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Abstract. Large-scale web-crawled datasets are fundamental for the
success of pre-training vision-language models, such as CLIP. However,
the inherent noise and potential irrelevance of web-crawled AltTexts pose
challenges in achieving precise image-text alignment. Existing methods
utilizing large language models (LLMs) for caption rewriting have shown
promise on small, curated datasets like CC3M and CC12M. This study
introduces a scalable pipeline for noisy caption rewriting. Unlike recent
LLM rewriting techniques, we emphasize the incorporation of visual
concepts into captions, termed as Visual-enriched Captions (VeCap).
To ensure data diversity, we propose a novel mixed training scheme that
optimizes the utilization of AltTexts alongside newly generated VeCap.
We showcase the adaptation of this method for training CLIP on large-
scale web-crawled datasets, termed VeCLIP. Employing this cost-effective
pipeline, we effortlessly scale our dataset up to 300 million samples named
VeCap dataset. Our results show significant advantages in image-text
alignment and overall model performance. For example, VeCLIP achieves
up to +25.2% gain in COCO and Flickr30k retrieval tasks under the
12M setting. For data efficiency, VeCLIP achieves +3% gain while only
using 14% of the data employed in the vanilla CLIP and 11% in ALIGN.
We also note the VeCap data is complementary with other well curated
datasets good for zero-shot classification tasks. When combining VeCap
and DFN, our model can achieve strong performance on both of image-
text retrieval and zero-shot classification tasks, e.g., 83.1% accuracy@1
on ImageNet zero-shot for a H/14 model. We release our codes and model
weights at https://github.com/apple/ml-veclip.

1 Introduction

Large-scale vision-language representation learning, exemplified by CLIP [33], has
gained wide attention due to the transferability of knowledge learned from image-
text pairs to diverse downstream tasks such as zero-shot image classification
⋆ Equal contribution.
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Fig. 1: Noisy web-crawled data and the limitation of LLM rewrite. AltTexts
can be noisy and uninformative; it may not describe all visual objects present in the
image. Simple LLM rewrite [13] on such raw and noisy captions cannot introduce
new image-relevant information. After applying our proposed VeCap, new captions are
enriched with more image-specific concepts. We keep all image-text pairs for pre-training
rather than filtering out those with noisy AltTexts, as images of rich visual objects still
contribute effectively to the training process.

and image-text retrieval [18, 20, 21]. CLIP training is straightforward via the
image-text contrastive loss, but involves a large-scale dataset of 400 million
image-text pairs crawled from the Web. Consequently, CLIP embeddings lead
to consistent improvement across various downstream tasks compared to other
vision pre-training methods such as SimCLR [7] and MAE [16]. CLIP achieves
success via two scalable paradigms: data and computational resources. First, the
massive web-crawled data [36, 37] enable the training to be scalable and meet
the requirements of data-hungry backbones (e.g., ViT [12]). Second, the simple
contrastive loss grants favorable scaling properties to the computational resources.

Despite the availability of large-scale web-crawled data, their quality can be
low or noisy. For example, AltTexts suffer from two major issues: 1) they can be
noisy, uninformative, or irrelevant to the images; 2) they may not describe all
visual contents in the image. For example, as shown in Figure 1, in the first image,
we observe a house with a white roof and a porch. However, the corresponding
caption only describes the address, which proves overly abstract for effective
vision-language alignment in training. Our observations demonstrate that caption
quality plays a pivotal role in CLIP’s performance, as detailed in Table 6b and
the Appendix (e.g., CC3M vs. our web-crawled 3M). It is worth noting that
the captions in CC3M are derived from human annotations, which may require
heavy resources when further scaling up. This motivates the main open research
question addressed in this work: Can we devise a scalable and cost-effective
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pipeline to improve captions within these noisy datasets at scale (e.g., up to
million or billion level)?

One natural direction is to deploy Large Language Models (LLMs) to rephrase
captions [13]. However, the major limitation of such methods lies in the inability
of LLMs to generate and introduce new image-specific details. LLMs can only
modify sentence syntax in this scenario. For example, we follow a recent work [13]
and use LLM to rewrite the raw captions from the Web: as shown in Fig. 1,
LLM rewrite cannot introduce any new information and thus the new caption
remains similar to AltText. In other words, if the original AltTexts are noisy,
the benefits brought by LLM rewrite might yield only trivial improvements. In
essence, the reliance on high-quality captions within pre-training datasets limits
the effectiveness of simple LLM rewrite. However, sourcing such high-quality
datasets like manually curated CC3M and CC12M [5] remains challenging, and
further scaling up to larger datasets becomes both time-consuming and labor-
intensive to meet the prerequisites for CLIP pre-training. Therefore, in this work,
we focus on building a scalable and cost-effective pipeline tailored to raw and
noisy web-crawled data to improve CLIP.

In addition to data quality, the diversity of data significantly impacts VLM
pre-training [2, 28]. Methods relying on LLM-based rewriting may diminish data
variety, given that LLMs tend to apply a uniform style in their sentence rephrasing.
Moreover, existing works mainly focus on image augmentations, while texts are
disregarded and unaltered during training without augmentation [13]. This may
also incur overfitting issues as the text encoders repeatedly encounter the same
texts in each epoch. Since these techniques have exclusively undergone assessment
on meticulously curated datasets like CC3M and CC12M [5], their suitability for
extensive, uncensored web-crawled data remains uncertain. Consequently, there
is a pressing need to build a scalable approach to enhance data quality, diversity,
and training methodologies to improve pre-training for VLMs on both model
performance and data efficiency.

Concurrently, alongside the evolution of CLIP, there has been substantial
progress in the development of instruction fine-tuned LLMs. These models
and their multimodal extensions have demonstrated outstanding performance,
surpassing human capabilities in various natural language and vision tasks.
Inspired by these models, we investigate the potential of utilizing them to
improve the noisy captions gathered from the Internet. Specifically, we initially
employ LLaVA [25], a Language-Vision Assistant, to leverage visual concepts
extracted from the images. Given that AltTexts may lack informativeness, our
objective is to integrate the newly derived visual concepts into the caption.
However, it is worth noting that LLaVA [25] fine-tuned its language decoder
on its own generated dataset, potentially losing its ability to accommodate
comprehensive instructions. Consequently, we further propose to utilize an LLM
to refine the sentence by fusing the generated caption from LLaVA and the
original AltText. This process aims to maximize image-specific information for
optimal vision-language alignment. We denote the caption generated from LLM
as LLM Visual-enriched Captions (VeCap), or VeCap for short. For data variety,
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we propose VeCLIP and introduce a mixed training scheme, alternating between
VeCap and the original AltText. This strategy ensures that the model captures
all pertinent information without oversight. We generalize this scalable pipeline
to curate five pre-training datasets ranging from small-scale to large-scale up to
300M. Overall, our contributions are summarized below:

– We present a visual-enriched re-captioning technique for CLIP training. This
marks the initial endeavor to leverage visual concepts extracted from images
and inject them into the captioning process.

– Our pipeline is cost-effective and capable of processing data at a scale exceeding
300M, named VeCap. Then, we propose VeCLIP with a mixed training scheme
that uses VeCap to improve CLIP training on model performance.

– VeCLIP can achieve up to 25.2% improvement over CLIP in retrival tasks.
For training data efficiency, e.g., we use only 5% data in training but achieve
competitive results in image-text retrieval tasks.

– VeCap data is also complementary with other well curated datasets. A CLIP-
H/14 model trained on the combination of VeCap and DFN achieves strong
performance on both of image-text retrieval and zero-shot classification tasks,
with an impressive 83.1% zero-shot accuracy@1 on ImageNet.

2 Related Work

Contrastive language-image pre-training. CLIP [33] has shown its effective-
ness in acquiring transferable image representations via text supervision after
large-scale pre-training. Similar models such as ALIGN [18], Florence [45], BA-
SIC [31] and OpenCLIP [9] have shown impressive zero-shot image classification
and image-text retrieval capabilities. SLIP [27] and DeCLIP [22] incorporate
self-supervised training techniques to improve performance. CoCa [44] introduces
an additional decoder alongside the contrastive loss. LiT [48] proposes to keep
a pre-trained image encoder frozen and fine-tune text encoders to improve the
zero-shot transferability. Nevertheless, the majority of these subsequent studies
incorporate supplementary training inputs and losses, potentially exerting adverse
effects on both training efficiency and memory usage.

Improving image-text datasets. Given the importance of the pre-training
data, many works focus on improving the datasets, such as filtering less infor-
mative image-text pairs [1, 4, 13, 26]. However, these methods may disregard a
large amount of data even though some images have rich visual concepts. An
alternative approach is to rewrite the caption to enhance the alignment between
texts and images. For example, LaCLIP [13] employs LLMs to perform rewriting.
Nevertheless, their evaluation was conducted on small-scale and meticulously cu-
rated datasets like CC3M and CC12M [5], where the initial captions were already
of high quality. ShareGPT4V [6] uses GPT4-Vision for obtaining high-quality
captions, which may not be scalable considering the cost of GPT4-Vision.
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Fig. 2: An overview of the scalable VeCap recaptioning piepline. First, we
focus on exploiting visual concepts in images via leveraging a multimodal LLM (LLaVA)
to describe the image with a designed prompt independent of AltText to generate
Visual-enriched Captions (VeC). Second, we leverage an LLM to fuse the concepts from
both AltText and VeC to generate the final caption, denoted as VeCap.

3 Methodology

3.1 Preliminary

CLIP. The Contrastive Language-Image Pre-training (CLIP) method has shown
its effectiveness in training vision models via language supervision. Specifically,
a batch of N image-text pairs {xI , xT } is sampled from the massive training
data during each training iteration. We apply data augmentations to the images
before inputting them into the vision encoder. We denote fI and fT as the
normalized features extracted by the vision and text encoders, respectively. We
use the contrastive loss to train the model, where the paired images and texts
are treated as positive pairs and the remaining as negative samples. The training
loss iterating over images can be formulated as follows:

LI = −
N∑
i=1

log
exp

(
sim(fI(aug(xi

I)), fT (x
i
T ))/τ

)∑N
k=1 exp

(
sim(fI(aug(xi

I)), fT (x
k
T ))/τ

) , (1)

where (xi
I , x

i
T ) is the ith image-text pair in the batch, and aug(·) refers to image

augmentations. sim(·, ·) is the similarity measurement function. We set τ as a
learnable temperature parameter that scales the logits in experiments. The loss
iterating over texts is symmetrical and denoted as LT . Finally, the training loss
is L = (LI + LT )/2.

3.2 Recaptioning with Visual Concept Exploitation

Web-crawled captions (AltTexts) can be noisy and uninformative to the images.
LaCLIP [13] used LLM to rewrite the caption. As shown in Fig. 1, this may not
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be applicable if the captions are noisy as LLM can only reconstruct the sentence
but cannot introduce new information without any information provided by the
image. Given the inherent noise in AltTexts, we advocate for the utilization of
pre-trained multimodal models to generate augmented captions with richer visual
concepts derived from the images. In this subsection, we use LLaVA [25] as one
example and present a scalable and cost-effective pipeline for scaling up.

LLaVA and image captioning for Visual-enriched Captions (VeCap).
As a multimodal model, LLaVA connects the open-set visual encoder of CLIP [33]
with an LLM, such as LLaMA [39], then fine-tune them on a visual instruction-
tuning dataset. LLaVA shows its effectiveness in leveraging the capabilities of
pre-trained LLM and vision foundation models. Given an input image xI , we
get fI from CLIP’s vision encoder. Then, LLaVA applies a trainable projection
matrix W to convert fI into language embedding tokens to achieve the image-
language alignment. To mitigate the influence of AltText, we have devised
AltText-independent prompts tailored for LLaVA, ensuring the full exploitation
of visual concepts. We refrain from incorporating AltText information into LLaVA,
while acknowledging the potential loss of pre-trained knowledge during fine-tuning
of the LLM component on the generated dataset. This trade-off, however, may
limit its capacity to comprehend more intricate instructions. Thus, we adopt
a straightforward yet potent prompt, “Describe the image concisely, less than
20 words”, allowing LLaVA to generate visual concepts directly from the image
autonomously. We denote this captions generated by LLaVA as xTv. Subsequently,
the image-text pair is converted as (xI , xTv).

3.3 Scalable LLM Rewrite for Concept Fusion

Given the limited language capacity of LLaVA, we only use LLaVA to extract all
possible visual clues. Then, we employ LLMs to refine the caption by fusing both
the knowledge from AltText xT and the novel visual concepts from xTv. This step
has three main advantages: 1) It ensures the retention of information delineated
in AltText, thereby amplifying the informativeness of the caption; 2) It can serve
as a form of “strong augmentation” in textual data, characterized by a profound
restructuring of sentence syntax instead of focusing on word-level modifications
used in existing language augmentation techniques [38,41]; 3) It can mitigate the
“hallucination” issue arising from large vision-language models (e.g., LLaVA) to
ensure that the entity described in the ultimate caption is present in the image.

Generating rewrites for a vast corpus of texts using closed-source models like
ChatGPT or Bard is impractical, considering the substantial financial costs and
time incurred through API utilization. Therefore, to facilitate the rewriting tasks
on a large-scale dataset, we turn to open-source state-of-the-art LLMs. Due to
the license issue, we select Vicuna-1.1 [49], renowned for its robust performance
in text completion tasks, as one example of LLM rewriting in this study. We
formulate a context input as the following three components. First, we include
a sentence designed to apprise the LLM of the task, specifically, rewriting and
fusing two attached sentences. This serves as an initial contextual cue to orient
the LLM towards comprehending the overarching objective. Second, we impose
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several constraints on the ultimate output. For instance, our goal is to position
attributes prior to noun entities, all while refraining from introducing any novel
semantic interpretations. Furthermore, it is essential that the sentence refrains
from commencing with the phrase “The image” and instead directly expounds
upon all-encompassed concepts. Finally, the last part of the context includes
two sentences (xv and xTv) that require fusing and rewriting, followed by the
separation symbol. This ensures that the LLM is furnished with the specific
texts to be fused and rewritten as part of its context input. By integrating these
three components, we establish an all-encompassing context that steers the LLM
towards proficiently crafting diverse and knowledge-fused text rewrites.

We conduct this process in a batch-inference process instead of a single-item
inference as shown in Fig 2: we group our data into batches and implement
a batch-inference process to achieve up to 64 times faster on Nvidia A100.
Specifically, we use Vicuna-1.1-13B model to generate the final output as xTl.
The final prompt is as follows: [Rephrase the following two sentences into one
short sentence while adhering to the provided instructions: Place attributes before
noun entities without introducing new meaning. Do not start with “The image”.
+ 1. AltText; 2. model generated caption.] We denote the caption from LLM as
LLM-VeCap, or VeCap for short.

Potential ethics of LLM and failure cases processing. While upscaling
the LLM rewriting process, we identify two scenarios in which LLM encounters
difficulties in executing the designated task: 1) Ethical Concerns. If the AltText
contains content either illegal or violent, LLM may reply, “I am sorry that I
cannot...”; 2) Length Constraint. In cases where the AltText exceeds an optimal
length, the processing time of the LLM may be significantly prolonged, thus
impeding large-scale rewriting. To address the first scenario, we use the model
generation captions as the only input to be rewritten via LLM to form VeCap,
thereby preemptively excluding potentially unlawful or aggressive content. In the
second scenario, we mitigate this issue by preserving the generated catpion but
truncating the AltText to conform to the maximum allowable length, thus we
have more visual concepts aligned with the image.

3.4 VeCLIP: Mixed Training Scheme with Visual-enriched Captions
for CLIP

As LLM rewriting may introduce a consistent style, there could be a decline in
data diversity for large-scale pre-training, even if data quality is enhanced. To
enhance data diversity, we propose a mixed training scheme to serve as additional
text augmentations applied in pre-training: mix(xt) ∼ Uniform([xT , xTl]). Then,
the training loss iterating over the images becomes:

LI = −
N∑
i=1

log
exp

(
sim(fI(aug(xi

I)), fT (mix(xi
t)))/τ

)∑N
k=1 exp

(
sim(fI(aug(xi

I)), fT (mix(xk
t )))/τ

) (2)

The only difference with the original CLIP training is that we alternate the
AltTexts with our rephrased sentences, with all other components remaining
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unaltered. This modification does not incur additional computational complexity
or parameter overheads compared to the standard CLIP training process. Through
the strategic alternation of AltTexts and our captions, we improve both the quality
and diversity of the pre-training dataset without filtering any data points. This
approach empowers the model to glean insights from both AltText and VeCap.
This simple yet effective strategy elevates the training regimen for CLIP, offering
a scalable framework for optimizing other vision-language pre-training efforts
utilizing extensive web-crawled data.

4 Experiments

4.1 Pre-training Datasets and Downstream Tasks

Pre-training datasets and training setup. We conduct pre-training experi-
ments on four scales of our datasets (named VeCap) to show the efficiency and
scalability of our method. Specifically, we set 3M as small scale, 12M as medium
scale, and 100M+ as large scale. We use ViT-B/16 [12] as the vision encoder of
CLIP training. Our batch size is 8,192 for small/medium scales (3M/12M), and
32,768 for large scales (100M+). For efficiency purposes, we employ JAX [3] and
train models on 64 TPUs for the 3M/12M settings, whereas we utilize 512 TPUs
for the 100M/200M pre-training configurations. More details can be found in the
Appendix A. Although our main focus is to propose a deployable pipeline for
scaling up noisy caption data, we also evaluate CC3M [5] to show its general-
izability and effectiveness on well-curated datasets in our ablation studies and
Appendix C.2. We evaluate all pre-trained models on the following three tasks.

Zero-shot image classification. We evaluate all the models on Ima-
geNet [11], ImageNetV2 [34], and VTAB [47]. We select 9 tasks (6 from natural
sets and 3 from specialized sets) that are suitable for zero-shot classification tasks
such as Flowers102 [29] and Caltech-101 [15] as zero-shot classification tasks. We
list the details in the Appendix.

Zero-shot image-text retrieval. We evaluate the pre-trained models on
COCO [24] and Flickr30k [32] cross-modal retrieval tasks: Image-to-Text (denoted
as I2T) and Text-to-Image (T2I) retrieval. For Flickr30k, we evaluate them on
the standard 1K test set. We report the results in terms of Recall@k as R@1,
R@5, and R@10.

Zero-shot image-to-image retrieval. We select GPR1200 [35] for image-
to-image retrieval. GPR1200 [35] serves as a general-purpose benchmark for
content-based image retrieval, encompassing subsets drawn from six different
domains. It includes 1200 categories (10 images per category). Following [35], we
do not split images as query and index sets for evaluation. Instead, we perform
retrieval of the nearest neighbor for each image and utilize the remaining images
as the index set. We report the mean Average Precision (mAP).

4.2 Results on Retrieval Tasks

I2T and T2I retrieval. We summarize the main results in Table 1. We show
consistent improvements across Recall@k metrics in both COCO and Flickr30k
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Table 1: Results (Recall@k) on zero-shot image-to-text and text-to-image retrieval
tasks on COCO and Flickr30k. 1.4B-CLIP denotes the in-house CLIP pre-trained on
1.4B web-crawled image-text pairs. We use ViT-B/16 as the vision encoder of CLIP. (*)
Denote FLIP uses ViT-L/14.

Data Model
COCO Flickr30k

Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

1.8B ALIGN [18] 58.60 83.00 89.70 45.60 69.80 78.60 88.60 98.70 99.70 75.70 93.80 96.80
400M FLIP* [23] 60.20 82.60 89.90 44.20 69.20 78.40 89.10 98.50 99.60 75.40 92.50 95.90

400M OpenAI CLIP 53.76 77.92 85.53 33.09 58.42 68.90 88.00 98.70 99.40 68.70 90.60 95.20
1.4B In-house CLIP 61.38 82.80 89.78 44.48 69.19 78.28 87.60 97.90 98.80 71.70 91.30 95.24

3M CLIP 5.46 15.34 22.42 3.28 10.44 15.96 12.20 27.80 37.50 6.36 19.16 27.58
VeCLIP 22.30 45.00 56.16 13.01 31.61 42.42 40.60 67.30 76.70 27.58 52.44 63.20

Performance Gain +16.84 +29.66 +33.74 +9.73 +21.17 +26.46 +28.40 +39.50 +39.20 +21.22 +33.28 +35.62

12M CLIP 24.52 48.28 59.82 14.28 34.52 46.29 44.70 71.80 80.40 29.06 58.62 70.00
VeCLIP 47.78 72.54 81.56 31.62 57.19 68.47 73.90 92.30 95.90 55.68 80.78 87.64

Performance Gain +23.26 +24.26 +21.74 +17.34 +22.67 +22.18 +29.20 +20.50 +15.50 +26.62 +22.16 +17.64

100M CLIP 47.24 72.34 81.56 30.61 56.49 67.91 74.40 93.20 96.70 57.16 88.12 88.98
VeCLIP 64.82 85.56 91.98 46.12 71.19 80.23 89.30 97.70 99.20 73.10 89.12 93.14

Performance Gain +17.58 +13.22 +10.42 +15.51 +14.70 +12.32 +14.90 +4.50 +2.50 +15.94 +1.00 +4.16

200M CLIP 52.20 76.22 85.04 34.97 60.42 71.08 80.90 94.90 97.60 63.26 86.58 92.26
VeCLIP 67.20 87.28 92.70 48.40 73.26 81.79 91.10 98.50 99.70 76.32 93.50 96.40

Performance Gain +15.00 +11.06 +7.66 +13.43 +12.84 +10.71 +10.20 +3.60 +2.10 +13.06 +6.92 +4.14

300M CLIP 54.24 78.14 86.48 36.98 62.32 72.70 81.30 95.80 97.80 65.80 88.28 93.16
VeCLIP 67.80 87.94 92.84 48.91 73.54 82.11 91.20 99.10 99.80 76.30 93.00 96.44

Performance Gain +13.56 +9.80 +6.36 +11.93 +11.22 +9.41 +9.90 +3.30 +2.00 +10.50 +4.72 +3.28

datasets for both I2T and T2I retrieval tasks. Specifically, for small and medium
scales (3M/12M), we attain an improvement of +16.84%/+23.26% in Recall@1
for COCO image-to-text retrieval, respectively. Notably, the strides made in
Flickr30k are particularly noteworthy, with a remarkable +28.40%/+29.20%
improvement in Recall@1. Subsequently, we scale our approach to 100M and
200M, where we observe sustained and substantial improvements. Notably, we
achieve a noteworthy +17.58%/+15.00% enhancement in COCO image-to-text
retrieval performance using 100M and 200M, respectively. Furthermore, we
observe a diminishing improvement margin as we scale up the dataset. Initially,
we achieve a substantial 28.40% improvement in image-to-text retrieval for
Flickr30k with the 3M dataset, which subsequently decreases to 10.20% when
employing the 200M dataset. These findings show the advantages of our proposed
pipeline for enhancing CLIP pre-training. By demonstrating its scalability from
3M to 300M, we provide compelling evidence of its applicability in real-world
scenarios, particularly for training CLIP from scratch using WIT datasets.

Image-to-image retrieval. We use GPR1200 [35] with 6 domains for this
setting: Google Landmarks V2 (natural and architectural landmarks) denoted
as Land, IMDB Faces denoted as Faces, iNat (plants, animals, insects and
fungi), INSTRE (planar images and photographs of logos/toys) denoted as INST,
ImageNet Sketch denoted as Sketch, and SOP (products and objects, partly
isolated). The results (mAP) are summarized in Table 2. We attain a performance
gain of 5.22%/3.92% under small/medium scales (3M/12M). Even upon upscaling
the dataset to 200M, we observe a notable 1.84% increase in average score across
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Table 2: Image-to-image retrieval results
(mAP) on 6-domain GPR1200 [35].

Data Model Domain Name
Land Faces iNat INST Sketch SOP All

3M CLIP 57.98 20.76 17.61 31.14 18.23 74.29 36.67
VeCLIP 66.55 23.51 20.43 38.63 24.59 77.65 41.89

12M CLIP 74.47 30.65 23.60 52.15 30.68 84.25 49.30
VeCLIP 79.30 31.72 25.53 56.65 41.42 84.69 53.22

100M CLIP 85.64 51.68 29.66 68.19 42.45 90.38 61.33
VeCLIP 85.59 42.83 30.72 71.96 52.59 90.54 62.37

200M CLIP 86.96 56.54 30.95 71.51 46.03 90.95 63.83
VeCLIP 86.40 48.48 31.72 73.74 56.52 91.16 65.67

Table 3: Zero-shot classification results
(Top-k Accuracy) on ImageNet and Ima-
geNetV2 [34].

Data Model ImageNet ImageNetV2
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

3M CLIP 5.46 21.05 28.70 7.09 18.52 25.83
VeCLIP 15.98 34.11 43.23 13.51 30.03 38.93

12M CLIP 31.60 58.80 69.49 27.03 52.68 63.37
VeCLIP 38.11 66.74 76.36 32.53 60.16 70.50

100M CLIP 58.64 85.82 91.79 50.96 79.77 86.91
VeCLIP 60.77 87.77 93.16 54.17 82.51 89.24

200M CLIP 63.72 89.26 94.11 56.84 83.50 89.79
VeCLIP 64.62 90.27 94.90 57.67 85.24 91.62

Table 4: Zero-shot classification accuracy. Top-1 accuracies (% ) of VTAB [47] across 9
tasks (6 from natural and 3 from specialized sets) are reported. Full table is in Appendix
Table A6.

Data Model Natural Sets Specialized Sets AverageCaltech101 CIFAR100 SVHN DTD OxPet Flowers102 EuroSAT RESISC45 Camelyon

3M CLIP 39.50 9.83 20.89 7.42 7.44 10.40 11.94 7.93 50.65 18.45
VeCLIP 54.30 17.74 18.74 11.23 10.09 22.75 7.35 16.54 52.52 23.48

12M CLIP 70.43 30.06 30.11 30.69 34.51 33.67 8.87 30.05 53.46 35.76
VeCLIP 70.58 45.10 23.61 30.90 36.22 43.94 27.46 38.09 55.54 41.27

100M CLIP 81.44 54.75 38.70 57.28 70.51 51.71 34.45 48.56 53.87 54.59
VeCLIP 81.64 64.62 46.49 57.51 64.81 66.41 46.23 51.75 58.51 59.78

200M CLIP 82.30 61.87 42.83 64.29 75.60 58.67 46.73 55.59 59.30 60.79
VeCLIP 83.14 68.14 44.93 61.95 72.61 68.51 47.36 55.10 62.59 62.70

six domains. Notably, our primary performance boost is derived from the Sketch
domain, underlining the crucial role of visual concepts in zero-shot transferability.
Consequently, our visually-enriched captions play a pivotal role in learning such
transferability towards downstream tasks.

Data efficiency for pre-training. To show the data efficiency of VeCLIP,
we include ALIGN [18], pre-trained on 1.8B data (denoted as 1.8B-ALIGN), and
our in-house CLIP [33] model trained on 1.4B data (denoted as 1.4B-CLIP) as
baselines trained at a significantly larger scale. We use these models utilizing
over tenfold more data compared to our setting to show the data efficiency of
VeCLIP training. VeCLIP can outperform 1.4B-CLIP model when scaling up to
100M, representing approximately 7% of its size, across nearly all downstream
tasks. Specifically, in COCO, we achieve +3.44%/+1.64% gain in Recall@1 for
both retrieval tasks. Upon further scaling to 200M, the improvement becomes
even more pronounced, reaching +5.82%/+3.92%. Furthermore, we achieve a
notable +8.60%/+2.80% gain in COCO retrieval, as well as a +2.50%/+0.62%
improvement in Flickr30k, when compared to the 1.8B-ALIGN model. Remark-
ably, these improvements are achieved with only 11.1% of the data utilized in
the pre-training process. These results show the data efficacy of VeCLIP. When
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we scale it to 300M, the results are similar to 200M. The results on 300M can be
found in Appendix. Therefore, we stop further scaling up the dataset.

4.3 Results on Image Classification

ImageNet. We use the same prompt as CLIP (“A photo of a [classname].”) for
zero-shot evaluation on both ImageNet [11] and ImageNetV2 [34]. The main
results are summarized in Table 3. We report Top-1, Top-5, and Top-10 accuracies.
In small and medium-scale settings, we observe a substantial improvement:
+10.52%/+6.42% gains in Top-1 accuracy on ImageNet/ImageNetV2 under
the 3M setting, and +6.51%/5.50% gains under the 12M setting. While the
improvement becomes marginal upon scaling to 100M/200M, we still achieve
noteworthy +2.07%/+3.21% and +0.90%/+0.83% gains on 100M and 200M
across ImageNet and ImageNetV2, respectively. This shows the data efficiency of
our pre-training approach.

Visual Task Adaptation Benchmark (VTAB). Besides ImageNet and
ImageNetV2, we also select VTAB [47] for evaluation. Table 4 summarizes zero-
shot image classification results for both the original CLIP models and our models,
utilizing the identical prompt set from CLIP. Every class label is expanded using
a collection of prompt templates, as defined by CLIP, including examples like “A
photo of a [classname].” The class embedding is then computed by taking the
average of the embeddings of all such templates, followed by L2-normalization.
Our approach consistently achieves comparable or superior performance to CLIP
across the majority of datasets. For instance, we observe an average accuracy gain
of over 5% under settings of 3M, 12M, and 100M. Even upon scaling up to 200M,
we maintain a notable gain of +1.91%. These results show great robustness on
zero-shot classification tasks across different data distributions.

Performance trend across scales. Besides the performance gain, we also
visualize the performance trend across data scales in pre-training. As shown in
Figure A1 in Appendix, the performance of CLIP utilizing original AltTexts
exhibits a marked surge with the increased data size: while its starting point is
poor at 3M, it demonstrates swift progression up to 12M and 100M. However,
once scaled beyond 100 million, the performance trend exhibits a gradual and
eventually saturated growth. On the other hand, commencing with a higher
baseline, VeCLIP employing VeCap demonstrates substantial improvement in
comparison to CLIP within small to medium scales (3M and 12M). As we progress
beyond 300M, the performance gains of VeCLIP become relatively incremental
but still noticeable in retrieval tasks. Both CLIP and VeCLIP reach a saturation
point when scaled up to 100M: once over 100M, the performance gain becomes
less impressive as a relatively small but high-quality dataset may reach the upper
bound of the learning ability constrained by the model’s architecture.

4.4 Complementary to other datasets to achieve SOTA performance

Our VeCap datasets with visual-enriched captions can also be complementary to
other well-curated dataset. For example, DFN [14] has shown benefits on CLIP.
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Table 5: CLIP training with VeCap and DFN [14], and its comparison with the
state-of-the-art models.

Model Resolution Data COCO (R@1) Flickr30k (R@1) ImageNet
I2T T2I I2T T2I

B/16 224 DFN [14] 63.0 43.2 87.1 70.4 76.2
VeCap+DFN 66.3 45.1 88.8 73.6 76.2
Comparison to other state-of-the-art models
DFN [14] 68.5 48.5 89.2 75.1 81.4

L/14 224 FLIP [23] 60.2 44.2 89.1 75.4 74.6
VeCap+DFN 70.8 49.5 92.4 78.4 81.1

224 MetaCLIP [43] 67.2 49.5 92.1 78.5 80.5
H/14 378 DFN [14] 71.8 55.6 94.0 82.1 84.4

336 VeCap+DFN 72.8 52.3 93.6 82.6 83.1

To demonstrate that, we train CLIP models with VeCap and DFN separately
and also a combination with them. All the models are trained under same
configuration for learning rate, maximum steps, and so on. We summarize the
results in Table 5. The high-quality descriptive captions from VeCap can achieve
superior results compared to DFN in retrieval tasks. However, the performance
on classification tasks are inferior. After we combine DFN and VeCap for training,
CLIP can achieve the most improvements for all model sizes.

We also train a H/14 model with resolution 336x336, and compare it with
the state-of-the-art models like MetaCLIP [43] and DFN [14]. The results are
summarized in row 6 to 8 of table 5. Albeit trained on different resolutions and
recipes, the CLIP model with VeCap+DFN is compatible with other models and
provide yet another option for downstream tasks 3. Our VeCLIP with DFN [14]
can outperform FLIP [23] and OpenAI CLIP with different backbones (as shown
in Table A9 in Appendix). Specifically, our ViT-H/14 model achieves impressive
83.1% of accuracy on ImageNet. We leave the further study of combing the
synthetic data (VeCap) with other data curation approaches as a future work.

4.5 Ablation Study

Importance of visual-enriched concepts. Different from previous rewriting
methods, our primary emphasis lies in fusing visual-enriched concepts extracted
from images. The ablation findings are summarized in Table 6a. We use 3M/12M
as examples to show the performance gain in small/medium scales. AltTexts
shows their limitation in retrieval tasks due to its noise and limited image-
specific information. VeC generated from LLaVA can boost the performance
on retrieval tasks but may hurt the performance on ImageNet zero-shot task.
Introducing VeCap can further improve in all settings. Intriguingly, the zero-
shot ImageNet results still lag behind the original AltText. In summary, our
3 Note we took the DFN-H/14 model from its original paper, which is trained 7 epochs,

our model is only trained roughly around 2 epochs.
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Data Caption Prompt
Constraint

COCO (R@1) Flickr30k (R@1) ImageNet ImageNetV2I2T T2I I2T T2I

WIT-3M

AltText - 5.18 3.40 10.50 6.88 8.02 6.88
VeC - 16.76 9.57 32.60 20.06 7.31 6.58

VeCap ✗ 17.34 9.52 37.30 21.62 8.12 6.83
VeCap ✓ 18.10 9.51 40.00 21.94 8.20 7.39

WIT-12M

AltText - 22.58 14.23 44.40 30.90 31.14 25.91
VeC - 40.06 24.59 64.10 43.46 7.29 14.74

VeCap ✗ 44.52 27.46 70.90 50.46 21.05 18.11
VeCap ✓ 46.82 26.61 72.60 50.94 20.99 18.41

(a) Importance of visual-enriched concepts for data quality. We use the AltText
with “Highest CLIP Score” (HCS) if multiple AltTexts exist on the same image
in all settings.

Data AltText VeCap Training
Sampling

COCO (R@1) Flickr30k (R@1) ImageNet ImageNetV2I2T T2I I2T T2I

WIT-3M

✓ ✗ HCS 5.18 3.40 10.50 6.88 8.02 6.88
✓ ✗ random 5.46 3.28 12.20 6.36 8.26 7.09
✗ ✓ HCS 18.10 9.51 40.00 21.94 8.20 7.39
✓ ✓ HCS&mixed 19.70 12.14 39.30 25.60 14.83 12.36
✓ ✓ random&mixed 22.30 13.01 40.60 27.58 15.98 13.51

WIT-12M

✓ ✗ HCS 22.58 14.23 44.40 30.90 31.14 25.91
✓ ✗ random 23.32 14.28 44.70 29.06 31.60 27.03
✗ ✓ HCS 46.82 26.61 72.60 50.94 20.99 18.41
✓ ✓ HCS&mixed 46.00 31.10 72.50 56.82 37.45 32.41
✓ ✓ random&mixed 47.78 31.62 73.90 55.68 38.11 32.51

CC3M ✓ ✗ - 13.88 9.64 26.30 18.04 14.59 12.52
✓ ✓ random&mixed 32.04 22.07 57.20 36.54 20.73 17.90

(b) Importance of the mixed training scheme for data variety. “HCS” refers to using
the AltText with “Highest CLIP Score” while “random” refers to randomly selecting
one if multiple AltTexts exist.

Table 6: Ablation study of VeCLIP. The highest score is bold, and the second is
underlined. “mixed” is our proposed mixed training scheme to alternate among captions.

VeCap exerts a profound influence on retrieval prowess yet exerts a negative
effect on classification tasks. There are two possible reasons: 1) there can be
a distributional shift in prompts from pre-training to zero-shot inference in
ImageNet, particularly noteworthy given the extended length and augmented
visual content of VeCap; 2) the data diversity is hurt by LLM rewriting as LLM
uses the same writing/paraphrasing style to fuse VeCap and AltText.

Importance of mixed training strategies. To mitigate the aforementioned
issues, we propose a mixed training scheme to alternate between AltTexts and
VeCap to provide more data variety during pre-training. We summarize the
ablation results of VeCLIP in Table 6b. First, we observe a slight performance
improvement by randomly selecting one AltText in cases where multiple AltTexts
are associated with an image. This practice augments data diversity during
pre-training. Second, interchanging between AltText and VeCap proves to be
advantageous, not only in retaining substantial performance gains in retrieval tasks
but also in markedly elevating zero-shot results on ImageNet. Lastly, leveraging
all AltTexts and VeCap within the mixed training approach in VeCLIP achieves
superior results across nearly all settings.
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Larger backbone architecture. We also investigate a larger backbone
architecture, e.g., ViT-L/14 and ViT-H/14. The detailed results can be found
in both Table 5 and Appendix C.1. VeCLIP scaled up in backbone size can
consistently outperform the original CLIP in all downstream tasks. Besides, a
larger backbone (ViT-L/14) can also achieve up to 5.87% improvement compared
to ViT-B/16. These findings support the effectiveness of VeCLIP in improving
CLIP pre-training, regardless of the specific underlying backbone architecture.

Generalizability of VeCap on well-curated datasets. Besides our WIT
datasets, we evaluate VeCap on well-curated CC3M/CC12M. Table 6b shows
CLIP achieves better performance when pre-trained on CC3M compared to
pre-trained on WIT-3M, indicating the importance of high-quality captions for
pre-training. With VeCap to further improve the quality of CC3M’s captions,
CLIP can achieve significant improvement, since the captions of CC3M are of
higher quality than our noisy WIT dataset. CC3M with its original captions can
outperform the performance of our WIT-3M with AltTexts, indicating CC3M is
of higher quality. VeCap can significantly improve CLIP under CC3M settings,
e.g., +18.16% on the I2T task of COCO and +6.14% on ImageNet, showing its
generalizability on well-curated datasets. More results are in Appendix C.2.

5 Discussion

Conclusion. We present a simple yet effective approach to improve CLIP pre-
training with leveraging LLaVA and LLMs to rewrite the captions with more
visual-enriched concepts. Then, we propose a mixed training scheme to improve
data diversity. VeCLIP is intentionally designed to be scalable and adaptable
for handling extensive image-text datasets obtained from web crawling. We
conduct a thorough evaluation of VeCLIP on a diverse range of raw and noisy
datasets, spanning small, medium, and large scales. The results reveal a substantial
performance boost, providing compelling evidence for the effectiveness of our
strategy in enhancing large-scale VLM pre-training. VeCLIP can significantly
reduce the computational cost and the size of training data for large models to
reach competitive results as vanilla CLIP.

Future work. We employ CLIP as an illustrative instance to highlight the
importance of aligning text and images within the training dataset. For future
work, we plan to use the collected large-scale dataset to improve the pre-training
of other types of VLMs. Further, LLM can generate outputs that encompass
factual inaccuracies and hallucinations. Thus, we also plan to delve into more
sophisticated filtering techniques to remove such descriptions.

Limitation. We only leverage LLaVA to exploit the visual concepts. However,
the quality measurement metric for such generative AI is still under study. Also,
the generated captions may potentially inherent bias from the foundation models
we use (LLaVA and Vicuna).
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