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Supplementary Material

A Experimental Settings

In this section, we present more experimental details about datasets in Ap-
pendix A.1, implementation details in Appendix A.2, and baselines in Appendix A.3.
We also detail the inference cost of PoseCrafter in Appendix A.4 and discuss its
potential negative impact in Appendix A.5.

A.1 Datasets

In order to fully, reasonably, and comprehensively evaluate methods, we collect
10 high-quality videos in the open domain from YouTube, encompassing a variety
of scenes such as interviews, movie clips, and talk shows. The collected videos
were already publicly available online. We emphasize that our intention is purely
academic and no offensive edits or alterations have been made to the original
content. Additionally, we extend our sincere acknowledgments and respect to the
original video producers.

For each video on TED, we take 8 frames uniformly from the first 36 frames
for training. For inference, we extract pose information of the consecutive 100
frames, beginning with the 46-th frame, thereby setting N = 8 and M = 100.
For each video on TikTok and our collected dataset, due to the need to vary
the number of training frames, we designate the final 100 frames as test frames
(i.e. M = 100) and uniformly select N frames from their preceding frames as
training frames.

⋆ Equal contribution.
⋆⋆ Correspondence to Chongxuan Li.
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A.2 Implementation Details

We initialize Pose ControlNet3 and VAE4 using their provided public check-
points, without any additional fine-tuning on other data. The guidance scale of
free-classifier guidance is set to 1 and increased to 3 for attribution editing. It
is important to note that a larger guidance scale results in the generated video
being more aligned with the target prompt, but potentially less faithful to the
training video. We use the default control scale of ControlNet, which is set at 1.
Additionally, we adopt the 50 DDIM sampling steps for inference.

We set the source prompt ps and target prompt pt as “a person is speaking”
for TED videos and “a person is dancing” for TikTok videos. For other datasets,
we use the default prompt “a person”. For attribute editing, we append relevant
text to the source prompt. For example, to modify the hair color of the generated
character to red, we use the prompt “a person, red hair” corresponding to its
source prompt “a person”.

We use the fixed learning rate of 0.003 and a fixed minimal batch size of 8 for
all experiments. We set the max training step as 100 for 8 training frames and
2000 for 100 training frames. For the number of training frames N other than 8
or 100, we calculate the max training step using the following formula:

round(
2000− 100

100− 8
N + 100− 2000− 100

100− 8
8) = round(

475

23
N − 1500

23
), (1)

where round(·) denotes the function that rounds a value to the nearest integer.
It is worth noting that the aforementioned hyperparameters may not rep-

resent the optimal settings, but we empirically find that they can yield good
results as defaults.

A.3 Baselines

We use only the commercial application GEN-2 for qualitative comparison,
adopting its default parameters in all experiments. We utilize the prompt “a
person is speaking” on TED and “a person is dancing” on TikTok.

We find that the default learning rate 1e-3 of Disco for human-specific fine-
tuning tends to lead to overfitting, thus we adjust it to 1e-4 which yields better
results. On TED, we use the default guidance scale of 3 for Disco but 1.5 for
fine-tuned Disco to achieve better outcomes. On TikTok, we employ an optimal
scale of 1.5, reported in [5], for both Disco and fine-tuned Disco.

Regarding the selection of the reference image for image-to-video methods,
we employ every frame from 8 training frames as a reference image for inference
on TED, and report average quantitative results. On TikTok, since the training
frames vary but share the same first frame, we designate this first frame as the
reference image. Moreover, applying image-to-video methods across all training
frames incurs substantial budgetary and time expenses, notably when N = 32.
3 https://huggingface.co/lllyasviel/ControlNet-v1-1
4 https://huggingface.co/stabilityai/sd-vae-ft-mse

https://huggingface.co/lllyasviel/ControlNet-v1-1
https://huggingface.co/stabilityai/sd-vae-ft-mse
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A.4 Inference Cost

PoseCrafter, with 1.48 billion parameters and around 1.747 × 1014 FLOPs in
total, takes 2.75 GPU minutes to generate 100 frames, utilizing 19.28 GB of
memory on a single RTX 3090. In our experiments, using a single RTX 3090
with 24 GB of memory, we successfully generate videos up to a maximum length
of 180 frames with good quality. PoseCrafter can generate longer videos with
GPUs of larger memory, memory reduction techniques, and long-range video
generation strategies.

A.5 Potential Negative Impact

A major concern in human video generation is the risk of creating hyper-realistic
videos that may impersonate real individuals. This technology allows for the pro-
duction of avatars that closely resemble real people, often without their consent.
Such convincing “DeepFakes” spark fears of identity theft, fraud, reputational
harm, and regulatory challenges.

B Additional Results

In this section, we present more related baselines in Appendix B.1, more quali-
tative results in Appendix B.2, more quantitative results in Appendix B.3, and
failure cases of PoseCrafter in Appendix B.4.

B.1 More Baselines

Tab. 1 and Tab. 2 introduce additional image-to-video baselines, which are
marked in gray, for TikTok and TED, respectively. TPS [9] and MRAA [4] repre-
sents the state-of-the-art GAN-based methods and rely on ground truth videos.
Consequently, [6] develops an alternative version that requires only DensePose
sequences. Moreover, [6] establishes a related baseline, PA+CtrlN-V, integrat-
ing existing state-of-the-art image and video generation models. This includes
the image-to-image method IP-Adapter [7], which maintains the identity of the
reference image, Pose ControlNet [8], controlling the pose in generated videos,
and the text-to-video model AnimateDiff [2], ensuring temporal consistency in
results. We also report the original quantitative results of Disco and MagicAni-
mate.

It should be noted that these additional baselines cannot be directly com-
pared with our method due to different settings in image resolution, the number
of test frames, and evaluation codes. The original Disco trains and evaluates
on 256-pixel resolution images, whereas we focus on a higher resolution of 512
pixels. Furthermore, while these image-to-video baselines evaluate using the full
frames of test videos excluding reference images on TikTok and TED, we limit
our testing to 100 frames for each video, as we require preceding frames for
training. Regarding evaluation, MagicAnimate does not provide its implementa-
tion codes, and the Disco implementation contains errors5, especially for PSNR.
5 https://github.com/Wangt-CN/DisCo/issues/86

https://github.com/Wangt-CN/DisCo/issues/86
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Table 1: Quantitative results on TikTok test dataset. NFs represent the number of
available frames for the corresponding method. Image-GT signifies that these image-
level metrics are calculated between each generated image and its corresponding ground
truth image. † represents we fine-tune corresponding methods using their tailored
strategies for specific subjects. ⋆ indicates the results are directly cited from the [6]. ‡
represents that the results are cited directly from the [5] where it additionally collects
250 internal TikTok-style videos for training.

Method NFs
Image-GT Image Video

SSIM ↑ PSNR ↑ LPIPS ↓ MSE-P ↓ FID ↓ CLIP-I ↑ FVD ↓ CLIP-T ↑

TPS⋆ [9] 1 0.560 28.17 0.449 140.37 800.77
MRAA⋆ [4] 1 0.646 28.39 0.337 85.49 468.66
IPA [7]+CtrlN [8]-V⋆ 1 0.479 28.00 0.461 66.81 666.27
Disco‡ [5] 1 0.674 29.15 0.285 28.31 267.75
MagicAnimate⋆ [6] 1 0.714 29.16 0.239 32.09 179.07

DisCo [5] 1 0.704 15.16 0.358 9.11E-3 76.40 0.827 689.23 0.908
MagicAnimate [6] 1 0.756 17.95 0.265 5.48E-3 57.60 0.846 374.40 0.918

Disco† [5] 8 0.683 15.33 0.371 8.86E-3 65.73 0.813 807.35 0.886
ControlVideo [10] 8 0.738 16.93 0.311 6.78E-3 56.50 0.827 489.30 0.912
PoseCrafter (ours) 8 0.765 17.36 0.275 5.76E-3 48.09 0.840 440.49 0.921

PoseCrafter (ours) 16 0.776 17.87 0.252 5.23E-3 42.09 0.864 397.19 0.919
PoseCrafter (ours) 32 0.786 18.56 0.233 4.05E-3 39.65 0.854 362.09 0.922

Consequently, we have standardized these elements to ensure a fair comparison
in the main text and detail them in the appendix.

B.2 More Qualitative Results

Fig. 1 and Fig. 2 show more qualitative results with the same individual poses
and with poses from different individuals, respectively. Although using pose se-
quences with diverse motions from various humans, PoseCrafter can still main-
tain the human identity. In summary, PoseCrafter is capable of producing high-
quality videos while allowing for flexible pose control.

B.3 More Quantitative Results

We also conduct quantitative experiments on open-domain videos. As shown in
Tab. 3, consistent with conclusions on TED and TikTok, PoseCrafter excels in
all quantitative metrics than all baselines on our collected open-domain dataset,
demonstrating its effectiveness and robustness.

B.4 Failure Cases

PoseCrafter encounters several limitations in generating videos. Constrained by
the capabilities of ControlNet [8] and the latent diffusion model [3], PoseCrafter
produces mismatched poses (Fig. 3a) and low-quality results for complex poses
(Fig. 3b). A significant discrepancy between training poses and inference poses
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Table 2: Quantitative results on TED test dataset. NFs represent the number of avail-
able frames for the corresponding method. Image-GT signifies that these image-level
metrics are calculated between each generated image and its corresponding ground
truth image. † represents we fine-tune corresponding methods using their tailored
strategies for specific subjects. ⋆ indicates the results are directly cited from the [6].

Method NFs
Image-GT Image Video

SSIM ↑ PSNR ↑ LPIPS ↓ MSE-P ↓ FID ↓ CLIP-I ↑ FVD ↓ CLIP-T ↑

TPS⋆ [9] 1 86.65 457.02
MRAA⋆ [4] 1 35.75 182.78
IPA [7]+CtrlN [8]-V⋆ 1 49.21 281.42
Disco⋆ [5] 1 27.51 195.00
MagicAnimate⋆ [6] 1 22.78 131.51

DisCo [5] 1 0.550 17.22 0.327 3.20E-3 51.57 0.794 309.62 0.909
MagicAnimate [6] 1 0.498 13.32 0.338 1.97E-3 46.96 0.801 194.03 0.912

Disco† [5] 8 0.551 17.98 0.373 3.93E-3 60.56 0.827 244.62 0.909
ControlVideo [10] 8 0.771 22.32 0.196 1.62E-3 29.01 0.866 109.36 0.940
PoseCrafter (ours) 8 0.810 23.92 0.142 1.56E-3 20.40 0.906 80.01 0.954

causes PoseCrafter to yield low-faithfulness videos (Fig. 3c), especially regarding
body proportion variation. Moreover, when the training video lacks motion di-
versity, PoseCrafter is prone to overfitting and struggles with learning temporal
consistency.

C Ablation

In this section, we present a quantitative ablation study for the key designs of
PoseCrafter in Appendix C.1, explore the impact of training frame quantity in
Appendix C.2, and examine the role of sample timestep choice in latent editing
in Appendix C.3.

C.1 Key Designs of Inference Framework

We quantitatively investigate the significance of reference frame selection, in-
tegration, and latent editing, as demonstrated in Tab. 4. Specifically, reference
frame selection improves all metrics compared to ControlVideo, particularly in
reconstitution and quality measures, highlighting the importance of selecting an
appropriate frame from the training video to DDIM inversion. Furthermore, the
integration of the reference frame further enhances all metrics, confirming that
putting the pose of the reference frame as the inference pose encourages similar-
ity across it and generated frames, thereby improving video quality. In addition
to enhancing the quality of hands and faces, as indicated by SSIM and PSNR,
latent editing also improves temporal consistency, i.e. better CLIP-T scores.
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Fig. 1: Inference from poses of the same individual (N = 100 and M = 100). Time
progresses from left to right.

We analyze that the features6 of generated images corresponding to edited
latent diverge more from real images’ features than those corresponding to
unedited latent, resulting in a decrease in FID and FVD scores. However, re-
construction metrics, which consider the distance between each generated frame
and its corresponding ground truth, are more representative of quality than FID
and FVD, which merely calculate the overall distance between all images and
generated images. Hence, latent editing positively impacts video quality.

It is important to note that our strategy of selecting a reference frame from
the training video whose pose coordinates are closest to inference poses may
not be optimal. Therefore, exploring more effective methods for constructing a
pseudo reference video is a significant area for further research.

C.2 Training on More Frames

We explore the impact of varying the training video length N on generated
videos. For this purpose, we present Video-SIM to evaluate the resemblance

6 FID and FVD use the 2D Inception and 3D Inception to extract image features,
respectively.
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Fig. 2: Inference poses of other individuals (N = 100 and M = 100). Time progresses
from left to right.

between a training video X and a test video X′, which is defined as:

M∑
l=1

min
1≤i≤N

||pl − pi||22, (2)

where pl is a pose of a certain frame in X′, {pi}Ni=1 is a pose sequence of X, and
the test video length M is 100 in our experiments. Essentially, Video-SIM sums
up the shortest distances between each pose in X′ and the nearest pose in X.

Fig. 4 depicts curves of PSNR and Video-SIM where the number of training
frames ranges from 8 to 180 uniformly selected from our collected open-domain
videos. With the increase in training frames, better Video-SIM enhances the
similarity of generated videos to the ground truth, as reflected in higher PSNR.
However, in the later phases, despite significant gains in the number of training
frames, PSNR has only slight fluctuations limited by marginal improvements in
Video-SIM. This suggests that gathering videos encompassing a wider range of
motions pertinent to target scenes can enhance the performance of PoseCrafter.
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Table 3: Quantitative results on our collected open-domain dataset. NFs represent
the number of available frames for the corresponding method. † represents we fine-tune
corresponding methods using their tailored strategies for specific subjects. ‡ indicates
corresponding methods directly use ground-truth frames of target poses as input
conditions.

Method NFs SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓

PIDM [1] 1 0.358 9.36 0.690 1921.43

MRAA‡ [4] 1 0.654 15.26 0.423 1101.64
TPS‡ [9] 1 0.691 17.22 0.317 723.00

DisCo [5] 1 0.589 13.55 0.434 965.47
MagicAnimate [6] 1 0.621 14.84 0.317 518.23

Disco† [5] 8 0.638 15.51 0.310 583.38
ControlVideo [10] 8 0.774 20.40 0.174 279.90
PoseCrafter (ours) 8 0.808 21.70 0.143 255.61

Table 4: Ablation study for key designs of the inference framework on TED. We
progressively incorporate our key designs into ControlVideo and highlight both the
best results and those extremely close to them in bold.

Method NFs
Image-GT Image Video

SSIM ↑ PSNR ↑ LPIPS ↓ MSE-P ↓ FID ↓ CLIP-I ↑ FVD ↓ CLIP-T ↑

ControlVideo [10] 8 0.771 22.32 0.196 1.62E-3 29.01 0.866 109.36 0.940
+ Reference-Frame Selection 8 0.799 23.35 0.158 1.59E-3 22.03 0.892 74.51 0.942
+ Reference-Frame Insertion 8 0.802 23.78 0.141 1.57E-3 18.46 0.908 66.91 0.949
+ Latent Editing 8 0.810 23.92 0.142 1.56E-3 20.40 0.906 80.01 0.954

C.3 Implementation Time of Latent Editing

We introduce a parameter α to determine the specific sampling time at which the
latent editing operation will be executed, and we analyze the effect of α on gen-
erated videos in terms of CLIP-I (faithfulness), CLIP-T (temporal consistency),
and SSIM (quality). As depicted in Fig. 5, with an increase in α, the faithfulness
of generated videos first slightly rises and then decreases after α = 20. Simul-
taneously, temporal consistency and overall video quality consistently decrease
for α values ranging from 1 to 50. Therefore, we set α = 1 as our default value,
indicating that we edit the initial latent ZT before the DDIM sampling process.
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Derived Poses Generated Video Derived Poses Generated Video Generated VideoDerived PersonTraining Frames
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Fig. 3: Failure cases include (a) misalignment of the digital human’s eyes with the
derived poses (i.e., closed eyes), (b) poor rendering of the right hand, and (c) changes
in the facial structure of the target subject.

(a) PSNR (b) Video-SIM

Fig. 4: The curves of PSNR and Video-SIM.

Fig. 5: The curves of CLIP-T, CLIP-I, and SSIM.
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