
Fast NeRV 1

A Implementation Details

A.1 Pseudocode of NeRV-Enc and NeRV-Dec

We firstly provide pseudocode for NeRV-Enc and NeRV-Dec in Algorithm 1.

Algorithm 1 Pseudocode in a PyTorch style.

############ 1) Video encoding: NeRV-Enc ############
Input: video x, initial weights ✓0
Output: video-specific weights ✓̂0

Video tokenization
x = FC1(x.tokennize()) # d \times M

Concat video patches and initial weights as input
x = x.concat(✓0) # d \times (M+N)

Hypernetwork g� output video-specific weights ✓̂0

✓̂0 = g_�.forward(x)[-N:]. # d \times N
✓̂0 = FC2(✓̂0) # Cout \times N

############ 2) Video decoding: NeRV-Dec ############
✓̂0 = ✓̂0.expand_as(✓1) # broadcast into needed shape
✓0 = ✓1 * ✓̂0 # Cout \times Cin \times K \times K

Initial NeRV model f✓ with generated weights
f_✓.reset_parameter(✓0)

Input frame index t, and output video frame x̂t
x̂t = f_✓.forward(t)

############### 3) Model optimization ###############
Compute loss and backward gradients
loss = MSELoss(x̂t, xt)
loss.backward()

update all learnable parameters
update([�, ✓0, ✓1])

FC: fully connected layer;
MSELoss: mean square error loss.

A.2 Scaling the training of NeRV-Enc

We explore factors such as the number of training videos, training epochs, en-
coder size, and weight token distributions, as outlined in Tab. 7. Generally,
NeRV-Enc’s reconstruction performance improves with increased computational
resources, although the gains tend to plateau as training duration becomes ade-
quate. Higher dropout ratios are essential for achieving improved generalization
in longer training epochs or with larger hyper-networks. These ablations under-
score that the reconstruction quality of NeRV-Enc can be significantly enhanced
by scaling the training with additional resources, including more training videos,
longer training epochs, and larger hyper-networks.

2 Hao Chen et al.

PSNR " SSIM "
Train K400 SthV2 UCF101 Train K400 SthV2 UCF101

Epoch ablation
150 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
300 26.8 26.7 29.5 26.2 0.763 0.757 0.819 0.757
600 27.2 27.1 30 26.6 0.774 0.768 0.827 0.766
1200 27.6 27.3 30.2 26.7 0.787 0.776 0.832 0.774
1800 27.8 27.4 30.4 26.9 0.791 0.782 0.837 0.781

Encoder size ablation
47.6M 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
125M 26.4 26.2 28.9 25.6 0.751 0.743 0.806 0.737
251M 26.5 26.7 29.5 26.2 0.756 0.762 0.822 0.759
404M 26.5 26.5 29.3 25.9 0.753 0.755 0.816 0.751

Video number ablation
10k 25.8 25.8 28.5 25.2 0.732 0.727 0.795 0.723
20k 26.7 26.6 29.4 26 0.757 0.752 0.814 0.751
40k 27 26.9 29.7 26.4 0.764 0.761 0.821 0.762
80k 27.6 27.7 30.6 27.2 0.791 0.791 0.845 0.794
240k 27.8 27.9 30.9 27.4 0.792 0.799 0.852 0.802

Table 7: NeRV-Enc ablations. For ablation of weight tokens, we compare uniform
tokens (TransINR [9]), layer-specific tokens (GINR [27] at the 2nd layer), and our pro-
posed layer-adaptive weight tokens. Please refer to the main paper for their distinction.

A.3 NeRV-Enc for video restoration tasks.

Our NeRV-Enc framework is versatile across various downstream tasks, and
shows robust restoration quality for various degradations. Results in ?? and
Tab. 8 demonstrate that the reconstruction quality for downsampled, blurred,
and masked input videos is comparable to that achieved through conventional
video regression. This underscores the framework’s effectiveness in restoring

common pixel degradations within the implicit space.

Input
degradation

Input PSNR Output PSNR
Train k400 sth-v2 ucf101 Train k400 sth-v2 ucf101

Downsample 20.1 20.3 22.9 19.5 24.5 24.3 26.8 23.9
Gaussian blur 23.1 23.3 26.0 22.3 24.8 24.7 27.3 24.0
Inpainting 19.0 18.6 18.1 18.4 25.5 25.2 27.9 24.7
No - - - - 25.8 25.8 28.5 25.2

Table 8: Results for downstream tasks with NeRV-Enc.

Fast NeRV 3

A.4 Weight quantization for efficient storage.

In this quantization procedure, each element of a vector µ is mapped to the
nearest integer using the linear transformation defined by the formula:

µi = Round
✓
µi � µmin

scale

◆
⇤ scale + µmin,where

scale =
µmax � µmin

2b � 1
,

(2)

Here, µi represents a vector element, Round is a rounding function, b is the
quantization bit length, µmax and µmin are the maximum and minimum values of
vector µ, and ’scale’ is the scaling factor. Additionally, we use Huffman encoding
to further reduce the disk storage.

Results for Model Quantization We extend our analysis on model quantiza-
tion in Tab. 9, assessing performance on three datasets: K400, Something-V2,
and UCF-101.

Bits PSNR " SSIM "
K400 STH-V2 UCF101 K400 STH-V2 UCF101

32 28.4 31.6 28.1 0.808 0.862 0.817

8 28.4 31.5 28.1 0.808 0.861 0.816
7 28.3 31.5 28 0.807 0.86 0.815
6 28.1 31.2 27.9 0.802 0.855 0.811
5 27.5 30.2 27.3 0.784 0.836 0.794
4 25.6 27.7 25.6 0.712 0.759 0.725

Table 9: Ablation study on model quantization.

A.5 Implementation details

Video Encoding. We firstly provide training details of NeRV-Enc below.
– NeRV-Enc:

• Video: 8 frames, frame stride evenly sample from the whole video, 256⇥256
resolution.

• Batch size: 32
• Patch size: 64
• Position embedding dimension for NeRV: 16
• Activation layer in NeRV: GeLU
• Kernel size for convolution layers in NeRV: 1, 3, 3, 3
• Upscale factor for NeRV blocks: 4, 4, 4, 4
• Token number for NeRV layers: 4, 128, 64, 0
• Token dimensions for NeRV layers: 256, 144, 288, 0

4 Hao Chen et al.

• Model dimension and feed-forward dimension for transformer encoder lay-
ers: 720 and 2800 for NeRV-Enc of 47.6M, 1600 and 6400 for NeRV-Enc of
larger NeRV-Enc (251M)

• Dropout ratio in transformer encoder layers: 0 for default training, 0.15 for
larger NeRV-Enc and long training

• Optimizer: AdamW
• Learning rate: 0.0001

Video Decoding. To assess the decoding speed of NeRV-Dec, H.264, RAM, and
AV1, we employ a PyTorch dataloader to facilitate parallel decoding. We initially
stack the NeRV model weights before inputting them into NeRV-Dec. Regarding
video compression, we utilize the ‘torchvision.io.write_video’ function to store
videos, applying various CRF (Constant Rate Factor) settings. For video load-
ing, we experiment with two backends: ‘decord’ and ‘torchvision.io.read_video’,
selecting the one that offers superior performance for H.264 and AV1.

B Hurdles When Converting MLP to CNN

We address the difficulties encountered when converting MLP to CNN for NeRV-
Enc, as detailed in Tab. 10. The final model weights ✓0 result from the element-
wise multiplication of ✓̂0 2 Rdout⇥N and video-agnostic weights ✓1 2 RCout⇥Cin⇥K⇥K ,
as illustrated in Figs. 2 and 4 of the main paper. This is expressed as

✓0 := ✓1 ⇤ ✓̂0.expand_as(✓1), (3)

and is followed by L2 normalization. a) Omitting the final normalization leads
to a significant performance drop, from 25.8 to 22.9 for the K400 test PSNR. b)
Convolution initialization of ✓1 is crucial, as it increases the test PSNR by
approximately 1.8. c) The choice of expansion dimension when expanding
✓̂0 to match ✓1’s shape is pivotal. Expanding along dimension �2 (the default
choice) produces the best results compared to dimensions -1 and -3.

Method Train K400 SthV2 UCF101

NeRV-Enc 25.8 25.8 28.5 25.2
w/o Normalize ✓0 23.3 22.9 25.7 22.9
w/o ConvInit ✓1 24.1 24 26.7 23.5

Expand ✓̂0 at dim = -1 24.6 24.3 26.9 23.8
Expand ✓̂0 at dim = -3 24.2 23.9 26.5 23.4

Table 10: Challenges in converting MLPs to ConvNets, showcasing normalized final
weights ✓0, convolution initialization of ✓1, and expansion dimension for ✓̂0. PSNR"
showed, the higher the better.

	 Fast Encoding and Decoding for Implicit Video Representation

