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Abstract. Learning feature correspondence is a foundational task in
computer vision, holding immense importance for downstream applica-
tions such as visual odometry and 3D reconstruction. Despite recent
progress in data-driven models, feature correspondence learning is still
limited by the lack of accurate per-pixel correspondence labels. To over-
come this difficulty, we introduce a new self-supervised scheme, impera-
tive learning (IL), for training feature correspondence. It enables corre-
spondence learning on arbitrary uninterrupted videos without any cam-
era pose or depth labels, heralding a new era for self-supervised cor-
respondence learning. Specifically, we formulated the problem of corre-
spondence learning as a bilevel optimization, which takes the reprojection
error from bundle adjustment as a supervisory signal for the model. It
leads to a mutual improvement between the matching model and the
bundle adjustment. To avoid large memory and computation overhead,
we leverage the stationary point to efficiently back-propagate the im-
plicit gradients through bundle adjustment. Through extensive experi-
ments, we demonstrate superior performance on tasks including feature
matching and pose estimation, in which we obtained an average of 30%
accuracy gain over the state-of-the-art matching models.
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1 Introduction
Feature correspondence has long been recognized as a pivotal task in com-

puter vision, acting as a cornerstone for many downstream applications such as
visual odometry [40], 3D reconstruction [30], and object identification [12]. The
essence of accurately matching features across diverse images and viewpoints is
critical in constructing coherent and precise representations of the visual world.

While recent years have witnessed significant advancements in data-driven
models, the task remains intrinsically challenging [2, 23, 31], predominantly due
to the absence of sufficient pixel-level annotated data for point matching. Unlike
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Bundle
Adjustment

Fig. 1: iMatching learns feature correspondence from a bundle adjustment (right),
eliminating the need for any ground truth label. The bundle adjustment finds the most
geometrically consistent landmark position and camera pose and can be used as a self-
supervision signal for feature correspondence networks.

the labels for other computer vision tasks such as object detection where ground
truth annotations can be drawn by hand, annotating feature correspondence for
every pixel is almost impossible. This constraint has inadvertently limited the
potential and generalization ability of the state-of-the-art data-driven models
[19, 24]. Moreover, the domain gap in visual appearances between training and
testing data also greatly discounted model performance [14].

To alleviate the data problem, there are three common ways. The first way
is to simulate correspondence annotation, either from homography transforma-
tion [4] or synthetic environments [38]. However, this method often falls short
in capturing real-world variations like changes in lighting and occlusions, lead-
ing to the sim-to-real gap. The second way is to collect ground truth such as
camera pose or depth. However, this uses specialized equipment like high-end
motion capture systems, usually only available indoors and infeasible for out-
door scenes or unique settings like underground environments. Moreover, sen-
sors such as depth cameras and LiDAR tend to offer inaccurate and incomplete
depth measurements [17], which are inadequate for pixel-level matching [24].
Alternatively, structure-from-motion (SfM) pipelines could alleviate the usage
of physical sensors [16] but still require capturing the scene exhaustively and
a long time for preprocessing. A third way to address the challenge has been
weakly- and self-supervised methodologies. SGP [42] proposes a student-teacher
framework for training the CAPS correspondence model [37] in a self-supervised
manner. In SGP, the teacher (RANSAC) and the student model are updated
alternately, allowing the teacher to produce pseudo-pose labels for the student
model. Nonetheless, this design is applicable to a limited set of models like CAPS,
which only learn from epipolar consistency instead of matching point locations.
Moreover, the teacher and student model training is isolated, leading to potential
error propagation, i.e., mistakes made by the teacher model can be propagated
to the student model, potentially amplifying the issues.

To fully address the data problem, we explore the third category and propose
a new self-supervised end-to-end learning framework, iMatching (Fig. 1), for fea-
ture correspondence using an emerging technique, imperative learning [7,41]. For
the first time, we formulate the problem of feature matching as a bilevel opti-
mization [10] where we direct the learning of the model parameters with an opti-
mization procedure, i.e., bundle adjustment (BA), which is itself an optimization
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process. Specifically, at the lower level optimization, we update the camera pose
and the 3D landmark locations that best explain the model-predicted corre-
spondences, whereas, at the higher level optimization, we update the network
parameters such that the correspondence prediction results in more consistent
poses and landmark locations. This new formulation for feature correspondence
based on bilevel optimization brings distinctive benefits: The low-level optimiza-
tion eliminates the need for ground truth geometric labels, thanks to the self-
correction mechanism brought by bundle adjustment. Such a design is flexible,
lightweight, and generalizable to any up-to-date matching model. In the exper-
iments, we show that our method is plug-and-play and significantly boosts the
performance of state-of-the-art (SOTA) models [2, 6] by an average of 30% and
a maximum 82% on pixel-level feature matching on unseen image-only datasets.

One of the challenges of our formulation is model training which requires
differentiating the network through low-level optimization (BA). A popular so-
lution is to backpropagate the errors through the unrolled iterative optimiza-
tion [9, 33], which is extremely resource-demanding as the temporary variables
generated during each iteration need to be stored and traversed for gradient cal-
culation. Instead, we specially designed our loss function so that we can bypass
the iterative process during backward pass while still obtaining the gradient.
This allowed us to employ a black-box, non-differentiable bundle adjustment to
ensure the robustness of training while learning end-to-end as if it were differen-
tiable. This end-to-end learnable design also enables the possibility of performing
online learning. In summary, our contributions are summarized as follows:

– We propose the first imperative learning (IL)-based framework for training
feature correspondence models with uninterrupted videos but without any
ground truth labels such as camera pose or depth.

– We design an efficient method for propagating the gradient through the bun-
dle adjustment so that we can solve the optimization without differentiating
individual steps of the optimization, making end-to-end training possible.

– Through extensive experiments and evaluation on a variety of tasks, we show
the superiority of the proposed framework by boosting the performance of
the SOTA feature-matching model by 30% precision on the pose estimation
task and 13.6% on the feature matching task.

2 Related Work
Data-driven methods for feature matching categorized as supervised, weakly-

or self-supervised will be introduced in Sec. 2.1 and 2.2, respectively. Addition-
ally, we summarize imperative learning and data-driven models involving bundle
adjustment in Sec. 2.3 and 2.4, respectively.

2.1 Supervised Methods
Supervised methods rely on known per-pixel correspondences obtained ei-

ther from (1) synthetic data or (2) indirect ground truth such as depth images
and camera poses. The first category uses photo-realistic renderers [38] or data
augmentation techniques to generate training images. For example, LIFT [43]
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learns from image samples capturing the same view but with strong illumina-
tion change. SuperPoint [4] relies on generic image datasets with homographic
transformations. However, those synthetic data techniques may not generalize
well to the real-world scenario. For example, homographic transformations can
only model scenes where all the points are coplanar.

Most of the existing methods [2, 5, 6, 21, 23, 31, 35] belong to the second cat-
egory, which leverage collected ground truth depth scan and camera pose data
from physical sensors, e.g. MoCap, depth camera, LiDAR, or from SfM recon-
struction. However, MoCap is confined to dedicated working zones. Scenes like
underground urban sewer systems or mines [11] are unable to accommodate com-
plex MoCap devices; depth cameras are limited to indoor environments [17] and
provide limited precision, and LiDAR sensors can only provide sparse points.
As a result, 3D scene data have a significantly smaller scale compared with
generic 2D image due to the complexity of data collection. 3D real world datasets
choices are limited. There are only a few datasets such as MegaDepth [16] and
ScanNet [3] consist of COLMAP [25] reconstruction from a large number of col-
lected images and have been used for learning feature correspondence, but those
datasets are either limited to small-scale environments or lack data diversity [24].
In contrast, our method does not explicitly reconstruct a dense 3D model from
the complete video sequence and thus is more lightweight and flexible to use.

2.2 Weakly- and Self-supervised Methods

Several efforts have focused on weakly-supervised methodologies to address
the challenges of obtaining large and diverse training sources. For instance,
matching labels could be generated from RANSAC-estimated image homography
transformation [28] or consistency relation between warped images [34]. Repre-
sentation learning on videos [1, 8, 20] is another line of research often evaluated
with label propagation tasks but included for completeness.

We next discuss methods that rely on assumptions in 3D geometry. CAPS [37]
and Patch2Pix [45] eliminate the need for depth information and depend solely
on relative camera poses. They leverage the differentiability of matchers so that
feature correspondences are corrected by penalizing epipolar distance.

To further remove the dependency on camera poses, SGP [42] is a self-
supervised method for training epipolor geometry-based models like CAPS [37]
using the teacher-student framework. It introduces RANSAC pose estimation as
a teacher to generate pseudo labels for training the student CAPS model. How-
ever, the student and teacher are isolated, which may cause error propagation.

More recently, OmniMotion [36] proposed a self-supervised test-time opti-
mization that can be applied to individual video sequences and produce per-
pixel tracking. The method finds pixel correspondence by building an implicit
3D scene representation and a mapping between image pixels and 3D locations,
and such representation is learned by photo rendering loss and point motion
smoothness. However, its optimization is difficult in complex scenes, and infer-
ence is costly during test time, making it impractical for online usage. In the
experiments, we found it requires about 10 hours to test on a 160-frame video.
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Different from previous works, our proposed self-supervised learning frame-
work formulated as bilevel optimization is end-to-end and workable for all mod-
els that are directly supervised by pixel locations. This self-supervised learning
framework can be applied to a wide variety of models, without altering their
original structure, as demonstrated in the experiments.

2.3 Imperative Learning

Imperative learning (IL) is an emerging self-supervised learning framework
based on bilevel optimization. It has been used to tackle problems where both
data-driven models and geometry problems are involved. For example, iPlanner
[41] adopted a B-spline interpolation [44] as the low-level optimization to guide
the network to generate smoothed trajectories for path planning; whereas iSLAM
[7] utilized the pose graph optimization to achieve the reciprocal learning for the
front-end and back-end in a simultaneous location and mapping (SLAM) system.
To the best of our knowledge, IL has not been applied to the problem of feature
correspondence learning, and iMatching is the first method for self-supervised
feature matching using bundle adjustment.

2.4 Bundle Adjustment in Deep Learning

Bundle adjustment (BA) is an optimization technique used in computer vi-
sion and photogrammetry to simultaneously estimate the 3D coordinates of land-
marks and camera parameters by minimizing the reprojection errors between
observed and predicted image points. Recently, several works have tried to in-
tegrate BA as part of a neural network. For example, DROID-SLAM [33] uses
BA to correct single-view depth estimation during inference so that it is con-
sistent with the geometry shape. For training dense depth and camera poses,
BA can be used to encourage geometric consistency between pose and depth
prediction [29]. However, to make the BA process differentiable, existing meth-
ods [9, 29, 33] unroll the entire iterative second-order optimization process as
part of the auto-differentiation graph. This incurs a significant computation and
memory overhead since the computation graphs of each iteration need to be
kept in memory and traversed during backpropagation. In contrast, we leverage
the stationary point of BA, resulting in an extremely efficient one-step implicit
gradient computation. As an additional benefit, such a formulation allows us
to freely leverage non-differentiable techniques such as alternating pruning and
refinement (Sec. 3.1) to enhance the robustness of BA.

3 Imperative Correspondence Learning

We present an overview of iMatching training scheme and its formulation.
We then present the matching network the and design of BA.

3.1 Problem Formulation

The architecture of our iMatching training scheme is shown in Fig. 2a, which
can be divided into two parts, a feature correspondence network fθ parameter-
ized by θ and a BA optimization process represented by (1b). The system is
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Fig. 2: (a) The iMatching framework for feature correspondence learning consists of
a feature correspondence network and a bundle adjustment process, which results in a
bilevel optimization. (b) Gradient flow in iMatching. During training, the gradient
from the reprojection and epipolar losses is only backpropagated through the 2D feature
correspondences u(k)

j to train the feature matching network. According to our analysis,
backpropagation through the robust iterative estimation could be avoided due to the
stationarity of optimization outputs p and T. (c) Iterative bundle adjustment
first initializes the camera poses and landmark positions, and then alternates between
optimizing reprojection error and outlier rejection until convergence.

formulated as a bilevel optimization problem, expressed as:

min
θ
R(fθ;T∗,p∗), (1a)

s. t. T∗,p∗ = argmin
T,p

R(T,p; fθ), (1b)

where R is the reprojection error function; each Ti ∈ SE(3) is a camera pose in
Lie group representation; and pl ∈ R3 is a 3D landmark position. Intuitively, at
the lower level, BA finds the most likely poses and landmark positions given fea-
ture correspondence inferred using network parameters θ; whereas at the upper
level, it optimizes for the best parameters θ for least reprojection error R given
the estimated poses and landmark positions from the lower level. This training
scheme is named imperative learning due to this passive reciprocal optimization
between the two levels. Since both levels only involve minimizing the projection
error, it eliminates the requirements in any form of ground truth.

Each training iteration involves a forward pass of the feature correspondence
network and the BA, with their formulations given below, then followed by the
optimization of network parameters detailed in Sec. 3.2.
Feature Correspondence. Generally, given image pairs (Ii, Ij), the feature
correspondence network fθ produces a set of K pixel correspondences:

fθ(Ii, Ij) := {(u(k)
i ,u(k)

j )}Kk=1, (2)

where u(k)
i and u(k)

j are the 2D coordinates on image Ii and Ij , respectively.
In practice, given a batch of B images, we match each image with its past
n (1 < n < B) frames to encourage a stronger geometric constraint.
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Bundle Adjustment. Given a set of correspondences, the BA process seeks to
find the optimal camera poses T∗ = {Ti}Bi=1 and the 3D positions of landmarks
p∗ = {pl}Nl=1 that minimizes the total reprojection error R defined as:

R(T,p; fθ) =

B∑
j=1

j−1∑
i=j−n

P∑
l=1

∥∥∥u(k)
i − π (pl;Ti)

∥∥∥2
2
, (3)

with π being the reprojection function and l being the index of the landmark pl,
which is triangulated from u(k)

i and u(k)
j . We let B = 4 and n = 2, so that the

training is lightweight to fit in GPU memory, and R will accumulate projection
errors from 5 frame pairs in total.

The BA can be roughly divided into initialization and pruning stages. We first
obtain an accurate initialization of poses T and landmark locations p, and then
run an iterative BA scheme that alternates between optimization and outlier
rejection. We next describe design choices making the BA reliable. As the sole
source of supervision, its robustness is fundamental to the success of the training.

Map Initialization. We first find a frame pair with the most correspondences
and parallax as the anchor, and then triangulate the positions of the landmarks
within the pair to obtain the corresponding 3D locations p. For other frames,
we estimate their transformations T with respect to the anchor frames by solv-
ing an EPnP [13] on given triangulated 3D positions and 2D correspondences.
Lastly, with each frame having a known camera pose, we triangulate all unused
correspondences to obtain the maximum number of landmarks.

Iterative Bundle Adjustment. As illustrated in Fig. 2c, we utilize the BA to
refine the T and p estimated above. In practice, single-pass BA is found to
be prone to poor convergence due to noise-corrupted keypoint detection and
wrong feature correspondences [26,39]. To solve this challenge, we follow a pro-
cedure similar to that of COLMAP [25] that alternates joint optimization and
outlier rejection. Specifically, after optimizing the BA objective (1b) with the
Levenberg-Marquardt (LM) optimizer, each landmark goes through a filter and
re-triangulation process: 3D locations with large reprojection errors are pruned
from the set of landmarks p at first, and then the surviving ones are updated
by re-triangulated landmark locations with the 2D correspondences and refined
camera pose. This alternative procedure runs for 3 iterations.

3.2 Optimization
To train the network fθ via gradient descent θ ← θ − η ∂R

∂θ , we need to
evaluate the derivative of the reprojection error (1a) w.r.t parameters θ of the
network. According to the chain rule, we calculate the derivative ∂R

∂θ as

∂R
∂θ

=

(
∂R
∂T∗

∂T∗

∂fθ
+

∂R
∂p∗

∂p∗

∂fθ
+

∂R
∂fθ

)
∂fθ
∂θ

. (4)

However, Equation (4) is well defined only if two conditions are satisfied: (1)
the matching network fθ is differentiable, i.e., ∂fθ

∂θ exists; and (2) the BA in the
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low-level optimization (1b) is differentiable, i.e., ∂T∗

∂fθ
and ∂x∗

∂fθ
exist. However,

the challenges of satisfying the two conditions are (1) feature matching is nor-
mally represented by matching of discrete pixel locations, while differentiating
through the integer pixel locations is unstraightforward; (2) solving BA requires
iterative, 2nd-order optimizers like LM, which computes large Jacobian matrices
and its inversion. This already complex process makes back-propagating through
it difficult. We next describe our solutions to resolve the two challenges.
Differentiable Image Correspondences. A feature correspondence model
fθ typically consists of three stages: keypoint detection (optional), feature ex-
traction, and matching prediction [15]. Feature descriptors are generally derived
from feature maps Fi produced by standard backbone networks, through in-
terpolation at the locations of keypoints. The process of matching prediction
involves determining the target feature locations based on extracted descriptors.
To make the predicted correspondences differentiable, current methods typically
compute the feature locations by expectation [37,45] or regression [2, 6].

Expectation-based Matching Prediction. Given a feature coordinate u
(k)
i from Ii

and feature maps Fi, Fj , the matching coordinate on image j is an expectation
over all possible target feature locations weighted by feature similarity

u
(k)
j =

1

HW

∑
u(l)∈Ij

u(l) · S
(
Fi(u

(k)
i ), Fj(u

(l))
)
, (5)

where S can be cosine similarity as an example.

Regression-based Matching Prediction. As a more generalized version of expectation-
based prediction, techniques in this category directly regress the amount of fea-
ture shift from the feature maps Fi and Fj , using a neural network:

u
(k)
j = gθ′

(
Fi, Fj ;u

(k)
i

)
, (6)

where gθ′ can be a transformer [2] or a CNN [6].
It is worth noting that iMatching can be used for both categories. However,

there are two non-differentiable cases. First, some keypoint detection networks
like SuperPoint [4] have a ranking process with a discrete nature: feature points
{u(k)

i }Kk=1 are typically picked from the pixel coordinates with top K confidence
scores. To handle such cases, we can either replace the detection network by
a differentiable one or freeze its parameters and thus need not propagate the
gradient through it. Second, some methods like [4,23] use search-based matching
prediction. Searching is non-differentiable and out of the scope of discussion.
Differentiable Bundle Adjustment. An existing widely-used approach to
have a differentiable bundle adjustment is to unroll the optimization loop for
a fixed number of steps and treat them as part of the forward pass, as done
by [9, 32, 33]. However, such a strategy requires the retention of each iteration’s
computation graph and the ability to compute the higher-order gradient, which
makes this method inapplicable to large-scale problems.
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To avoid explicitly computing ∂T∗

∂fθ
and ∂p∗

∂fθ
by differentiating through the

iterative optimization process, we leverage optimization of BA at convergence,
which allows us to efficiently backpropagate gradient through the lower level op-
timization without compromising its robustness. Concretely, since the optimiza-
tion of BA is unconstrained, at its stationary point (either locally or globally),
we have ∂R

∂T∗ ≈ 0, ∂R
∂p∗ ≈ 0. Then the gradient (4) becomes

∂R
∂θ

=
∂R
∂fθ

∂fθ
∂θ

. (7)

This implies that to obtain the gradient descent update (1b), it is sufficient to
evaluate the jacobian of the reprojection error only once after bundle adjustment
and back-propagate through the correspondence argument, treating T∗ and p∗

as given. Then, fθ can be trained with SGD with the gradient given by (7).
Fig. 2b illustrates such a gradient flow.

It is worth noting that [10, Table 1, N-loop AID] proved that, as long as the
upper-level optimization has a properly small step size, the bilevel optimization
is guaranteed to converge, even if the lower-level optimization has not converged.
Although [10] assumes that the lower-level optimization uses 1st-order optimizers
like SGD, we empirically found the bilevel optimization can still converge using
2nd-order optimizers with just a few iterations.
Improving Training Convergence. To further improve the convergence of
training, we retain the coarse-to-fine training scheme which is common in feature
correspondence models. These models typically first obtain a rough estimate
having the same format as in (2) from low-resolution image features, and then
refine the result using a higher-resolution feature or a cropped image patch to
produce fine matching. While the BA in Sec. 3.1 only attempts to minimize
reprojection error resulting from the fine estimate for the best accuracy, the
rough estimate receives the same gradient update in (7).

4 Experiments
We show the effectiveness of our method by presenting the performance gain

after finetuning SOTA correspondence models with iMatching on unseen, image-
only datasets. We experiment with CAPS [37], Patch2Pix [45], ASpanFormer [2],
and DKM [6], and name the models using our iMatching training scheme as
iCAPS, iPatch2Pix, iASpan, and iDKM respectively. We also compare with other
self-supervised methods including SGP [42] and OmniMotion [36].

4.1 Datasets
TartanAir [38] is a large (3TB) and diverse synthetic SLAM dataset. Collected
in photo-realistic simulation environments, the dataset contains precise ground
truth depth and pose labels and covers a wide range of scene types as well as
challenging conditions such as dynamic lighting and adverse weather. We use
TartanAir to evaluate pixel-level matching accuracy since it is synthesized and
thus free of sensor noises. We exclude scenes where ground truth matching is un-
obtainable, e.g., those containing surfaces with incorrect texture or fast-moving
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Table 1: Mean matching accuracy (%) on the TartanAir dataset under error tolerance
of 1, 2, and 5 pixels. Our iMatching training scheme consistently boosts the accuracy
of feature matching models, with finetuned results shown in “iCAPS", “iPatch2Pix",
“iASpan", and “iDKM". Top performing method under each error tolerance is in bold.

Scene Indoor Outdoor Natural Artificial Mixed Easy Hard Overall

reproj thres 1px 2px 5px 1px 2px 5px 1px 2px 5px 1px 2px 5px 1px 2px 5px 1px 2px 5px 1px 2px 5px 1px 2px 5px

(a) Non-differentiable Matcher

SIFT 22.6 31.7 41.9 22.9 31.0 38.3 16.0 23.2 30.5 24.9 33.8 42.7 24.1 32.5 39.7 23.7 32.5 40.8 21.4 29.4 37.4 22.8 31.2 39.3
ORB 20.8 40.2 58.5 16.5 32.0 45.9 10.2 21.2 33.0 20.1 38.4 55.0 18.5 35.9 50.9 18.8 36.5 52.1 16.7 32.4 47.2 17.7 34.4 49.6

SuperGlue 39.6 64.2 85.0 38.2 62.4 80.9 27.2 49.0 71.0 41.9 66.8 85.6 40.4 65.4 83.2 40.7 65.8 84.1 36.7 60.2 80.2 38.6 62.9 82.1
R2D2 30.6 48.6 64.8 31.4 48.6 61.0 25.2 41.4 55.1 32.9 50.5 64.7 32.0 50.1 62.4 32.3 50.6 64.3 29.1 45.7 59.6 31.1 48.6 62.2

(b) Pretrained Supervised Models of End-to-end Differentiable Matcher

CAPS 26.6 62.3 87.3 27.1 63.3 87.3 21.1 52.7 81.0 28.0 64.6 88.1 29.0 67.1 90.0 28.4 66.2 89.4 25.5 60.1 85.3 26.9 63.0 87.3
Patch2Pix 0.7 3.5 23.6 0.9 4.6 25.8 1.0 4.9 26.1 0.8 4.1 24.9 0.8 4.3 25.0 0.9 4.6 26.6 0.8 4.0 23.9 0.8 4.3 25.2

ASpanFormer 51.5 76.9 94.2 51.5 76.7 93.3 43.7 70.1 90.6 52.2 77.8 94.3 55.4 79.3 94.2 55.8 80.9 95.2 47.4 72.9 92.0 51.5 76.8 93.6
DKM 60.3 76.4 91.9 65.2 80.1 93.4 58.4 75.2 91.1 64.0 79.0 93.0 67.1 81.7 94.3 67.8 82.7 94.9 59.0 74.8 91.0 63.8 79.0 93.0

(c) Self-supervised Baseline

SGP 44.8 70.5 88.7 47.7 71.8 88.7 36.6 60.7 83.1 47.5 72.6 89.2 52.5 76.5 91.6 50.8 75.5 90.8 43.1 67.6 86.7 46.8 71.4 88.7
OmniMotion 38.4 62.6 86.3 28.2 52.0 78.8 26.6 49.7 78.8 33.1 57.0 81.1 29.6 54.1 81.0 33.8 58.5 83.1 28.3 51.5 78.6 30.7 54.6 80.6

(d) Models Using Our iMatching Training Scheme (Self-supervised)

iCAPS (Ours) 47.5 70.9 88.3 49.7 72.9 89.7 40.4 63.8 85.6 50.1 73.3 89.4 53.0 76.3 91.5 53.0 76.0 91.0 45.3 68.9 87.7 49.0 72.3 89.3
iPatch2Pix (Ours) 6.1 17.3 42.1 7.5 20.6 44.5 7.3 20.2 43.8 5.8 17.4 42.5 9.3 23.4 46.3 8.3 22.9 49.0 6.0 16.7 39.0 7.1 19.7 43.8

iASpan (Ours) 60.1 79.0 95.0 57.8 78.7 94.2 51.7 73.6 91.8 58.6 78.9 95.1 62.7 82.0 94.9 63.1 82.9 96.0 54.0 74.9 92.9 58.4 78.8 94.4
iDKM (Ours) 62.9 78.9 93.1 66.6 81.4 94.4 60.7 77.5 92.6 65.9 80.9 94.1 68.0 82.6 94.9 69.6 84.5 95.8 60.6 76.4 92.1 65.5 80.7 94.0

dynamic objects. We divide each valid scene into subsets of size 8.5:0.5:1 for
training, validation, and testing, respectively. Note that we apply our iMatch-
ing strategy on training sets only in all of our experiments, although iMatching
preserves the flexibility for a test time adaptation usage.
ETH3D-SLAM [27] provides RGBD sequences captured in the real world.
Its scenes primarily consist of small-scale objects with complex details. We use
the dataset for relative pose estimation as it resembles performance in SLAM
applications that require frame-by-frame trajectory computation. We exclude
the scenes where RGB cameras do not provide information in a completely dark
environment or are moved while their view is blocked.

We did not use MegaDepth [16] and ScanNet [3] datasets because they only
provide discrete images, while iMatching assumes uninterrupted videos to be
available. Moreover, these datasets are not suitable for evaluating feature match-
ing because of a lack of pixel-level accuracy, as their ground truth is generated
from structure-from-motion pipelines.

4.2 Feature Matching
Evaluation Protocol. For each method, we report the mean matching accu-
racy (MMA), i.e., the percentage of predicted correspondences with reprojection
errors less than 1, 2, and 5 pixels. The ground truth correspondences are com-
puted based on the TartanAir’s pose and depth map.
Baselines. We compare against most of the widely used and state-of-the-art
models. We divide them into three categories: (a) non-differentiable models in-
cluding SIFT [18], ORB [22], SuperGlue [23], and R2D2 [21], (b) the state-
of-the-art models including CAPS [37], Patch2Pix [45], ASpanFormer [2], and
DKM [6], and (c) self-supervised methods, SGP [42] and OmniMotion [36]. SGP
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Fig. 3: iASpan qualitative results. Each row shows an uninterrupted video with
10% of the correspondences. Best viewed digitally.

is specifically designed for CAPS [37]. For fairness, both SGP and our iMatching
are initialized with the exact same pretrained weights as provided by [37]. Addi-
tionally, we compare with OmniMotion. Since OmniMotion can only be applied
at test time, we train OmniMotion directly on each testing sequence. To ensure
OmniMotion isn’t negatively impacted by large camera motions in TartanAir’s
long testing sequence, we trim videos into smaller segments of 160 frames each.
Results. We report the MMA of selected methods in Table 1. It can be seen that
methods trained with iMatching greatly outperform previous handcrafted, super-
vised, and self-supervised methods. Comparing categories (a) and (b), we demon-
strate that self-supervision can further enhance data-driven methods, which al-
ready outperform handcrafted features in our zero-shot scenario.

Compared with the pretrained supervised methods in (b), iCAPS in (d) offers
1.82× of the accuracy of the pretrained CAPS at 1-pixel error tolerance. Fig. 4a
compares the CAPS and iCAPS model on simple point cloud registration tasks,
with ground truth depth scan used to highlight pose estimation accuracy. The
pretrained model leaves obvious misalignments even if BA is used to promote
consensus of camera poses, which indicates flaws in both the model accuracy and
robustness of a normal BA, but our bilevel optimization successfully eliminates
the artifacts. Patch2Pix and ASpanFormer are two models showing weak and
strong zero-shot performance, respectively. Our iASpan is capable of improving
the already strong ASpanFormer model by 13.6%, and more qualitative results
are available in Fig. 3. Our iDKM demonstrates the strongest pixel-level accu-
racy. Additionally, we observe a strong performance boost of 8.9× on Patch2Pix,
even though it’s a poorly performed model initially. This shows that our bilevel
optimization formulation is robust against poor initialization.

In addition, our method outperforms SGP by a 5% higher performance gain,
as indicated by (c) and iCAPS in (d). OmniMotion is primarily impacted by
aggressive camera motions in hard videos and potentially the highly non-convex
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(a) 3D Reconstruction (b) iDKM image warping

Fig. 4: (a) Pose estimation comparison between pretrained and finetuned
model. The bottom point clouds are reconstructed by aligning TartanAir RGBD scans
using RANSAC-estimated poses derived from feature correspondence. The pretrained
CAPS model (left) creates artifacts on the sofa and monitor due to inaccurately esti-
mated poses and falsely aligned depth map, while such artifacts are not presented in
our finetuned model (right). Best viewed digitally. (b). iDKM Qualitative Results.
The top row show raw image pairs Ii and Ij . These qualitative results contain restored
RGB pixel values of one image by transferring pixel color given the estimated feature
correspondences from the other image. Our iDKM accurately identifies matching on
the features best explained by object shape. Best viewed digitally.

nature of optimization as the authors mentioned. Our method has a relatively
obvious advantage on Natural scenes. They contain repeating texture patterns
and complex lighting conditions, e.g . the vegetation in the 4th sample in Fig. 3.
These conditions typically cause frequent mismatched correspondence and thus
highlight the importance of outlier rejection capability in self-supervised systems.
We conclude that our experiments on CAPS, Patch2Pix, ASpanFormer, and
DKM show the strong adaptability of iMatching by covering and demonstrating
performance gain on major types of end-to-end differentiable models.
Runtime. We observed that our method consumes 4.5s for a single training
sample, using the CAPS model. The total training time on a single TartanAir
scene consisting of 2248 frames is 40 mins. For comparison, SGP takes 110 minto
complete training, as it requires more iterations to converge. OmniMotion has
quadratic computation complexity during test-time adaptation which involves
computing pairwise flow of all frames. The same sequence costs more than 2
days on inference. In contrast, our method does not alter the architecture of the
off-the-shelf models, thus retaining the original model’s inference efficiency.
Additional Baseline. We further compare to a fully supervised baseline using
DKM, where we perform a COLMAP reconstruction on each sequence and train
DKM in a fully supervised manner from the COLMAP-generated label. Details
of the COLMAP experiments on feature matching and the following relative
pose estimation task can be found in the supplementary material.

4.3 Relative Pose Estimation
We next conduct another task, relative pose estimation, which is a crucial

application in computer vision, to demonstrate the adaptability of the iMatching
training scheme. We follow [2] to recover the camera pose by solving the essential
matrix from the predicted correspondences using RANSAC.
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Table 2: Pose estimation accuracy on ETH3D-SLAM. The best results are
highlighted in bold. The column “SGP” is the accuracy of the finetuned model of CAPS
using the self-supervised SGP training scheme. The columns “CAPS” and “DKM” are
the accuracies of the pretrained models from their original works. The columns “iCAPS’
and “iDKM” are accuracies of CAPS and DKM trained by our iMatching self-supervised
learning, with a percentage of improvements under 5° threshold calculated in “%↑".

Method SuperGlue [23] SGP [42] CAPS [37] iCAPS (Ours) DKM [6] iDKM (Ours)

AUC 5° 10° 20° 5° 10° 20° 5° 10° 20° 5° 10° 20° % ↑ 5° 10° 20° 5° 10° 20° % ↑

cables 66.9 72.6 75.4 62.0 67.9 70.9 67.4 73.9 77.1 69.0 76.3 80.0 2.4% 59.2 63.7 66.0 84.4 91.6 95.2 42.6%

camera_shake 64.5 78.0 86.1 68.4 82.1 89.8 63.0 77.8 87.0 72.3 84.1 90.8 14.8% 65.9 72.9 76.5 67.7 74.2 77.4 2.7%

ceiling 81.0 86.6 89.7 78.9 85.0 88.1 81.4 87.8 91.1 83.9 91.0 94.6 3.1% 59.4 62.8 64.6 76.6 83.8 87.5 29.0%

desk 77.1 84.5 88.4 73.5 82.3 87.0 72.8 82.2 87.3 74.4 83.9 88.9 2.2% 82.8 85.3 86.8 82.9 85.5 86.9 0.1%

desk_changing 71.3 77.2 80.4 69.7 76.8 80.4 73.5 81.6 85.8 74.3 83.1 87.8 1.1% 61.2 62.9 63.7 75.3 86.1 91.8 23.0%

einstein 57.1 62.0 64.8 66.7 72.4 75.8 67.8 74.1 77.8 69.8 76.6 80.5 2.9% 36.6 38.2 39.4 63.4 68.4 71.3 73.2%

einstein_GLC 42.3 46.1 48.4 51.7 57.4 60.7 51.3 56.7 60.3 53.6 59.3 63.0 4.5% 35.5 41.0 45.9 53.1 62.1 69.9 49.6%

mannequin 76.2 80.6 83.0 80.1 84.9 87.5 80.2 85.3 88.0 83.9 89.5 92.5 4.6% 59.5 60.9 61.6 81.1 88.1 91.6 36.3%

mannequin_face 69.1 71.0 71.9 73.2 76.3 77.9 73.4 76.8 78.5 77.2 81.3 83.3 5.2% 53.9 54.3 54.5 71.3 73.7 74.8 32.3%

planar 67.7 78.9 84.5 65.6 79.5 86.7 67.1 81.6 88.9 69.3 83.3 91.0 3.3% 62.9 70.6 74.4 71.3 81.1 86.4 13.4%

plant 78.5 82.2 84.1 74.4 80.2 83.0 71.9 78.5 81.7 81.0 88.0 91.5 12.7% 86.5 88.9 90.0 88.4 91.1 92.4 2.2%

plant_scene 72.6 77.2 79.6 71.0 76.4 79.2 71.8 77.7 80.7 80.2 86.8 90.2 11.7% 44.2 45.2 45.7 83.5 90.7 94.3 88.9%

sfm_lab_room 87.7 93.8 96.9 90.6 95.3 97.6 86.4 93.3 96.6 90.4 95.2 97.6 4.6% 92.0 94.4 95.6 94.2 97.1 98.6 2.4%

sofa 69.2 76.9 81.4 70.8 79.6 84.2 70.8 79.6 84.1 72.2 81.5 86.9 2.0% 52.9 54.2 54.8 80.1 89.1 94.9 51.4%

table 65.3 68.8 70.6 65.3 69.4 71.4 70.5 75.3 77.7 77.4 83.3 86.3 9.8% 28.6 29.4 29.8 78.2 90.0 94.5 173.4%

vicon_light 69.4 76.0 79.6 72.7 81.1 85.6 73.2 82.0 86.6 71.8 81.3 86.4 -1.9% 66.5 70.1 72.1 74.5 80.3 83.3 12.0%

large_loop 69.2 75.1 78.1 69.9 75.8 78.8 73.2 79.3 82.4 78.6 86.2 90.3 7.4% 42.5 45.1 46.4 77.7 86.8 91.5 82.8%

Overall 69.7 75.8 79.0 70.9 77.8 81.4 71.5 79.0 83.0 75.3 83.0 87.1 5.3% 58.2 61.2 62.8 76.7 83.5 87.2 31.8%

Baselines. To evaluate the performance gain after training, we use both expectation-
and regression-based methods with pre-trained weights, as represented by CAPS
[37] and DKM [6], respectively. Again, we compare against SGP [42] by training
CAPS with iMatching. The non-differentiable SuperGlue model [23] is included
for reference. We selected these models because they are either detector-based
or dense flow models, and thus can provide correspondence at arbitrary pixel
locations, which is crucial for applications such as SLAM or VO.
Accuracy. A pose estimate is considered to be correct if the angular error in
both rotation and translation falls below thresholds of 5◦, 10◦, and 20◦, and
we report the area-under-curve (AUC) of the pose error in Table 2. iMatching
shows superior performance over supervised and self-supervised methods. Data-
driven methods perform strongly, except for the DKM. Despite demonstrating
the strongest performance under supervised settings on MegaDepth and ScanNet
[6], as well as top pretrained accuracy in our previous feature matching, DKM is
behind SuperGlue and CAPS by a large margin on the unseen ETH3D-SLAM
scenes. However, iMatching can boost its accuracy by 30% compared with the
pretrained, making it the strongest among all methods. From image warping
results in Fig. 4b, it shows consistent per-pixel matching quality.
Comparison with SGP. Pose estimation accuracy improvement brought by
SGP is only observed in 5 scenes and is overall negligible. This is primarily
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Table 3: Pose estimation on KITTI360
Method 5◦ 10◦ 20◦ Method 5◦ 10◦ 20◦

ASpanFormer 74.4 86.3 93.0 DKM 91.8 95.9 98.0
iASpan (Ours) 80.6 90.1 95.1 iDKM (Ours) 92.6 96.3 98.1

because the CAPS model has strong generalizability in the task but the sim-
ple supervision formulation in CAPS already has saturated performance under
the evaluation metrics: SGP training can only encourage overall consensus be-
tween correspondence following the epipolar constraint regardless of actual 3D
shape, so the effectiveness of SGP is not as obvious as what we observed in fea-
ture matching. In contrast, our design allows us to further improve the already
strong CAPS model by 5%. Our iDKM experiment also verifies that iMatching
is less likely to be vulnerable to initially worse pose estimation accuracy, as its
iterative BA process brings additional robustness to correct error that occurs in
map initialization. Therefore, we conclude that our imperative learning works
pragmatically and effectively, thanks to its carefully designed robust BA.

Additional evaluation on outdoor scene. To show that our method is gen-
eralizable to outdoor environments as well, we finetune the two top-performing
methods, ASpanFormer and DKM, on the KITTI360 dataset. We partition the
entire dataset using the same ratio as used in TartanAir for training and testing.
We evaluate pose AUC using the dataset’s ground truth camera pose. Results
in Table 3 show that our iMatching brought 8.3% improvement under 5◦ error
tolerance. The DKM experiment shows less obvious improvement as the model
already has saturated performance.

5 Conclusion

We explore an exciting new direction in self-supervised feature correspon-
dence learning, i.e. imperative learning, using bundle adjustment as a supervi-
sion signal, formulated as a bilevel optimization problem, and learning feature
correspondence from uninterrupted video sequence without any form of ground
truth labels. We highlight the simple and efficient optimization technique used to
differentiate through the complex bundle adjustment process. We experimented
with the state-of-the-art models and demonstrated obvious performance leaps
in tasks including feature matching and relative pose estimation, empirically
verifying the importance of our robust bundle adjustment. This paper makes
an attractive starting point for integrating the learning process of feature cor-
respondence to the underlying optimization in downstream applications such as
visual odometry and 3D reconstruction in an online manner.
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