
Physical-Based Event Camera Simulator

Haiqian Han1 , Jiacheng Lyu1, Jianing Li1 (�) , Henglu Wei1 , Cheng Li2,
Yajing Wei2, Shu Chen2, and Xiangyang Ji1 (�)

1 Tsinghua University, Haidian District, Beijing, 100084, P. R. China
2 Beijing Xiaomi Mobile Software Co., Ltd.

A Summary of Event Camera Simulators

As shown in Table 1, we make a literature review of the existing event cam-
era simulators. These simulators can be broadly classified into two categories
(i.e., optimized-based and learning-based). Compared to learning-based meth-
ods, optimized-based methods have the advantage of generating 3D sparse events
instead of 2D image-based representations. This approach brings them closer to
the raw events generated directly from the event camera from the perspective of
signal processing. Obviously, very few event camera emulators explore to interact
with the input directly with the 3D scene, and most of them input three-channel
video, without taking into account the rich spectral information of the real-world
scenarios. In addition, none of these simulators take into account the impact of
the camera lens when using videos as input. For physical-based camera simula-
tion, we designed a realistic lens simulation block using the PBRT renderer.

Table 1: A literature review of classical event camera simulators. NL: Non-learning
simulators, namely optimized-based simulators. L: Learning-based simulators.

Method Input Output Ty.Spect.Lens Description

PIX2NVS [2] Frame Events NL ✗ ✗ Using truncated chamfer loss as metrics.
ESIM [11] 3D scene Events NL ✗ ✗ Interpolation-based simulation in UE.
V2E [4] Frame Events NL ✗ ✗ Using AI to interpolate the input video.
ICNS [5] Frame Events NL ✗ ✗ Better modeling of electronic circuits.
VOLT [7] Frame Events NL ✗ ✗ Modeling sensor using random process.
Mou et al. [8] Frame Events NL ✓ ✗ Integrating QE with 3-channel video.
Pantho et al. [10] Frame Event regions L ✗ ✗ Parallel processing with attention model.
EventGAN [15] None Event images L ✗ ✗ Generating event images using GAN.
V2CE [14] Frame Events L ✗ ✗ output continuous outputs using network.
Vista 2.0 [1] Frame Events NL ✗ ✗ Event-compatible multimodal simulation.
Tsuji et al. [12] 3D scene Events NL ✗ ✓ Event-based denoising in ray tracing.
Ours 3D scene Events NL ✓ ✓ Physics-based full-process simulation.

B Event Generation Mechanism

The event camera, a bio-inspired vision sensor, is engineered to detect changes in light
intensity [3–5]. Unlike traditional image sensors that obtain the absolute level of light

(�) Corresponding authour: Xiangyang Ji and Jianing Li.

https://orcid.org/0009-0009-3935-6817
https://orcid.org/0000-0002-7468-0622
https://orcid.org/0000-0002-2072-5020
https://orcid.org/0000-0002-7333-9975

2 Haiqian. Author et al.

intensity. The DVS pixel consists of a logarithmic photoreceptor that converts the input
light intensity I to an output voltage V , it can be formulated as follows:

V = log(I). (S1)

The logarithmic response of the photoreceptor enables event cameras to detect
small changes in light intensity and reduces the impact of noise.

The output voltage V is then compared to a threshold voltage θ to determine if an
event should be generated. It is described as follows:

|∆V | = |VF (t+∆t)− Vc(t)| > θ, (S2)

where VF (t +∆t) represents the output voltage in time t +∆t. Vc(t) is the threshold
voltage that be reset to VF (t+∆t) after event generated. Finally, an event will generated
at t = (t+∆t), and its polarity depends on the sign of ∆V .

Furthermore, the event camera incorporates a refractory period tr, which is a period
during which the pixel is not sensitive to changes in light intensity after generating an
event. This refractory period prevents the event camera from generating multiple events
in response to a single change of light intensity.

The aforementioned represents the fundamental principle, yet the practical imple-
mentation of the DVS model is more intricate. Notably, the photoreceptor introduces
noise, rendering the relationship V = log(I) not strictly accurate. Moreover, the thresh-
olds for On events θon and Off events θoff typically differ, and these thresholds often
exhibit fluctuations contingent on factors such as temperature and light intensity. In
addition, inherent background noise in the DVS sensor can result in events being gen-
erated even in the absence of actual changes in light intensity.

C Ray Tracing

The core method for converting a modeled 3D scene into light intensities is ray tracing,
and the ray tracing method can be mathematically represented rigorously and elegantly
using path integral formulation [13]. To simplify the presentation, this work omits
the details of volume rendering. However, the path integral formulation can be easily
generalized to be compatible with volume rendering. The light intensity at a point on
the sensor can be represented as:

I =

∞∑
N=1

∫
ΩN

f(x)dµN (x), (S3)

where I is the intensity received by the sensor film. ΩN is the path space with N units
long path x and can be defined by N+1 points. The first and last two points must be
located on the film and light source respectively, while the middle point must be on
the surface of the scene object. f(x) can be understood as the contribution value of a
specified path to intensity as:

f(x̄) =

N∏
n=0

fv(xn−1 → xn → xn+1))× (

N∏
n=1

G(xn−1 ↔ xn)), (S4)

where the geometric term G(·) is an analytic function related to mutual visibility, fv(·)
is determined by the optical properties between the points on the path, and its specific

Abbreviated paper title 3

definition is as follows:

fv(xn−1 → xn → xn+1) =

fs(xn−1 → xn → xn+1), if 0 < n < N

Le(x0 → x1), if n = 0

We(xN−1 → xN), if n = N

, (S5)

where thefs(xn−1 → xn → xn+1) is related to BSDF, and represents the energy ratio of
a ray with a specified incident direction reflected in a specified exit direction. Le(x0 →
x1) is determined by the optical properties of the light source. We is determined by the
nature of the film on the sensor, describing the different sensitivities of different points
on the film to light rays. Finally, the rigorous description of the integrating factor in
Eq. S3 can be written as follows:

dµN (x̄) =

N∏
n=0

dA(xn), (S6)

where dA(xn) represents the infinitesimal area element at point xn. We have completed
the fundamental mathematical description of the standard path-tracing algorithm.

D Real to Sim: Scene Construction

To achieve high-fidelity results in the path tracing algorithm, it is essential to main-
tain precise geometric and optical information throughout the rendering process. This
involves creating highly realistic 3D virtual scenes based on real-world scenarios, a prac-
tice commonly known as scene construction. It is noteworthy that scene construction
constitutes a comprehensive and mature industry, supported by numerous professionals
and sophisticated software designed for streamlined workflows. In this study, we will
provide a concise introduction to scene construction tailored for small-scale research
purposes. The process of scene construction can be divided into two main phases.
Alignment of Geometric Information. The primary goal of this procedure is to
capture all the geometric details within a given scene. For instance, in documenting
the translation of a chessboard within a darkroom, it is essential to initially record
the relative positions of key elements in the scene, including the camera center, light
sources, chessboard, darkroom, and other opaque objects. Subsequently, the geometry
of each object must be recorded. A commonly employed technique is mesh represen-
tation, wherein the surface of any object is expressed as a composition of triangular
primitives. Simple objects, such as a chessboard or a darkroom, can be described as
combinations of cuboids. However, for more intricate objects, the mesh representation
may require continuous refinement to better approximate their true shapes. Advanced
methods, such as inverse rendering [9] for obtaining mesh representation from images or
reconstructing object mesh representations from point clouds obtained [6] from radar,
are available to facilitate this process.

In the PECS system with real lens simulation, camera calibration becomes more
straightforward compared to using a pinhole camera model. Accurate geometric posi-
tioning of the camera eliminates the need for additional calibration, highlighting a key
advantage in realistic camera lens simulation.
Restoration of Optical Information. The goal is to reconstruct light source details
and object surface materials from geometric information. Reconstructing light source
information is relatively straightforward, given that professional light sources usually

4 Haiqian. Author et al.

Fig. S1: The spatiotemporal event metrics vary with two typical distortion operations
(i.e., adding bias and adding noise).

offer attributes like color temperature. Recording illuminance at key positions in the
scene is often enough for accurate recreation during the modeling process.

Object surface materials are pivotal parameters determining information like the
Bidirectional Scattering Distribution Function (BSDF) in path tracing. The prevalent
method for material modeling is the Physically Based Rendering (PBR) system. PBR,
a shading model in computer graphics, realistically simulates lighting and materials.
Incorporating properties such as albedo, roughness, metallicness, and normal maps,
PBR calculates how light interacts with surfaces. Through textures and equations,
PBR materials replicate reflections, refractions, and scattering across various materi-
als like metals, plastics, and fabrics. Widely embraced in graphics pipelines and game
engines, PBR ensures high-quality, physically accurate visuals, offering artists a stan-
dardized workflow for crafting realistic materials in virtual environments. In essence,
recording real-world material properties enables the optical information to be effec-
tively reconstructed using the PBR model.

E Additional Results

Effective Test on Spatiotemporal Event Metrics. To verify the effectiveness of
spatiotemporal event metrics, we conduct two additional experiments in Fig. S1. The
initial experiment is the T_bias operation, encompassing the following steps: Initially,
a segment of real event data P is selected. Subsequently, distortion is applied to the
timestamps of this data (stretching the t-axis and capturing the same duration as
the origin), resulting in the distorted data P ′. Following this, metrics are employed
to calculate the differences between P and P ′. A larger bias (bias greater than 1)
indicates a greater disparity between P and P ′. Similarly, the noise operation involves
the addition of noisy points to the real event data P to obtain P ′. The greater the
quantity of noisy points added, the more noticeable the distinction between P ′ and P .

The experimental results highlight the robust evaluation capabilities of both met-
rics. When applied to entirely identical event data, both two metrics yield a result of 0,
indicating no discernible difference between the two datasets. With an increase in noise
or distortion, the measurement results exhibit a clear positive correlation. Notably, a
key difference emerges: the Gaussian distance shows lower sensitivity to increases in

Abbreviated paper title 5

H
ig

h
 s

p
ee

d
L

o
w

 l
ig

h
t

N
o
rm

a
l

Fig. S2: Representative visualization results using our PECS on three scenarios. The
first row refers to high-speed motion blur scenarios, the second row is low light scenarios,
and the last row represents normal scenarios.

noise. In instances involving both distortion and noise, when the chamfer distance
reaches 1, the Gaussian distance in the distortion case exceeds 0.5, while in the noise
case, it remains below 0.2.
Visualization Results on Simulation Data. To further demonstrate the versatility
of our PECS, we conduct additional experiments in a variety of complex scenarios.
In particular, our PECS has the capability to accept any 3D scene as input, and
given the extensive availability of high-fidelity 3D scenes, it possesses the capacity to
generate large-scale datasets. Fig. S2 shows the simulation capabilities of our PECS in
three scenes. The first row is a high-speed motion blur scenario, simulating the event
output of a camera moving quickly through a city. The second row is a low-light scene,
simulating the event output of a camera shooting a bicycle in extremely low light. The
third row is normal light and speed, simulating the event output of a camera shooting
trees with complex details. It can be seen that our PECS exhibits strong versatility by
generating high-precision event data across diverse scenes.

References

1. Amini, A., Wang, T.H., Gilitschenski, I., Schwarting, W., Liu, Z., Han, S., Kara-
man, S., Rus, D.: Vista 2.0: An open, data-driven simulator for multimodal sensing
and policy learning for autonomous vehicles. In: ICRA. pp. 2419–2426 (2022)

2. Bi, Y., Andreopoulos, Y.: Pix2nvs: Parameterized conversion of pixel-domain video
frames to neuromorphic vision streams. In: ICIP. pp. 1990–1994 (2017)

3. Graça, R., McReynolds, B., Delbruck, T.: Shining light on the dvs pixel: A tutorial
and discussion about biasing and optimization. In: CVPR. pp. 4044–4052 (2023)

4. Hu, Y., Liu, S.C., Delbruck, T.: v2e: From video frames to realistic dvs events. In:
CVPRW. pp. 1312–1321 (2021)

6 Haiqian. Author et al.

5. Joubert, D., Marcireau, A., Ralph, N., Jolley, A., van Schaik, A., Cohen, G.: Event
camera simulator improvements via characterized parameters. Frontiers in Neuro-
science 15, 702765 (2021)

6. Ladicky, L., Saurer, O., Jeong, S., Maninchedda, F., Pollefeys, M.: From point
clouds to mesh using regression. In: Proceedings of the IEEE International Con-
ference on Computer Vision. pp. 3893–3902 (2017)

7. Lin, S., Ma, Y., Guo, Z., Wen, B.: Dvs-voltmeter: Stochastic process-based event
simulator for dynamic vision sensors. In: ECCV. pp. 578–593 (2022)

8. Mou, X., Feng, K., Yi, A., Wang, S., Chen, H., Hu, X., Guo, M., Chen, S., Suess,
A.: Accurate event simulation using high-speed videos. Electronic Imaging 34(7),
242–1 (2022)

9. Nicolet, B., Jacobson, A., Jakob, W.: Large steps in inverse rendering of geometry.
ACM Transactions on Graphics (TOG) 40(6), 1–13 (2021)

10. Pantho, M.J.H., Mbongue, J.M., Bhowmik, P., Bobda, C.: Event camera simulator
design for modeling attention-based inference architectures. Journal of Real-Time
Image Processing 19(2), 363–374 (2022)

11. Rebecq, H., Gehrig, D., Scaramuzza, D.: Esim: An open event camera simulator.
In: CoRL. pp. 969–982 (2018)

12. Tsuji, Y., Yatagawa, T., Kubo, H., Morishima, S.: Event-based camera simulation
using monte carlo path tracing with adaptive denoising. arXiv (2023)

13. Zhang, C.: Path-space differentiable rendering. University of California, Irvine
(2022)

14. Zhang, Z., Cui, S., Chai, K., Yu, H., Dasgupta, S., Mahbub, U., Rahman, T.: V2ce:
Video to continuous events simulator. arXiv (2023)

15. Zhu, A.Z., Wang, Z., Khant, K., Daniilidis, K.: Eventgan: Leveraging large scale
image datasets for event cameras. In: ICCP. pp. 1–11 (2021)

	Physical-Based Event Camera Simulator

