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This supplementary is organized as follows:
– In Sec. A, we first introduce our open-vocabulary user interaction appli-

cation, highlighting its significance in enhancing user engagement.
– Next, in Sec. B, we discuss the trade-off of selecting adjustable coefficient w

introduced in Sec. 3 of the main body.
– To address the restoration of real-world images affected by multiple unknown

degradations, we present further results in Sec. C.1.
– To further validate the effectiveness of our proposed approach, we present

additional qualitative results in Sec. C.2, including seven image restoration
tasks: denoising, super-resolution, deblurring, deraining, dehazing, low light
enhancement, and deraindrop.

– In Sec. C.3, we conduct additional ablation studies focusing on the semantic-
agnostic constraint and the structural-correction module, providing deeper
insights into their contributions.

– In Sec. D, we provide full implementation details of our methods and corre-
sponding experiments to for reproducing our results.

– In Sec. E, we conduct a user study specifically targeting the real-world multi-
ple degradation image restoration task. This study aims to provide additional
evidence regarding the perceptual quality and effectiveness of AutoDIR in
comparison to alternative methods.

– In Sec. F, we demonstrate the effectiveness of AutoDIR on real-world unseen
Super-resolution and Denoise datasets.

– In Sec. G, we evaluate SA-BIQA on real-world unseen datasets to illustrate
the robustness of SA-BIQA.

A Open-Vocabulary User Interaction

As shown in Fig. 1, AutoDIR provides a customizable approach to tailor the
result outputs based on user preferences. Users can effectively modify the input
image by providing corresponding open-vocabulary text prompts. The support
of user interaction highlights the flexibility and adaptability of our proposed
approach, allowing for a highly customizable image enhancement experience.

B Trade-off of adjustable coefficient w

The value of w for the weight of the structural correction module introduced in
Sec. 3 of the main body determines the extent to which contextual information
is utilized to recover the final result. Fig. 2 demonstrates that a larger value of
w helps to recover the complex structures e.g. human face, of the original image.
On the opposite, for tasks like super-resolution, a smaller value of w is required
to maintain the generation capability of the latent diffusion model.

C Extensive Experimental Results

This section provides additional visualization and experimental details on datasets
and training settings in the main text’s Sec. 4.
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“This image is so hazy, 
improve it.”

"No, the image is so dark now, 
make it bright please."

“Can you improve the visibility 
of this dim image?” “Help! Very blurry image!”

“I want to remove the dots on 
the image”

"Please make the image higher 
resolution."

User Image Restoration Module

Fig. 1: User specified results. Users can edit the image according to their preference via
open-vocabulary text instructions. The first column: original image I0. The second
column: the edited image I1 after the user’s first instruction given image I0. The third
column: the second edited image I2 after the user’s second instruction given the image
I1.
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w=0 w=1
Input

Fig. 2: Trade-off of the adjustable coefficient w for structural-correction model. The
first row demonstrates that large w can recover the structural details of the original
image. Conversely, the second row shows that a smaller w can maintain the generation
capability of the generative latent diffusion model.

C.1 Results on Images with Multiple Unknown Degradations in
Unseen Real-world Datasets

We present additional visualization results in Fig. 3 and Fig. 4 on images with
multiple unknown degradations on unseen real-world UCD [24], EVUP [6],
LOL-Blur [23] and RainDS [15] datasets, to further demonstrate the performance
of our method in handling such complex scenarios.

C.2 Results on Seven Joint-learned Tasks

We provide more visualization results on the seven image restoration tasks in
Fig. 5, 6, 7, 8, 9 and we also provide the zoom-in visualization results in the
main text in Fig. 10, 11, 12, 13, 14, 15.

C.3 Ablation Studies

Fine-tuning with Semantic-agnostic Constraint for BIQA and Mecha-
nism of AutoDIR In order to further analyze the effectiveness of our semantic-
agnostic constraint, we visualize the attention map of the image encoder in Fig.
16. As depicted in the visualization, before fine-tuning, the attention map pri-
marily focuses on the pronominal object, which is consistent with the behavior of
the original CLIP model [16] that was pre-trained on image classification tasks.

After fine-tuning with semantic-agnostic constraint, we observe that the at-
tention maps expand to highlight background areas that may contain potential
artifacts which shows that the BIQA model has successfully learned to prioritize
and focus on artifacts, leading to more accurate BIQA results.

We further show the t-SNE visualization of image embeddings EI(I) with
seven types of degradations to demonstrate the mechanism of AutoDIR han-
dling images with unknown degradations. For example, the images captured by
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“Need to deblur”“Need to brighten” “Need to dehaze”

“Need to deblur” “Need to dehaze”

SA-BIQA Stop Process

AirNet PromptIR

Image Restoration Module

PromptIRAirNet

Fig. 3: Handling images of multiple unknown artifacts in the unseen real-world

datasets.
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“Need to brighten” “Need to deblur”

“Need to denoise” “Need to deraindrop”

Image Restoration ModuleSA-BIQA

AirNet PromptIR

AirNet

Stop Process

PromptIR

Fig. 4: Handling images of multiple unknown artifacts in the unseen real-world

datasets.
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Fig. 5: Qualitative comparisons on Super-Resolution.



AutoDIR 7

G
T

Su
pe

r-r
es

  N
A

FN
et

In
pu

t

A
irN

et

Pr
om

pt
IR

A
ll-

in
-o

ne
 N

A
FN

et
LD

O
ur

s

Fig. 6: Qualitative comparisons on Super-Resolution.
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Fig. 7: Qualitative comparisons on Super-Resolution with state-of-the-art all-in-one
methods.
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Fig. 8: Qualitative comparisons on derain and deraindrop with state-of-the-art all-in-
one methods.
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Fig. 9: Qualitative comparisons on low light enhancement and dehazing with state-of-
the-art all-in-one methods.
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Fig. 10: Zoomed-in deraining results in the main text.



12 Yitong Jiang?1,2 Zhaoyang Zhang?1 Tianfan Xue1 Jinwei Gu1

G
T

In
pu
t

A
irN

et
N
A
FN

et

Pr
om

pt
IR

LD

O
ur
s

Fig. 11: Zoomed-in dehazing results in the main text.
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Fig. 12: Zoomed-in low light enhancement results in the main text.
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Fig. 13: Zoomed-in deraindrop results in the main text.
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Fig. 14: Zoomed-in denoise results in the main text.
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Fig. 15: Zoomed-in deblur results in the main text.
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Blurry                  

Clean                  

Before finetuning                 

After finetuning                 

Fig. 16: Self-attention maps of SA-BIQA image encoder. Attention maps focus
on (have the highest attention values) the foreground object in BIQA image encoder
without fine-tuning, while attention maps focus on (have the highest attention values)
both foreground and background objects in SA-BIQA image encoder fine-tuned with
SA constraint.

UDC Image UDC Image After Brightening UDC Image After Brightening and Deblurring

Low 
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Fig. 17: t-SNE visualization of image embeddings EI(I) with seven types of degrada-
tions, which illustrates the space of common image degradations. Images captured by
Under-Display Cameras (UDC) [24] suffer from both blur and underexposure. AutoDIR
automatically decides (via SA-BIQA) that the first step is to improve “underexposure”,
and the second step is to remove “blur”, moving the input images towards the region
of clean images.

Under-Display Cameras (UDC) [24] suffer from both blur and underexposure.
AutoDIR automatically decides (via BIQA) the first operator is to improve "un-
derexposure", and the second operator is to remove "blur", moving the input
images towards the region of clean images.
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Importance of Structural-Correction Module (SCM) for latent diffu-
sion The generative Latent Diffusion model [17] has demonstrated a strong
ability to generate unseen features. However, it falls short when preserving the
original structural information of the input image, which is crucial for image
enhancement tasks.

As illustrated in Fig. 18, Structural-Correction Latent-Diffusion has high-
quality results with fine details intact. On the other hand, latent diffusion ex-
hibits significant distortion in faces and text. Moreover, Fig. 19 demonstrates
that the structural-correction module also shows the ability to correct halluci-
nated undesire textures of the results of the latent diffusion.

BIQA performance comparison of ViT and CLIP-variants. As shown
in Tab. 1, we report the F-scores of seven degradation tasks, our SA-CLIP out-
performs ViT Classifier, pre-trained CLIP, and naively finetuned CLIP in all the
seven tasks.

Table 1: F-Score of image degradation detection on seven degradation tasks and clean
image.

Degradation Haze Blur Rain LOL Raindrop Noise Low-Res

ViT-classifier 0.6666 0.7714 0.9603 0.7692 1.0000 0.6934 0.8450

Original CLIP 0.6738 0.7206 0.8889 0.8823 0.7568 0.8049 0.7229

Fine-tuned CLIP 0.6955 0.7744 0.9135 0.9091 0.9464 0.7463 0.9085

SA-CLIP (ours) 1.0000 0.9444 0.9950 1.0000 1.0000 1.0000 0.9985

D Implementation Details

Our experiments are conducted using PyTorch on a computational setup com-
prising eight NVIDIA V100 GPUs. The training process for the AutoDIR frame-
work involves three distinct steps. Firstly, we initialize the training by freezing
the text encoder and fine-tuning the image encoder within the Blind Image
Quality Assessment (BIQA). We utilize the Adam optimizer with a batch size of
1024 and train for 20 epochs. The initial learning rate is set to 3 ⇥10�6 and fol-
lows a cosine annealing rule. Next, we proceed to fine-tune the All-in-One Image
Restoration (AIR) backbone using the Adam optimizer. During this stage, we
employ a learning rate of 1e�4 and a batch size of 256. The fine-tuning process is
performed for 15 epochs. Finally, we freeze the previously trained pipeline com-
ponents and focus on training the structural-correction module (SCM). For this
stage, we employ the Adam optimizer and a cosine annealing rule. The initial
learning rate is set to 1e�3, and the batch size is 256. We train the SCM for 8,000
iterations. In our experiments, the structural-correction module for Structural-
Correction-Latent Diffusion is based on NAFNet architecture [3]. During infer-
ence, the coefficient w of the structural-correction module is set to be 1 as default



AutoDIR 19

for denoising, deraining, dehazing, deraindrop, low light enhancement, and de-
bluring tasks and 0.1 for the super-resolution task to maintain the generation
capability of the generative latent diffusion model.

Datasets: The seven image restoration tasks are denoising, deblurring, super-
resolution, low-light enhancement, dehazing, deraining, and deraindrop. For de-
noising, we use SIDD [1] and a synthetic Gaussian and Poisson noise dataset with
DIV2K [2] and Flickr2K [11]. For super-resolution, we follow previous practice
and train AutoDIR with DIV2K [2] and Flickr2K [11] training sets, following [18]
for degraded image generation. In addition, we use GoPro [12], LOL [20], RE-
SIDE [9], Rain200L [22], and Raindrop [14] for deblurring, low-light enhance-
ment, dehazing, deraining, and deraindrop, respectively. During inference, we
evaluate multiple test sets. These include SIDD [1], Kodak24 [4], DIV2K [2],
GoPro [12], LOL [20], SOTS-Outdoor [9], Rain100 [22], and Raindrop [14], each
corresponding to their respective tasks. For experiments with unknown degra-
dations, we use the Under-Display Camera (TOLED) dataset [24] and the En-
hancing Underwater Visual Perception (EUVP) dataset [6].

E User Study

To further examine the effectiveness of AutoDIR, we conduct a user study on
the images with unknown degradations in unseen real-world datasets or real-
captured images. We compare AutoDIR with state-of-the-art all-in-one AirNet
[10] and PromptIR [13]. As shown in Fig. 20, given the input and the restored
results, the question is to ask which image has the best visual, and the choices
are in random order. We collect 22 forms and there are 22⇥ 28 = 616 responses
in total. Fig. 21 illustrates that AutoDIR gathers more than 96% of the votes
for producing the best denoising results.

F Comparison on unseen real-world Super-res and

Denoise dataset

We conduct experiments on the unseen real-world Super-Res dataset (RealSR
test dataset [8]) without specific fine-tuning. As illustrated in Fig. 22, AutoDIR
successfully reconstructs details such as eyebrows and beards, which other meth-
ods struggle to achieve. Additionally, we have included the quantitative results
in Tab. 2.

As shown in Fig 23 and Tab. 3, we have also presented quantitative and
qualitative results on the unseen real-world denoise dataset (PolyU-Denoise [21]),
demonstrating the benefits of the AutoDIR approach.

G Evaluation of SA-BIQA on unseen real-world datasets.

We have conducted experiments on unseen real-world datasets, including Super-
Res (RealSR [8]), Deblur (RealBlur [7]), and low-light enhancement (HuaWei [5]).
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Fig. 18: Qualitative comparisons for latent diffusion model and LC-latent diffusion
(ours) on dehazing and deraindrop tasks.

Input Latent Diffusion SC-Latent 
Diffusion (Ours) GT

Fig. 19: Qualitative comparisons for latent diffusion model and LC-latent diffusion
(ours) on denoising tasks.
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Fig. 20: Screenshot of the user interface in the user study.
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Fig. 21: Results of the user study on 28 real-world images with unknown artifacts on
unseen datasets or real-captured images. We collected 22 forms and 28 ⇥ 22 = 616
responses in total. Among them, AutoDIR receives more than 96% of the votes as the
best results.

Input GTOursESRGAN Real-ESRGAN

Fig. 22: Comparision on RealSR dataset with task-specific methods ESRGAN [19] and
Real-ESRGAN [18].

The Tab. 4 demonstrates that SA-BIQA outperforms other methods by accu-
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Input GTOursAirNet PromptIR

Fig. 23: Comparision on PolyU-Denoise dataset with all-in-one methods.

Table 2: Quantitative comparison on RealSR

Method
Real-World Super Resolution

MUSIQ " CLIP-IQA " NIQE # NIMA "

NAFNet-SR 40.53 0.251 7.222 4.247
AirNet 21.73 0.239 11.839 3.773

PromptIR 24.85 0.248 8.526 4.082
ESRGAN 30.10 0.231 7.819 3.942

Real-ESRGAN+ 60.11 0.462 5.130 4.660
Ours 60.14 0.493 5.204 4.717

Table 3: Quantitative comparison on PolyU-Denoise

Method
Real-world Denoise

SSIM" PSNR" LPIPS#

NAFNet 0.924 34.16 0.130
AirNet 0.783 26.26 0.293

PromptIR 0.933 34.43 0.176
LD 0.910 32.85 0.196

Ours 0.942 36.18 0.129

rately predicting the dominant artifact in all tasks, achieving an accuracy of over
90%

Table 4: Quantitative comparison of SA-BIQA on real-world tasks.

Method low-res blur low-light

ViT-classifier 0.9100 0.0357 0.7666
Original CLIP 0.8500 0.6704 0.2333

Fine-tuned CLIP 0.9200 0.4795 0.7000
SA-CLIP (ours) 1.0000 0.9010 0.9333



AutoDIR 23

References

1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smart-
phone cameras. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

2. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-
resolution: Dataset and study. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops (2017)

3. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. In:
Proceedings of European Conferences on Computer Vision (ECCV) (2022)

4. Franzen, R.: Lossless true color image suite. http://r0k.us/graphics/kodak/ (1999)
5. Hai, J., Xuan, Z., Yang, R., Hao, Y., Zou, F., Lin, F., Han, S.: R2rnet: Low-

light image enhancement via real-low to real-normal network. Journal of Visual
Communication and Image Representation (2023)

6. Islam, M.J., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved
visual perception. IEEE Robotics and Automation Letters (RA-L) (2020)

7. Jaesung Rim, Haeyun Lee, J.W.S.C.: Real-world blur dataset for learning and
benchmarking deblurring algorithms. In: Proceedings of European Conferences on
Computer Vision (ECCV) (2020)

8. Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution
via kernel estimation and noise injection. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)

9. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking
single-image dehazing and beyond. IEEE Transactions on Image Processing (TIP)
(2018)

10. Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-In-One image restoration for
unknown corruption. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2022)

11. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks
for single image super-resolution. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops (2017)

12. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network
for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017)

13. Potlapalli, V., Zamir, S.W., Khan, S., Khan, F.S.: Promptir: Prompting for all-
in-one blind image restoration. In: Proceedings of Advances in Neural Information
Processing Systems (NeurIPS) (2023)

14. Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial
network for raindrop removal from a single image. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

15. Quan, R., Yu, X., Liang, Y., Yang, Y.: Removing raindrops and rain streaks in
one go. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2021)

16. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: Proceedings of International Conference on
Machine Learning (ICML) (2021)

17. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2022)



24 Yitong Jiang?1,2 Zhaoyang Zhang?1 Tianfan Xue1 Jinwei Gu1

18. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-ESRGAN: Training real-world blind
super-resolution with pure synthetic data. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV) (2021)

19. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.: Es-
rgan: Enhanced super-resolution generative adversarial networks. In: Proceedings
of European Conferences on Computer Vision (ECCV) Workshops (2018)

20. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light
enhancement. Proceedings of The British Machine Vision Conference (BMVC)
(2018)

21. Xu, J., Li, H., Liang, Z., Zhang, D., Zhang, L.: Real-world noisy image denoising:
A new benchmark. arXiv preprint arXiv:1804.02603 (2018)

22. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detec-
tion and removal from a single image. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017)

23. Zhou, S., Li, C., Change Loy, C.: Lednet: Joint low-light enhancement and deblur-
ring in the dark. In: Proceedings of European Conferences on Computer Vision
(ECCV) (2022)

24. Zhou, Y., Ren, D., Emerton, N., Lim, S., Large, T.: Image restoration for under-
display camera. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2021)


	AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion

