs have consistent
shape, color and texture information while minor details of the buildings or clouds are
changed.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

StyleContent StyleContent StyleContent StyleContent

Fig. 16: Additional results on FFHQ. The results are sampled by reverse DDIM.

19

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style Content StyleContent StyleContent Style

Fig. 17: Additional results on LSUN-church. The results are sampled by reverse DDIM.

20

CDM
(𝛼 = 9.0, 𝜆 = 0.0, 𝛽! = 1.0, 𝛽" = 1.0)

𝑐! = Photo of a bear
𝑐" = Photo of a car in the red forest
𝑐!," = Photo of a bear and a car in the red forest

GCDM
(𝛼 = 9.0, 𝜆 = 1.0)

GCDM
(𝛼 = 9.0, 𝜆 = 0.85, 𝛽! = 1.0, 𝛽" = 0.0)

CDM
(𝛼 = 9.0, 𝜆 = 0.0, 𝛽! = 1.0, 𝛽" = 1.0)

GCDM
(𝛼 = 9.0, 𝜆 = 1.0)

GCDM
(𝛼 = 9.0, 𝜆 = 0.5, 𝛽! = 0.0, 𝛽" = 1.0)

𝑐! = Photo of a couch
𝑐" = Photo of a dog sitting in the living room
𝑐!," = Photo of a couch and a dog sitting in the living room

Fig. 18: Text2image synthesis results with GCDM hyperparameters.

Bibliography

[1] Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis, K., Aittala, M.,
Aila, T., Laine, S., Catanzaro, B., et al.: ediffi: Text-to-image diffusion mod-
els with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324
(2022)

[2] Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: Diverse image synthe-
sis for multiple domains. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 8188–8197 (2020)

[3] Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-
resolution image synthesis. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 12873–12883 (2021)

[4] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.)
Advances in Neural Information Processing Systems. vol. 27. Curran As-
sociates, Inc. (2014), https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[5] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans
trained by a two time-scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems 30 (2017)

[6] Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Ad-
vances in Neural Information Processing Systems 33, 6840–6851 (2020)

[7] Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598 (2022)

[8] Karras, T., Laine, S., Aila, T.: A style-based generator architecture for gen-
erative adversarial networks. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 4401–4410 (2019)

[9] Kwon, G., Ye, J.C.: Diffusion-based image translation using disentangled
style and content representation. arXiv preprint arXiv:2209.15264 (2022)

[10] Liew, J.H., Yan, H., Zhou, D., Feng, J.: Magicmix: Semantic mixing with
diffusion models. arXiv preprint arXiv:2210.16056 (2022)

[11] Liu, N., Li, S., Du, Y., Torralba, A., Tenenbaum, J.B.: Compositional visual
generation with composable diffusion models. Proceedings of the European
conference on computer vision (ECCV) (2022)

[12] Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit:
Guided image synthesis and editing with stochastic differential equations.
In: International Conference on Learning Representations (2021)

[13] Park, T., Zhu, J.Y., Wang, O., Lu, J., Shechtman, E., Efros, A., Zhang, R.:
Swapping autoencoder for deep image manipulation. Advances in Neural
Information Processing Systems 33, 7198–7211 (2020)

[14] Preechakul, K., Chatthee, N., Wizadwongsa, S., Suwajanakorn, S.: Diffu-
sion autoencoders: Toward a meaningful and decodable representation. In:

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

22

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 10619–10629 (2022)

[15] Qi, T., Fang, S., Wu, Y., Xie, H., Liu, J., Chen, L., He, Q., Zhang, Y.:
Deadiff: An efficient stylization diffusion model with disentangled represen-
tations. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 8693–8702 (2024)

[16] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-
resolution image synthesis with latent diffusion models. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 10684–10695 (2022)

[17] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsu-
pervised learning using nonequilibrium thermodynamics. In: International
Conference on Machine Learning. pp. 2256–2265. PMLR (2015)

[18] Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: In-
ternational Conference on Learning Representations (2020)

[19] Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: Con-
struction of a large-scale image dataset using deep learning with humans in
the loop. arXiv preprint arXiv:1506.03365 (2015)

[20] Zhang, L., Agrawala, M.: Adding conditional control to text-to-image dif-
fusion models. arXiv preprint arXiv:2302.05543 (2023)

