In this supplementary document, we first present additional information about
the diversity of the generated dataset in Sec.[A] We then provide a scale analysis
of the dataset in Sec. [B] In Sec. [C] detailed class-wise results of the proposed RCG
are provided. The limitations of our approach are discussed in Sec. Further
example predictions are showcased in Sec. [E] followed by additional examples of
the MRLF module in Sec. [F] and samples in adverse weather conditions in Sec. [G]

A Diversity of the Generated Dataset

Our DGInStyle approach leverages the Style Swap and Style Prompting tech-
niques to diversify the generated images. The diversity of training data is critical
for the trained segmentation model’s domain generalization. To further evaluate
the diversity of the generated dataset, we employ the Frechet Inception Distance
(FID) |2] and Kernel Inception Distance (KID) [1], which measure the distribu-
tional distance between two datasets. Specifically, we ablate the Style Swap and
Style Prompting modules by assessing the similarity between our generated and
five real-world datasets. The FID and KID scores are computed with [3] and
presented in Tab. and Tab. respectively. A lower score indicates a smaller
domain gap between the considered pair of datasets. Thus, a lower average score
suggests a better coverage of the union of diverse datasets and, thus, better
diversity of the generated data. The results demonstrate that both components
enhance the diversity of the generated data, with the highest quality attained
when both are enabled.

Table S1: Quantitative evaluation of the generated data diversity using
Frechet Inception Distance (]) between the generated data and real-world datasets.
Evidently, both Style Swap and Style Prompting play important roles in bridging
the gap between the generated data and each of the real datasets, a union of which
represents the task-specific domain of autonomous driving.

Swap Prompting CS BDD MV ACDC DZ Average
X X 124.28 98.57 81.31 141.07 238.18 136.68
v X 121.07 88.64 79.57 133.53 235.76 129.71
X v 121.98 95.25 80.02 136.21 233.97 133.48
v v 117.05 88.46 74.81 128.39 227.69 127.37

Table S2: Quantitative evaluation of the generated data diversity using
Kernel Inception Distance (KID x 0.01 |) between the generated data and real-world
datasets. The standard deviation is part of the metric computation protocol and has
also been scaled down by a factor of 0.01.

Swap Prompting CS BDD MV ACDC DZ Average
X X 8.54 £0.15 5.62+0.08 4.99 +£0.14 7.95+0.18 15.66 = 0.54 8.55 £+ 0.22
v X 819 £0.19 498 +0.09 5.00+ 0.15 7.40+0.16 15.38 £ 0.53 8.19 £ 0.23
X v 8.24 £0.20 5.41 +£0.08 5.04 +£0.13 7.50 £ 0.18 14.93 £ 0.64 8.23 £+ 0.24
4 v 7.86 +0.22 4.90 £ 0.09 4.98 £ 0.17 7.16 £ 0.18 14.36 £+ 0.67 7.85 £ 0.27




B Dataset scale analysis

Tab. [S3] studies the DG performance of DAFormer relative to the number of
synthetic images. More generated images improve the mloU up to around 6000
images, after which it reaches a plateau.

Table S3: Performance of DAFormer Using DGInStyle wrt. the unmber of generated
images (mloU 1 in %).

Ng 0 1000 2000 4000 6000 8000
Avg3 51.73 53.57 53.86 54.1 54.25 54.28
Avgb 42.18 44.95 45.86 46.22 46.47 46.39

C Class-wise results of RCG

In Fig. [S1] we show the effectiveness of RCG for difficult classes, such as pole,
traffic light and bus that have a low pixel count in the source data.

w/o RCG -86.3 32.7 77.2 32.1 31.0 34.2 48.1 30.5 68.4 27.9 82.8 51.0 37.0 78.0 40.4 44.0 16.9 35.7 22.9 46.2

w/ RCG -83.9 33.9 77.2 [3453] 29.9 31.3 67.4 27.9 82.5 51.4 36.0 79.0 40.6 17.4 36.2 21.6 46.7
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Fig. S1: Comparison of the class-wise IoU averaged over the five datasets with and
without RCG while keeping the other components of DGInStyle coupled with DAFormer.
The color visualizes the difference to the first row.

D Limitations

Diffusion models exhibit a primary drawback of prolonged sampling times. As
our model is based on diffusion models, it naturally inherits this slow inference
property. Moreover, the proposed MRLF module operates on multiple tiles
cropped from the upscaled latents, and the sampling process of all these tiles
further extends the image generation duration. However, it is important to note
that this extended diffusion time does not impact the inference time of the
deployed segmentation networks. Furthermore, much ongoing research aims to
expedite diffusion model sampling, and we believe that this issue can be alleviated
through architectural advancements.



E Further Example Predictions

We present a comprehensive qualitative comparison between the predicted seman-
tic segmentation results of HRDA trained with GTA-only data and the model
trained with our DGInStyle approach. We evaluate these models on real-world
datasets, including Cityscapes (cf. Fig. [S2)), BDD100K (cf. Fig.[S3), Mapillary
Vistas (cf. Fig. [S4), ACDC (¢f. Fig. [S5)), and Dark Zurich (cf. Fig. [S6). The
model trained with our DGInStyle can better segment truck and bus (as seen
in Fig. . It also exhibits a correct segmentation of sidewalk, effectively
identifying areas that were previously overlooked by the GTA-only trained model
(as seen in Fig. Fig. . Furthermore, it enhances performance for rare classes,
such as fence and traffic sign (as seen in Fig. . In challenging conditions,
such as nighttime scenes, our DGInStyle approach significantly improves the
segmentation of sky and vegetation (as seen in Fig. and Fig. .

Image w/o Ours w/ Ours Ground Truth
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Fig. S2: Example predictions from HRDA trained with and w/o our DGInStyle on the
Cityscapes dataset, showing improved performance on truck and bus and exhibiting a
more complete segmentation of sidewalk.



Image w/o Ours w/ Ours Ground Truth
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Fig. S3: Example predictions from HRDA trained with and w/o our DGInStyle on the
BDD100K dataset, showing a better recognition of difficult classes such as truck and
bus.

Image w/o Ours w/ Ours Ground Truth

Fig. S4: Example predictions from HRDA trained with and w/o our DGInStyle on the
Mapillary Vistas dataset, showing an improved performance of sidewalk, traffic sign,
bus and fence.



Image w/o Ours w/ Ours Ground Truth

tr. light  tr. sign [NSEEEEM terrain

Fig. S5: Example predictions from HRDA trained with and w/o our DGInStyle on the
ACDC dataset, demonstrating improved performance in rainy and snowy conditions
for classes such as sidewalk, bus, vegetation and sky.

Image w/o Ours w/ Ours Ground Truth
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Fig. S6: Example predictions from HRDA trained with and w/o our DGInStyle on the
Dark Zurich dataset, demonstrating superior generalization for dark scenes in the sky
and wegetation classes.



F Multi-Resolution Latent Fusion Module

In Fig. we provide additional qualitative examples showing how the
MRLF module mitigates issues of the base Stable Diffusion LDM related to
the poor quality of small objects generation. For instance, in Fig. (a), the
motorcycle and rider are initially indistinct and poorly rendered. However, after
applying the MRLF module, these elements become clearly recognizable and
well-defined. Similarly, the fine-grained poles’ details show a marked improvement
in Fig. Additionally, the quality of the person depicted in Fig.[S9|also benefits
significantly from the MRLF module, demonstrating its overall effectiveness in
refining and improving the quality of small-scale features in generated images.

Semantic Mask (a) w/o MRLF (b) w/ CTMD  (c) w/ CTMD+LID
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Fig. S7: Qualitative example of MRLF: improved generation for small distant objects
like rider and motorcycle when zooming in on the mask crop.

Semantic Mask (a) w/o MRLF  (b) w/ CTMD  (c) w/ CTMD+LID

Fig. S8: Qualitative example of MRLF: improved generation for small distant objects
like pole and traffic light when zooming in on the mask crop.



Semantic Mask (a) w/o MRLF (b) w/ CTMD  (c) w/ CTMD+LID

Fig. S9: Qualitative example of MRLF: improved generation for small distant objects
like person when zooming in on the mask crop.

G Adverse Weather Samples

In Fig. [SI0, we show more examples of the generated content under different
weather conditions given the same semantic label condition. By encompassing
a wide range of weather scenarios, DGInStyle ensures that the models are well-
equipped to handle real-world variations, thereby improving their applicability
and reliability in diverse operational environments.

Semantic Mask Sunny Foggy Rainy Snowy Night
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Fig.S10: Examples generated by our DGInStyle approach under varying weather
conditions, all based on the same semantic label condition.
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