
Raising the Ceiling: Conflict-Free Local Feature
Matching with Dynamic View Switching

Supplementary Material

The supplementary material is summarized as follows: Section A presents
additional qualitative and quantitative experiments. Section B offers additional
details and insights into the design of networks.
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Fig. S1: Image matching on HPatches [1]. MMA curves are plotted by changing
the reprojection error threshold.

A Additional Experiments

A.1 Image Matching

Dataset. Following the evaluation protocol introduced in D2-Net [3], we eval-
uate the performance of our method over 108 HPatches [1] sequences, which
include 52 instances with illumination variations and 56 instances with view-
point changes.
Metric. We compute the reprojection error of each match from the homogra-
phies provided by the HPatches dataset. The matching threshold is varied from
1 to 10 to visualize the mean matching accuracy (MMA), which is the average
percentage of correct matches for each image.
Results. As shown in Fig. S1, our method RCM achieves the best accuracy
at thresholds less than or equal to 6, and the RCMLite outperforms the dense
method LoFTR at all thresholds. Dense and semi-sparse methods demonstrate
significantly superior accuracy at lower matching thresholds. This advantage
stems from their ability to produce precise matches at the sub-pixel level within
the target image, independent of the imprecision of the keypoints. Compared to
the dense method LoFTR, the semi-sparse matching paradigm with many-to-one
matching and switcher can further improve the matching accuracy as it yields
more precise matching points in the source image through detection.
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Fig. S2: Coarse grids (red points) and fine matching windows (gray win-
dows) in the target image.

A.2 More Qualitative Results

Qualitative Ablation on Coarse Ground-Truth Matches. In Fig. S3 and
Fig. S4, we illustrate how many-to-one matching and the switcher benefit both
dense and semi-sparse matching paradigms by resolving matching conflicts in
the target image and increasing matchable points in the source image. The sub-
stantial increase in ground-truth matches enhances the theoretical upper bound
on the actual matching results produced by the matcher.
Qualitative Ablation on Actual Matching Results. Additional compar-
isons between one-to-one and many-to-one matching strategies are presented in
Fig. S5. The many-to-one matching strategy substantially increases the number
of matches and enhances accuracy by resolving conflicts in the coarse matching
phase.

In Fig. S5, further ablation comparisons for the switcher are provided. These
comparisons consistently demonstrate that the switcher significantly increases
the number of matches, consequently enhancing the performance of downstream
tasks such as pose estimation.

Qualitative Comparisons of Sparse, Dense and Semi-Sparse Meth-
ods. In Fig. S6, we present additional qualitative comparisons of three matching
paradigms in both outdoor and indoor scenes. In outdoor scenes, the superiority
of our approach over sparse [5] and dense [7] methods in terms of accuracy and
match quantity is evident from the first row. This advantage stems from the
semi-sparse paradigm, which extracts precise keypoints from the source image
and conducts a global search within the target image. The last two rows highlight
that our proposed switcher, responsible for switching larger scale images to the
source image, significantly enhances the number of matches. This improvement
is attributed to our improved ability to detect more matchable keypoints within
the overlapping region.

In indoor scenes, the proposed semi-sparse matching method, RCM, consis-
tently produces superior results. In contrast to the sparse method, RCM achieves
a significantly higher number of matches by mitigating reliance on keypoint re-
peatability, leading to improved pose estimation performance. Compared to the
dense method, RCM excels in detecting keypoints at more discriminative posi-
tions, resulting in significantly higher matching precision.
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Additional indoor and outdoor qualitative comparisons are presented in Fig. S7
and Fig. S8, where matched points are color-coded for clarity.
Matching Visualizations in More Datasets. Additional matching results of
RCM on two distinct datasets, namely the Aachen Day-Night v1.1 dataset [8]
and the HPatches dataset [1], are presented in Fig. S9 and Fig. S10.
Visualizations of the Dustbin and Attention Weights. Fig. S11(a) illus-
trates the role of the dustbin, designed to discard non-matchable points in non-
overlapping regions, enabling RCM to effectively handle occlusions and view-
point changes. Additionally, visualizations of self-attention weights and cross-
attention weights are provided in Fig. S11(b) and (c), respectively.
Failure Cases. We present the failure cases of RCM in Fig. S12. These instances
occur in outdoor scenes with severe scale changes and misclassification of the
switcher. Failures also occur in indoor scenes featuring extensive texture-less
areas and substantial viewpoint changes, where the detector struggles to produce
discriminating keypoints.
3D Reconstruction Results. The HLoc pipeline [4] is employed for 3D recon-
struction based on the matching results of RCM, followed by dense reconstruc-
tion using COLMAP [6]. The sparse and dense models of three landmarks are
illustrated in Fig. S13.

B More Details

U-Net Feature Extraction. The encoder of the U-Net network inherits the Su-
perPoint [2] encoder, producing feature maps at resolutions of 1/2, 1/4, and 1/8.
In RCM, we design a similar VGG-like structure for the decoder, progressively
integrating information from the encoder to generate fine features at 1/2 resolu-
tion. RCMLite takes an additional step by incorporating 1/16 resolution encoding
and decoding layers, accounting for its increased parameter count compared to
RCM. RCM combines 1/2, 1/4, and 1/8 resolution decoder features linearly to
form coarse features, while RCMLite includes 1/2, 1/4, 1/8, and 1/16 resolution
decoder features to generate coarse features. The feature dimensions of the 1/2,
1/4, 1/8, and 1/16 resolution maps are 64, 128, 256, and 256, respectively.
Detection. In outdoor scenes, we detect keypoints with NMS radius of 4 pixels
and keypoint threshold of 0.005, which are the default settings of SuperPoint [2].
In indoor scenes, we adjust the parameters to an NMS radius of 1 pixel and a
keypoint threshold of 0.001 to enhance keypoint detection in low-texture areas.
Coarse Feature Resolution and Fine Matching Window. As illustrated
in Fig. S2, RCM and RCMLite utilize coarse feature maps at resolutions of 1/8
and 1/16, respectively. Consequently, each coarse feature corresponds to an 8×8
pixel patch for RCM and a 16× 16 pixel patch for RCMLite. To ensure complete
coverage of the coarse feature patch by the fine matching window, window sizes
of 10× 10 and 18× 18 pixels are designed for RCM and RCMLite, respectively.
Given that the fine feature map is at 1/2 image resolution, the fine matching
window sizes of RCM and RCMLite are w = 5 and w = 9, as discussed in the
main text.
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Switcher. Initially, both sets of features undergo down-sampling to (H,W ) =
(20, 20) using adaptive average pooling to optimize subsequent computations.
The correlation map C ∈ R20×20×20×20 is then computed by the inner product,
capturing the similarity of individual patches between the two images. The cor-
relation map is reshaped into Ĉ ∈ R20×20×400 and processed by a lightweight
CNN, which extracts features through two Conv-BN-ReLu-MaxPool layers. We
subsequently reduce the spatial dimension to 1 with adaptive average pooling
and the channel dimension to 2 with linear layer. Softmax is applied to compute
the switching confidence V S, triggering feature switching when V S > 1/2.
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Fig. S3: Qualitative comparison of coarse ground-truth matches between
ono-to-one and many-to-one matching. Many-to-one matching (green box) re-
solves the problem of matching conflicts in the target image, resulting in a greater
number of ground-truth matches compared to one-to-one matching (red box). Note
that we only show the ground-truth for the coarse matching stage.
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Fig. S4: Qualitative comparison of coarse ground-truth matches with and
without switcher. The switcher resolves the problem of a shortage of matchable
points (red box) in the source image, acquiring a significantly greater number of match-
able points (green box) through the strategic switching of the two images.
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Fig. S5: Qualitatively results of many-to-one matching and switcher.
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SuperGlue LoFTR RCM

Fig. S6: Qualitative comparison in outdoor scenes. The semi-sparse matching
method RCM consistently generates superior matches in both qualitative and quanti-
tative aspects.
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Fig. S7: More qualitative comparisons in indoor scenes. The matched features
are visualized as the same color.
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Fig. S8: More qualitative comparisons in outdoor scenes. The matched features
are visualized as the same color.



10 X. Lu et al.

Fig. S9: Qualitative results of RCM in Aachen Day-Night dataset [8].
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Fig. S10: Qualitative results of RCM in HPatches dataset [1].



RCM: Conflict-Free Local Feature Matching with Dynamic View Switching 11

(a) Dustbin (b) Self-Attention weight (c) Cross-Attention weight

Fig. S11: Visualizations of the dustbin and attention weights.

Fig. S12: Failure cases.
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Fig. S13: 3D reconstruction results based on RCM.
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