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A Demo and Code

An interactive demo, code, model weights, and the MedScribble dataset are
available at

https://scribbleprompt.csail.mit.edu

B ScribblePrompt Implementation

B.1 Prompt Simulation

In this section, we provide illustrations of the prompt simulation process. Each
of these click and scribble simulation algorithms can be applied to the ground
truth label (or false negative error region) to simulate positive clicks/scribbles
and to the background (or false positive error region) to simulate negative
clicks/scribbles.

https://orcid.org/0000-0003-1343-9672
https://orcid.org/0000-0003-2376-9448
https://orcid.org/0000-0003-0992-0906
https://orcid.org/0000-0002-8422-0136
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Scribbles We simulate diverse and varied scribbles by first generating clean
scribbles using one of three methods: (i) line scribbles, (ii) centerline scribbles
or (iii) contour scribbles. Then, we break up and warp the scribbles to add more
variability to account for human error.

Line Scribbles. Fig. 1 illustrates the process of simulating line scribbles.

Fig. 1: Line scribbles. Given an input mask z, we draw random lines by sampling two
end points from {(u, v)|zuv = 1}. We use a random deformation field to warp the line
scribbles and then multiply by the binary input mask z to correct parts of the scribble
that were warped outside the mask. We can simulate positive scribbles by applying
the algorithm to the ground truth label y (top) and negative scribbles by applying the
algorithm to the background 1− y (bottom).

Centerline Scribbles. Fig. 2 illustrates the process of simulating centerline
scribbles.

Contour Scribbles. Fig. 3 illustrates the process of simulating contour scrib-
bles.

Interior Border Region Clicks. Fig. 4 illustrates the process for simulating
interior border region clicks.

B.2 Architecture and Training

We discuss some of the modeling decisions in ScribblePrompt-UNet and
ScribblePrompt-SAM.

Normalization Layers. In preliminary experiments, we evaluated normaliza-
tion layers in the ScribblePrompt-UNet architecture such as Batch Norm [37],
Instance Norm [90], Layer Norm [5], and Channel Norm [93]. Including normal-
ization did not improve the mean Dice on validation data compared to using no
normalization layers (Fig. 5).

Loss Function. In preliminary experiments, we trained ScribblePrompt with
Soft Dice Loss [21], a combination of Soft Dice Loss and Binary Cross-Entropy
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Fig. 2: Centerline scribbles. Given an input mask, we apply a thinning algorithm
[96] to get a 1-pixel wide skeleton. We break up the skeleton using a random mask
and use a random deformation field to warp the broken skeleton. Lastly, we multiply
the scribble mask by the input binary mask to remove parts of the scribble that were
warped outside the input mask. We can simulate positive scribbles by applying the
algorithm to the label y (top) and negative scribbles by applying the algorithm to the
background 1− y (bottom).

Fig. 3: Contour scribbles. We simulate a rough contour of the desired segmentation
within the boundaries of the label. Given a mask z, We first blur the mask to reduce
the size of the label such that z̃ = min(z, z ◦Gk), where Gk is a Gaussian blur kernel.
Then we apply a threshold z̃ < h sampled in some intensity range h ∼ U [z̃min, z̃max]
and extract a contour inside the boundary of the mask. We break up the contour using
a random mask and use a random deformation field to warp the broken contour. Lastly,
we multiply the scribble mask by the input binary mask to correct parts of the scribble
that were warped outside the mask. We can simulate positive scribbles by applying the
algorithm to the label y (bottom) and negative scribbles by applying the algorithm to
the background 1− y (top).
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Fig. 4: Interior border region clicks. We sample clicks from a border region inside
the boundary of a given mask. Given a mask z, we first blur the mask to reduce the
size of the label such that z̃ = min(z, z ◦Gk) where Gk is a Gaussian blur kernel. We
then sample click coordinates from {(u, v)|z̃uv ∈ [a, b]}, where a, b ∼ U [z̃min, z̃max)
are thresholds sampled in some intensity range. We show the simulation process for
negative border region clicks on the background 1− y (top) and positive border region
clicks on the label y (bottom).

Fig. 5: Training ScribblePrompt-UNet with different normalization layers.
We show mean Dice averaged across five iterative predictions (using the training pro-
cedure for simulating interactions). At each epoch, we evaluate on 1,000 randomly
sampled examples from the validation splits of the 65 training datasets and validation
splits of the nine validation datasets. Dice was smoothed using Exponential Weighted
Mean with α = 0.1.
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Loss, and a combination of Soft Dice Loss and Focal Loss [57], similar to [45]. In
the latter two losses, Dice Loss and BCE Loss or Focal Loss are weighted equally.
We found that the combination of Soft Dice Loss and Focal Loss resulted in
slightly higher mean Dice on the validation data for ScribblePrompt-UNet and
ScribblePrompt-SAM. Fig. 6 shows Dice recorded during training in preliminary
experiments with ScribblePrompt-UNet.

Fig. 6: Training ScribblePrompt-UNet with different loss functions. We re-
port Dice averaged across five iterative predictions (using the training procedure for
simulating interactions). At each epoch, we evaluate on 1,000 randomly sampled ex-
amples from the validation splits of the 65 training datasets and validation splits of the
nine validation datasets. Dice was smoothed using Exponential Weighted Mean with
α = 0.1.

ScribblePrompt-UNet Inputs. We encode each prompt type in an input
channel for ScribblePrompt-UNet. The input to ScribblePrompt-UNet has size
5 × h × w consisting of the input image xt, bounding box encoding, positive
click/scribble encoding, negative click/scribble encoding, and the logits of the
previous prediction ŷti−1. For the first prediction, we set the previous prediction
channel to zeros. We encode bounding boxes in a binary mask that is 1 inside
the box(es) and 0 everywhere else. We encode positive and negative clicks using
binary masks where a pixel is 1 if has been clicked and 0 otherwise. We encode
positive and negative scribbles as masks on [0, 1] and combine them with the
masks encoding clicks. Representing the interactions as masks is advantageous
because inference time does not scale with the number of interactions.

ScribblePrompt-SAM Details. To train ScribblePrompt-SAM, we took the
pre-trained weights from SAM [45] with ViT-b backbone and froze all compo-
nents of the network except for the decoder.
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The SAM architecture can make predictions in single-mask mode or multi-
mask mode. In single-mask mode, the decoder outputs a single predicted seg-
mentation given an input image and user interactions. In multi-mask mode, the
decoder predicts three possible segmentations and then outputs the segmen-
tation with the highest predicted IoU by a MLP. We trained and evaluated
ScribblePrompt-SAM in multi-mask mode to maximize the expressiveness of
the architecture. During training we included a MSE term in the segmentation
loss to train the MLP to predict the IoU of the predictions, as in [45].

B.3 Synthetic Labels

To help reduce task overfitting – memorizing the segmentation task for single-
label datasets and thus ignoring user prompts – we introduce a mechanism to
generate synthetic labels. During training, for a given sample (x0, y0), with prob-
ability psynth we replace y0 with a synthetic label ysynth.

We use a superpixel algorithm [22] with randomly sampled scale parame-
ter λ ∼ U [1, 500] to partition the image x0 into a map of k superpixels, z ∈
{1, . . . , k}n×n. Then, we randomly select a superpixel c ∼ Cat({1, . . . , k}, 1/k)
as the synthetic label ysynth := 1[z = c]. Fig. 7 shows examples of training
images and the corresponding maps of possible synthetic labels with different λ.

Fig. 7: Examples of possible synthetic labels. Each color in the maps is a different
synthetic label. During training, we replace a given label y0 with a synthetic label
ysynth with probability psynth. To generate ysynth, we apply a superpixel algorithm
with randomly sampled scale parameter λ to the image x0 and then randomly select
a superpixel as the synthetic label. We show examples of the synthetic label maps
generated using a superpixel algorithm [22] with different λ.
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C Data

We build on large dataset gathering efforts like MegaMedical [13,81] to compile
a collection of 77 open-access biomedical imaging datasets for training and eval-
uation, covering over 54k scans, 16 image types, and 711 labels. We gathered
datasets with a particular focus on Microscopy, X-Ray, and Ultrasound modal-
ities, which were not as well represented in the original MegaMedical [13]. The
full list of datasets is provided in Tab. 2 and Tab. 3.

We define a 2D segmentation task as a combination of (sub)dataset, axis
(for 3D modalities), and label. For datasets with multiple segmentation labels,
we consider each label separately as a binary segmentation task. For datasets
with sub-datasets (e.g., malignant vs. benign lesions) we consider each cohort
as a separate task. For multi-annotator datasets, we treat each annotator as a
separate label. For instance segmentation datasets, we sampled one instance at
a time during training.

For 3D modalities we use the slice with maximum label area (“maxslice”) and
the middle slice (“midslice”) for each volume for training of ScribblePrompt. We
report results evaluating on maxslices, but we observed similar trends evaluating
on midslices.

Division of Datasets. The division of datasets and subjects for training, model
selection, and evaluation is summarized in Tab. 1. The 77 datasets were divided
into 65 training datasets (Table 3, 12 evaluation datasets. Data from 9 (out of 12)
of the evaluation datasets was used in model development for model selection,
and final evaluation. The other 3 evaluation datasets were completely held-out
from model development and only used in the final evaluation.

Division of Subjects. We split each of the 77 datasets into 60% train, 20%
validation, and 20% test by subject. We used the “train” splits from the 65 train-
ing datasets to train ScribblePrompt models. We use the “validation” splits from
the 65 training datasets and 9 validation datasets for model selection. We report
final evaluation results across 12 evaluation sets consisting of the “test” splits of
the 9 validation datasets and “test” splits of the 3 test datasets to maximize the
diversity of tasks and modalities in our evaluation set (Tab. 1). No data from
the 9 validation datasets or 3 test datasets were seen by ScribblePrompt models
during training. For TotalSegmentator [92], we only evaluated on 20 examples
per task due to the large number of tasks in the dataset. In total, the evaluation
data cover 608 segmentation tasks.

Image Processing. We rescale image intensities to [0,1]. For methods using
the SAM architecture, we convert the images to RGB and apply the pixel nor-
malization scheme in [45].

Image Resolution. We resized images to 128x128 for training of ScribblePrompt.
We used this resolution to reduce training time during model development and
to be able to conduct more thorough experiments. The ScribblePrompt approach
is not tied to a particular resolution.
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We conducted the experiments with MedScribble and simulated interactions
with 1282 size images. For the ACDC scribbles dataset and the user study we
evaluated 2562 size images to test ScribblePrompt’s performance at higher res-
olutions. Although the ScribblePrompt-UNet architecture can take variable size
inputs, we found downsizing the image to 1282 for inference then upsampling
the prediction to the input image size produced the highest Dice predictions.

For each method we resize the image to the method’s training image size
before running inference. Although the SAM architecture takes input images of
size 10242 (or 2562 in the case of SAM-Med2D), the the network outputs predic-
tions of size 2562 that are up-sampled to the input image size. MIDeepSeg takes
962 size images as inputs (after automatic cropping) and outputs predictions of
size 962.

Interactive Baselines. SAM-Med2D used three of our evaluation datasets
(ACDC [9], BTCV [50] and TotalSegmentator [92]) as training datasets [94].
MedSAM used two of our evaluation datasets (TotalSegmentator [92] and BUID [4])
as training datasets [66].

Supervised Baselines. We trained fully-supervised baselines for 10 of our eval-
uation datasets. For those datasets, We used the train and validation splits to
train a fully-supervised nnUNet [38] for each 2D task (Tab. 1). We report final
results for all methods on the test splits of the evaluation datasets.

Table 1: Dataset split overview. Each dataset was split into 60% train, 20% vali-
dation and 20% test by subject. Data from the “train” splits of the 65 training datasets
were used to train the models. The ScribblePrompt models did not see any data from
the validation datasets or test datasets during training. Data from the “validation”
split of the 9 validation datasets was used for ScribblePrompt ( SP ) model selection
and baseline model selection (e.g., single-mask vs. multi-mask mode for SAM). We
report final results on 12 “evaluation sets”: data from the “test” splits of the 9 valida-
tion datasets and the “test” splits of the 3 test datasets. To train the fully-supervised
nnUNet baselines, we used the training and validation splits of the 12 evaluation
datasets.

Split within each dataset by subject

Dataset Group No. Datasets Training Split (60%) Validation Split (20%) Test Split (20%)

Training Datasts 65 SP training SP model selection Not used
Validation Datasets 9 nnUNet training SP and baselines model se-

lection, nnUNet training
Final evaluation

Test Datasets 3 nnUNet training nnUNet training Final evaluation
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Table 2: Validation and test datasets. We assembled the following set of datasets
to evaluate ScribblePrompt and baseline methods. For the relative size of datasets, we
include the number of unique scans (subject and modality pairs) that each dataset has.
These datasets were unseen by ScribblePrompt during training. Three test datasets
were completely held-out from model selection and development. The validation splits
of the other 9 (validation) datasets were used for model selection. We report final
results on the test splits of these 12 datasets.

Dataset Name Description Scans Labels Modalities

ACDC [9] Left and right ventricular endocardium 99 3 cine-MRI
BTCV Cervix [50] Bladder, uterus, rectum, small bowel 30 4 CT
BUID [4] Breast tumors 647 2 Ultrasound
COBRE [3,17,23] Brain anatomy 258 45 T1-weighted MRI
DRIVE [89] Blood vessels in retinal images 20 1 Optical camera
HipXRay [32] Ilium and femur 140 2 X-Ray
PanDental [1] Mandible and teeth 215 2 X-Ray
SCD [80] Sunnybrook Cardiac Multi-Dataset Collection 100 1 cine-MRI
SCR [26] Lungs, heart, and clavicles 247 5 X-Ray
SpineWeb [99] Vertebrae 15 1 T2-weighted MRI
TotalSegmentator [92] 104 anatomic structures (27 organs, 59 bones, 10

muscles, and 8 vessels)
1,204 104 CT

WBC [100] White blood cell cytoplasm and nucleus 400 2 Microscopy
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Table 3: Training datasets. We assembled the following set of datasets to train
ScribblePrompt. For the relative size of datasets, we have included the number of
unique scans (subject and modality pairs) that each dataset has.

Dataset Name Description Scans Modalities

AbdominalUS [91] Abdominal organ segmentation 1,543 Ultrasound
AMOS [39] Abdominal organ segmentation 240 CT, MRI
BBBC003 [60] Mouse embryos 15 Microscopy
BBBC038 [14] Nuclei instance segmentation 670 Microscopy
BrainDev [29,30,48,85] Adult and neonatal brain atlases 53 Multimodal MRI
BrainMetShare [31] Brain tumors 420 Multimodal MRI
BRATS [6,7, 74] Brain tumors 6,096 Multimodal MRI
BTCV Abdominal [50] 13 abdominal organs 30 CT
BUSIS [97] Breast tumors 163 Ultrasound
CAMUS [51] Four-chamber and Apical two-chamber heart 500 Ultrasound
CDemris [40] Human left atrial wall 60 CMR
CHAOS [41,42] Abdominal organs (liver, kidneys, spleen) 40 CT, T2-weighted MRI
CheXplanation [83] Chest X-Ray observations 170 X-Ray
CT2US [88] Liver segmentation in synthetic ultrasound 4,586 Ultrasound
CT-ORG [82] Abdominal organ segmentation (overlap with LiTS) 140 CT
DDTI [77] Thyroid segmentation 472 Ultrasound
EOphtha [19] Eye microaneurysms and diabetic retinopathy 102 Optical camera
FeTA [76] Fetal brain structures 80 Fetal MRI
FetoPlac [8] Placenta vessel 6 Fetoscopic optical camera
FLARE [67] Abdominal organs (liver, kidney, spleen, pancreas) 361 CT
HaN-Seg [78] Head and neck organs at risk 84 CT, T1-weighted MRI
HMC-QU [20,44] 4-chamber (A4C) and apical 2-chamber (A2C) left

wall
292 Ultrasound

I2CVB [52] Prostate (peripheral zone, central gland) 19 T2-weighted MRI
IDRID [79] Diabetic retinopathy 54 Optical camera
ISBI-EM [15] Neuronal structures in electron microscopy 30 Microscopy
ISIC [16] Demoscopic lesions 2,000 Dermatology
ISLES [34] Ischemic stroke lesion 180 Multimodal MRI
KiTS [33] Kidney and kidney tumor 210 CT
LGGFlair [12, 72] TCIA lower-grade glioma brain tumor 110 MRI
LiTS [10] Liver tumor 131 CT
LUNA [86] Lungs 888 CT
MCIC [27] Multi-site brain regions of schizophrenic patients 390 T1-weighted MRI
MMOTU [98] Ovarian tumors 1,140 Ultrasound
MSD [87] Large-scale collection of 10 medical segmentation

datasets
3,225 CT, Multimodal MRI

MuscleUS [71] Muscle segmentation (biceps and lower leg) 8,169 Ultrasound
NCI-ISBI [11] Prostate 30 T2-weighted MRI
NerveUS [75] Nerve segmentation 5,635 Ultrasound
OASIS [35,69] Brain anatomy 414 T1-weighted MRI
OCTA500 [53] Retinal vascular 500 OCT/OCTA
PanNuke [24] Nuclei instance segmentation 7,901 Microscopy
PAXRay [84] 92 labels covering lungs, mediastinum, bones, and

sub-diaphram in Chest X-Ray
852 X-Ray

PROMISE12 [58] Prostate 37 T2-weighted MRI
PPMI [18,70] Brain regions of Parkinson patients 1,130 T1-weighted MRI
QUBIQ [73] Collection of 4 multi-annotator datasets (brain, kid-

ney, pancreas and prostate)
209 T1-weighted MRI, Multi-

modal MRI, CT
ROSE [68] Retinal vessel 117 OCT/OCTA
SegTHOR [49] Thoracic organs (heart, trachea, esophagus) 40 CT
SegThy [46] Thyroid and neck segmentation 532 MRI, Ultrasound
ssTEM [25] Neuron membranes, mitochondria, synapses and ex-

tracellular space
20 Microscopy

STARE [36] Blood vessels in retinal images (multi-annotator) 20 Optical camera
ToothSeg [62] Individual teeth 598 X-Ray
VerSe [61] Individual vertebrae 55 CT
WMH [47] White matter hyper-intensities 60 Multimodal MRI
WORD [64] Abdominal organ segmentation 120 CT
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D Experimental Setup

Training. We use the Adam optimizer [43] and train with a learning rate of
0.0001 until convergence. We use a batch size of 8 for ScribblePrompt-UNet. For
ScribblePrompt-SAM we use a batch size of 1, because of memory constraints.

Task Diversity. The final ScribblePrompt-UNet and ScribblePrompt-SAM mod-
els were trained with psynth = 0.5. Tab. 4 shows the data augmentations we used,
similar to the in-task augmentations from [13,81].

Table 4: Data augmentations during training. For each example, an augmenta-
tion is sampled with probability p. We apply augmentations after (optional) synthetic
label generation and before simulating user interactions.

Augmentation p Parameters

degrees ∈ [0, 360]
translation ∈ [0, 0.2]Random Affine 0.5

scale ∈ [0.8, 1.1]
brightness ∈ [−0.1, 0.1]Brightness Contrast 0.5 contrast ∈ [0.8, 1.2]

σ ∈ [0.1, 1.1]Gaussian Blur 0.5
k = 5

µ ∈ [0, 0.05]Gaussian Noise 0.5
σ ∈ [0, 0.05]
α ∈ [1, 2]Elastic Transform 0.25
σ ∈ [6, 8]

Sharpness 0.5 sharpness = 5
Horizontal Flip 0.5 None
Vertical Flip 0.5 None

SAM Baselines. For baseline methods using the SAM architecture, we evaluate
the models in both “single mask” and “multi-mask” mode. For each baseline
method and interaction procedure, we selected the best performing mode based
on the average Dice across the validation data and report final results on test data
using that mode. In the results with simulated clicks and scribbles by dataset
in Appendix F.2, we show results using both modes. For ScribblePrompt-SAM
and SAM-Med2D with adapter layers, multi-mask mode resulted in the highest
Dice. For SAM-Med2D without adapter layers, we found multi-mask mode led
to higher Dice for scribble inputs while single-mask mode led to higher Dice
with click inputs. For SAM (ViT-b and ViT-h) and MedSAM, single-mask mode
resulted in the higher Dice on average.
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E Manual Scribbles

We provide additional setup details and visualizations for the manual scribbles
evaluation in Sec. 5.1.

E.1 Setup

MedScribble Dataset. We collected a diverse dataset of manual scribble an-
notations, which is available at https://scribbleprompt.csail.mit.edu/data. The
MedScribble dataset contains annotations from 3 annotators for 64 image seg-
mentation pairs. The examples were randomly selected from the validation split
of 14 different datasets (7 training datasets and 7 validation datasets) [1, 9, 32,
35,36,41,42,50,51,53,69,80,84,91,99,100].

For each task, the annotators were shown 5 training examples with the ground
truth segmentation and instructed to draw positive scribbles on the region of
interest and negative scribbles on the background for 3-5 new images (without
seeing the ground truth segmentation). We collected the scribbles using a web
app developed in Python using the Gradio library [2]. Two of the annotators
used an iPad with stylus and one annotator used a laptop trackpad, to draw the
scribbles.

For the manual scribbles evaluation, we report results on a subset of Med-
Scribble, containing only examples from datasets unseen by ScribblePrompt
during training. This subset contains 31 image-segmentation pairs (each with
3 sets annotations) covering 7 segmentations tasks from 7 different validation
datasets [1,9,32,50,80,99,100]. The subset includes cardiac MRI, dental X-Ray,
abdominal organ, spine vertebrae, and cell microscopy segmentation tasks.

ACDC Scribbles Dataset. Like the other datasets we used, we split the ACDC
dataset [9] into 60% train, 20% validation and 20% test by subject. We used the
validation split for model selection for baseline methods (e.g . single-mask vs.
multi-mask mode for methods using the SAM architecture). We report results
averaged across three labels on all slices for the test subjects.

MedSAM. We only evaluate MedSAM using bounding box prompts because
it was fine-tuned exclusively with bounding box prompts and performs poorly
with point inputs (Fig. 16). We prompted MedSAM using a bounding box fit to
the positive scribbles. For each dataset, we experimented with using the mini-
mum enclosing bounding box or enlarging the box by 5 pixels in each direction
and selected the settings that maximized Dice on the validation data. Using
the minimum bounding box resulted in higher Dice scores for MedScribble and
enlarging the bounding box resulted in in higher Dice scores for ACDC.

SAM. For methods using the SAM architecture (besides MedSAM), we con-
verted the scribble masks to sets of positive and negative clicks for every non-zero
pixel in the scribble masks.

ScribblePrompt-UNet. For ScribblePrompt-UNet we found that blurring the
scribble masks with a 3x3 Gaussian blur kernel with σ = 0.5 prior to inference

https://scribbleprompt.csail.mit.edu/data
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improved Dice scores, perhaps due to differences in the distribution of pixel
values between the manually-collected scribbles and simulated scribbles during
training. We also experimented with blurring the scribbles for ScribblePrompt-
SAM and each of the baseline methods but it did not improve the Dice scores
for any other methods.

E.2 Results

Visualizations. Fig. 8 shows predictions for each method using examples from
the MedScribble dataset. Fig. 9 shows examples from the ACDC scribbles dataset.
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Fig. 8: Example predictions from MedScribble manual scribbles. We evaluate
on four examples from the MedScribble dataset. For each method, we show the pre-
dicted segmentation given a set of manually-collected positive and negative scribbles as
input. For MedSAM, we use a bounding box fit to the positive scribbles as the input.
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Fig. 9: Example predictions from ACDC manual scribbles. We show examples
for each label from the ACDC scribbles dataset [9]. For each method, we show the
predicted segmentation given a set of manually-collected positive and negative scribbles
as input. For MedSAM, we use a bounding box fit to the positive scribbles with 5 pixels
added to each dimension as the input. Scribble thickenss is enlarged for visual clarity.
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E.3 Comparison to Scribble-Supervised Learning

We report preliminary results comparing ScribblePrompt to scribble-supervised
learning. Scribble-supervised learning methods use scribble annotations as su-
pervision to train automatic segmentation models for predicting segmentation
given only an input image [28, 54, 56, 63, 95]. These models are task-specific; a
new model must be trained using scribble-supervised learning for each new task
and training requires many scribble-annotated images from the same task to
produce accurate results. In contrast, ScribblePrompt can perform new segmen-
tation tasks at inference time without retraining, using scribbles as input.

Setup. We compare ScribblePrompt-UNet to ScribFormer [55], a recent state-of-
the-art scribble-supervised learning method, on the ACDC scribbles dataset [9].
Experiments reported in [55] show that ScribFormer’s performance varies with
the amount of training data, from 0.847 Dice given 14 training subjects to 0.894
Dice given 70 training subjects (and 15 validation subjects) from ACDC.

We evaluate each method given the same test data as in our manual scrib-
bles evaluation: 20 subjects with scribble-annotations for three labels and back-
ground. For ScribFormer, we randomly partition the 20 test subjects into 80%
train and 20% validation by subject, and train following [55]. We run inference
for each model on all 20 test subjects, and report results averaged across the
three labels for the 380 slices.

Results. Tab. 5 shows the difference in mean Dice between ScribblePrompt-
UNet and ScribFormer is not statistically significant (p = 0.70 with a paired
t-test). Training ScribFormer required 2 hours using a NVIDIA A100 GPU with
16 CPUs.

Table 5: Comparison to scribble-supervised learning. Mean Dice and HD95
with 95% CI of predicted segmentations for ACDC (n = 1, 140).

↑ Dice Score ↓ HD95

ScribFormer 0.85± 0.01 4.05± 0.99
ScribblePrompt-UNet 0.84± 0.01 1.80± 0.11

Discussion. Given limited scribble-annotated data from ACDC, ScribblePrompt-
UNet predicts segmentations with similar Dice scores and lower HD95 compared
to a scribble-supervised learning model trained on the data.
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F Simulated Interactions

We present additional results from the experiments in Sec. 5.2 with simulated
interactions.

F.1 Bounding Boxes

We evaluate models with simulated bounding box prompts.

Setup. We evaluate segmentation accuracy using Dice score after a single bound-
ing box prompt. We simulate bounding boxes using the same procedure as
used was used when training ScribblePrompt: we find the minimum enclosing
bounding box for the ground truth label and then enlarge each dimension by
r ∼ U [0, 20] pixels to account for human error. We exclude MIDeepSeg [65]
from this evaluation because it is not designed to make predictions from a single
bounding box input.

For methods using the SAM architecture, we apply the pixel normalization
scheme in [45] to images before inference. Upon further investigation, Med-
SAM [66] performed better with images rescaled to [0, 1]; we report results for
MedSAM with both normalization schemes.

Results. Fig. 10 shows mean Dice after one bounding box prompt. Fig. 11 shows
results by dataset. ScribblePrompt-SAM has the highest Dice on average after
one bounding box prompt.

Visualizations. Due the ambiguity of many segmentation tasks, its often dif-
ficult to predict an accurate segmentation from a single bounding box prompt
(Fig. 13). Although ScribblePrompt models produced the highest dice predic-
tions from a single bounding box prompt in Fig. 10, users may not be satisfied
with this level of accuracy. Users can still achieve high Dice segmentations with
ScribblePrompt by providing additional click and scribble interactions to correct
the prediction. We visualize predictions for two examples in Fig. 12 and Fig. 13,
after a single bounding box prompt and after correction clicks. MedSAM has
the highest mean Dice among the baselines after a single bounding box prompt
(Fig. 10), but its usability is limited because it cannot incorporate corrections.
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Fig. 10: Results with simulated bounding boxes. Mean Dice on test data from
12 datasets with one simulated bounding box prompt, weighting each dataset equally.
SP = ScribblePrompt. MedSAM∗ indicates MedSAM with input images re-scaled to
[0, 1] instead of the pixel normalization from [45]. Errorbars show 95% CI from boot-
strapping.

Fig. 11: Results with simulated bounding boxes by dataset. Mean Dice after
one simulated bounding box prompt. Among the evaluation datasets, bounding box
prompts are the most effective for BUID, a breast ultrasound dataset. MedSAM∗ indi-
cates MedSAM with input images re-scaled to [0, 1] instead of the pixel normalization
from [45]. Errorbars show 95% CI from bootstrapping.
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Fig. 12: Bounding box prompt with center correction clicks. We simulate iter-
ative interactive segmentation of the left ventricle in a cardiac MRI from the SCD
dataset [80]. This label was seen during training but this dataset was not. Scrib-
blePrompt models produce the highest dice predictions after a single bounding box
prompt (first column) and are able to improve their predictions with additional cor-
rections.
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Fig. 13: Bounding box prompt with center correction clicks. We show clavi-
cle segmentation on an frontal chest X-Ray from the SCR dataset [26]. This dataset
was completely held-out and this label was unseen during training. None of the
methods are able to accurately segment the clavicle from a single bounding box
prompt (first column). However, after a few correction clicks, ScribblePrompt-UNet
and ScribblePrompt-SAM achieve 0.88 and 0.80 Dice, respectively.
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F.2 Scribbles and Clicks

We provide additional setup details, baselines and results for the experiments
with simulated scribbles and clicks presented in Sec. 5.2.

Setup. We evaluated each method following three scribble interaction proce-
dures and three click interaction procedures. We provide details below on the
MedSAM baseline and additional supervised baselines.

MedSAM. Since MedSAM [66] performs poorly with scribble and click prompts
(Fig. 16), we only evaluate it with bounding box prompts. We fit a bounding box
to the ground truth segmentation and enlarged each dimension by r ∼ U [0, 10]
pixels, to match the amount of jitter used during training for MedSAM. We show
the mean Dice of segmentations predicted by MedSAM from a single bounding
box prompt as a horizontal line (Fig. 14, Fig. 15) because MedSAM cannot
incorporate corrections.

Supervised Baselines. We trained fully-supervised task-specific nnUNets [38]
for 10 of the evaluation datasets. We show the mean Dice of the segmentations
predicted by the ensemble of nnUnets using horizontal lines in the results by
dataset (Fig. 22-27).

Results. Fig. 14 shows Dice vs. steps of interaction for three simulated click-
focused procedures and three simulated scribble-focused procedures. On average,
ScribblePrompt-UNet and ScribblePrompt-SAM have the highest Dice among
interactive methods at all steps for all of the simulated interaction procedures.
For select interaction procedures we also show HD95 vs. steps of interaction
(Fig. 15). ScribblePrompt-UNet and ScribblePrompt-SAM consistently achieve
the lowest HD95.

Results by Dataset. Figs. 22, 23, and 24 show quantitative results by dataset
for the click-focused interaction procedures. Figs. 25, 26, and 27 show quan-
titative results by dataset for scribble-focused interaction procedures. Scrib-
blePrompt reaches (or surpasses) fully-supervised nnUNet performance for 5
unseen datasets within 1-3 centerline scribbles steps, and for 10 unseen datasets
within 6 scribble steps (Fig. 26).

Visualizations. We show predictions for test examples from evaluation datasets
unseen by ScribblePrompt during training. Fig. 17, Fig. 18, and Fig. 19 show
iterative predictions from each method using clicks. ScribblePrompt is able to
segment large ambiguous objects (Fig. 17), as well as thin structures like vascu-
lature (Fig. 18). For large and complex regions of interest such as white matter
in brain MRI (Fig. 19), starting with a few random clicks at once is helpful.

Fig. 20 and Fig. 21 show iterative interactive segmentation with centerline
scribbles and line scribbles. ScribblePrompt is able to accurately segment labels
unseen during training using scribbles.



22 H.E. Wong et al.

Fig. 14: Dice results with simulated scribbles and clicks. We evaluate methods
using three scribble procedures and three click procedures. We measure Dice aver-
aged across twelve evaluation sets (the test splits of the nine validation and three test
datasets), weighting each dataset equally. Shaded regions show 95% CI from bootstrap-
ping.

Fig. 15: HD95 results with simulated scribbles and clicks We report HD95 for
two scribble procedures and two click procedures. We measure HD95 averaged across
twelve evaluation sets (the test splits of the nine validation and three test datasets),
weighting each dataset equally. We exclude examples where the ground truth segmen-
tation label was empty or the predicted segmentation was empty. Shaded regions show
95% CI from bootstrapping.
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Fig. 16: MedSAM with bounding box, click, and scribble inputs. We do not
evaluate MedSAM with click and scribble inputs, which it was not trained for, because
it produces poor segmentations with these inputs. Scribble thickness is enlarged for
visual clarity.



24 H.E. Wong et al.

Fig. 17: Example predictions from center clicks. We show an example of inter-
active segmentation of a malignant tumor in an Ultrasound image from the BUID [4]
dataset. This dataset was unseen by ScribblePrompt models during training. We sim-
ulate an initial click in the center of the label followed by one correction click in the
center of the error at each step.
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Fig. 18: Example predictions from center clicks. We show an example of iterative
interactive segmentation of retinal veins in a fundus photograph from the DRIVE
dataset [89]. This dataset was unseen by ScribblePrompt models during training. The
ScribblePrompt models are able to segment the retinal veins while baselines methods
are not able to segment these thin structures.
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Fig. 19: Example predictions from random clicks and center correction
clicks. We show an example of white matter segmentation in a T1 brain MRI from the
COBRE dataset [3,17,23]. This dataset was completely held-out from ScribblePrompt
training and model selection. We simulate interactions following the warm start click
protocol: we start with three positive and three negative random clicks, followed by
one center correction click per step.
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Fig. 20: Example predictions from centerline scribbles. We simulate iterative
interactive segmentation of the ilium in an X-Ray from the HipXRay dataset [32].
This dataset, label, and type of X-Ray was not seen by ScribblePrompt models during
training. Correction scribbles were simulated separately for each method based on the
error region of the previous prediction. ScribblePrompt models have the highest Dice
predictions after 5 scribble steps. Scribble thickness is enlarged for visual clarity.
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Fig. 21: Example predictions from line scribbles. We simulate iterative interac-
tive segmentation of the left autochthon muscle in a CT from the TotalSegmentator
dataset [92]. This dataset was completely held-out and the label was unseen by Scrib-
blePrompt models during training. This segmentation task is challenging because there
is little contrast between the region of interest and surrounding tissue. ScribblePrompt
models are able to accurately refine their predictions and a achieve Dice ≥ 0.92 after
5 scribble steps. Scribble thickness is enlarged for visual clarity.
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Fig. 22: Results by dataset with center clicks. During the first step, one positive
click is placed at the center of the largest component of the ground truth segmentation.
In subsequent iterations, one (positive or negative) correction click is placed at the
center of the largest component of the error region between the previous prediction
and ground truth segmentation.
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Fig. 23: Results by dataset with random clicks. During the first step, one positive
click is randomly sampled from the ground truth segmentation. In subsequent steps,
one (positive or negative) correction click is randomly sampled from the error region
between the previous prediction and ground truth segmentation.
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Fig. 24: Results by dataset with random warm start click procedure. Dur-
ing the first step, three positive clicks are randomly sampled from the ground truth
segmentation and three negative clicks are randomly sampled from the background. In
subsequent steps, one (positive or negative) correction click is placed at the center of
the largest component of the error region between the previous prediction and ground
truth segmentation.
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Fig. 25: Results by dataset with line scribbles. During the first step we simulate
three positive line scribbles and three negative line scribbles. In subsequent steps, we
simulate one (positive or negative) correction line scribble based on the error region
between the previous prediction and ground truth segmentation. Each line scribble
covers a maximum of 128 pixels.
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Fig. 26: Results by dataset with centerline scribbles. During the first step, we
simulate one positive and one negative centerline scribble. In subsequent steps, we
simulate one (positive or negative) correction centerline scribbles based on the error
region region between the previous prediction and ground truth segmentation. Each
centerline scribble covers a maximum of 128 pixels.
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Fig. 27: Results by dataset with contour scribbles. During the first step, we
simulate one positive and one negative contour scribble based on the ground truth
label. In subsequent steps, we simulate one (positive or negative) correction contour
scribble based on the error region region between the previous prediction and ground
truth segmentation.Each contour scribble covers a maximum of 128 pixels.
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G User Study

We conducted a user study comparing ScribblePrompt-UNet to SAM (ViT-b).
We provide additional details on the user study design and implementation.

Study Design. The goal of the user study was to compare ScribblePrompt
to the best click-focused baseline method in terms of accuracy (Dice of the
final segmentations), efficiency (time to achieve the desired segmentations) and
user experience (perceived effort). Participants were given time to familiarize
themselves with both models on a fixed set of practice images. Afterwards they
used each model to segment a series of nine new test images from nine tasks that
were not seen by the model during training (Fig. 28).

The order in which participants used the models, and which image the users
were assigned to segment with each model for each task was randomized. We
randomly selected one training image per task to include in the set of prac-
tice images. We randomly selected two test images per task and randomized
the assignment of each image to each model for each participants. Each partic-
ipant segmented a total of 18 images during the study. The models were also
annonymized (i.e., “Model A” and “Model B”). We informed participants that
one model was designed to be used with clicks and bounding boxes, while the
other was designed for use with clicks, bounding boxes, and scribbles.

For each segmentation task, the participants were shown the target segmenta-
tion and were asked to interact with the model until the predicted segmentation
closely matched the target or they could no longer improve the prediction. We
provided participants with the target segmentation to disentangle the cognitive
process of identifying the region of interest from prompting the model to achieve
the desired segmentation.

Study Participants. Study participants were neuroimaging researchers at an
academic hospital. Although the participants had prior experience with medical
image segmentation, they did not necessarily have experience with the specific
tasks and types of images used in the study.

We had a total of 29 participants with 16 participants completing all of the
segmentations and the exit survey. We observed a higher attrition rate among
participants who were assigned to use SAM first, even after being able to freely
try out both models during the “practice” phase. Among the 13 participants
assigned to use SAM first, 62% did not finish all of their segmentations, compared
with 31% among the 16 assigned to use ScribblePrompt first. We report results
on the 16 participants who completed all the segmentations and the exit survey.

Implementation. Each participant used a web-based interface powered by a
Nvidia Quatro RTX8000 GPU with 4 CPUs. Participants segmented the images
at 256 × 256 resolution. The interface was developed in Python using the Gra-
dio library [2]. The interface had a “practice” mode in which users could freely
switch between the two models and images from the set of practice images. Af-
ter experimenting with both models, users clicked a button to begin “recorded
activity” mode in which users were led through performing specific segmenta-
tion tasks with specific models. Users provided positive/negative scribble inputs,
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positive/negative click inputs and/or bounding box inputs, and then clicked a
button to receive a prediction from the model.

Survey Results. Common factors that influenced participants preference for
ScribblePrompt was being able to get accurate predictions from scribbles (“[Scrib-
blePrompt] was more spatially smooth”), the model’s responsiveness to a variety
of inputs (“it landed on my desired predictions more easily”), and less perceived
effort when using the model (“[ScribblePrompt] needed much less guidance”).
Participants preferred using clicks and bounding boxes over scribbles with SAM,
praising its “snapiness”, the effectiveness of “exclusion clicks” and remarking it
worked well for “rigid structures”. However, participants also noted in some cases
“[SAM] did not respect object boundaries”, and for tasks such as retinal vein seg-
mentation “[SAM] required lots of clicks and still was not very accurate”.

Visualizations. We visualize some of the interactions used by study participants
and the resulting predictions in Fig. 28. Study participants used denser clicks
when prompting SAM compared to when prompting ScribblePrompt-UNet.
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ScribblePrompt-UNet

Fig. 28: Example segmentations and interactions from the user study. We
show predictions with interactions provided by three study participants for each of
the nine segmentation tasks in the user study. For each example, we visualize positive
scribble and click inputs in green, negative scribble and click inputs in red, bound-
ing box inputs in yellow, and the predicted segmentation in blue. With SAM, study
participants primarily used clicks. With ScribblePrompt, participants used a mix of
scribbles and clicks. For the retinal vein segmentation task, participants preferred to
use clicks with both models. Participants prompted SAM with denser clicks compared
to ScribblePrompt.
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H Inference Runtime

Setup. We measure inference time for a random input with a scribble covering
128 pixels. We report mean and standard deviation of inference time across 1,000
runs on a single CPU and on a Nvidia Quatro RTX8000 GPU.

Results. We show performance results in Tab. 6. On a single CPU,
ScribblePrompt-UNet requires 0.27±0.04 sec per prediction, enabling the model
to be used even in low-resource environments. Prior work on interactive in-
terfaces indicates that < 0.5 sec latency is sufficient for cognitive tasks [59].
ScribblePrompt-UNet is also faster than the baseline methods on a GPU.

Its efficient fully-convolutional architecture gives ScribblePrompt-UNet low
latency inference. With SAM, latency scales with the number of interactions
because each point is encoded as a 256-dimensional vector embedding. For
ScribblePrompt-UNet, clicks and scribbles are encoded in masks, so inference
time (per prediction) is constant with the number of interactions.

Table 6: Performance Summary. We measure inference time separately on a single
CPU and on an Nvidia Quatro RTX8000 GPU for a prediction with a random scribble
input covering 128 pixels. We report mean and standard deviation across 1,000 runs.
ScribblePrompt-SAM and MedSAM use the same architecture as SAM ViT-b. Best
and second best are highlighted.

Architecture Param. CPU Runtime (sec) GPU Runtime (ms) GPU Memory

SAM (ViT-h) 641M 130.79± 7.96 504.36± 57.72 21.912 GB
SAM (ViT-b) 94M 13.59± 0.77 133.85± 24.26 7.144 GB
SAM-Med2D w/ adapter 271M 1.23± 0.07 35.06± 12.88 1.489 GB
SAM-Med2D w.o. adapter 91M 0.63± 0.02 24.86± 9.56 734 MB
MIDeepSeg 3M 0.08± 0.02 65.75± 21.87 11 MB

ScribblePrompt-UNet 4M 0.27± 0.04 1.96± 0.20 125 MB
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I Ablations

We conduct two ablations of important ScribblePrompt design decisions: (1)
synthetic label inputs used during training, and (2) types of prompts simulated
during training. We report results on the validation splits of nine validation
datasets that were unseen during training.

I.1 Synthetic Labels

Setup. We trained ScribblePrompt-UNet and ScribblePrompt-SAM with differ-
ent values of psynth, the probability of sampling a synthetic label.

Results. Training with some synthetic labels improves both ScribblePrompt-
UNet and ScribblePrompt-SAM’s performance on validation data from nine (val-
idation) datasets not seen during training (Fig. 29, 30). For both ScribblePrompt-
UNet and ScribblePrompt-SAM, training with 50% synthetic labels leads to the
highest Dice on unseen datasets at inference time.

Fig. 29: Probability of synthetic labels during training for ScribblePrompt-
UNet. We report change in Dice relative to ScribblePrompt-UNet trained without any
synthetic labels (psynth = 0). We show Dice after five steps of simulated interactions
following six different (inference-time) interaction procedures. Errorbars show 95% CI.

Fig. 30: Probability of synthetic labels during training for ScribblePrompt-
SAM. We report change in Dice relative to ScribblePrompt-SAM trained without any
synthetic labels (psynth = 0). We show Dice after five steps of simulated interactions
following six different (inference-time) interaction procedures. Errorbars show 95% CI.
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I.2 Prompt Types

Setup. We evaluate ScribblePrompt-UNet models trained with different combi-
nations of prompts, compared to the complete ScribblePrompt-UNet:

– ScribblePrompt-UNet (scribbles) trained on boxes and scribbles.
– ScribblePrompt-UNet (clicks) trained on boxes and clicks.
– ScribblePrompt-UNet (random clicks) trained on boxes and random

clicks.

Results. Fig. 31 shows results for six different inference-time interaction pro-
cedures. ScribblePrompt-UNet trained with scribbles, clicks, and bounding boxes
predicts segmentations more accurately than do ablated versions of ScribblePrompt-
UNet.

Fig. 31: Ablation of interactions during training. We report Dice after five steps
of simulated interactions following six inference-time interaction procedures. Error bars
show 95% CI from bootstrapping.
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