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S1 Implementation details

We implemented our Dense Normalization (DN) layer using PyTorch 1.13.0 and
Python 3.9.5. All experiments were conducted on an Ubuntu 20.04.5 LTS oper-
ating system, equipped with an NVIDIA RTX 3090 GPU. For all experiments
involving KIN, we used a constant kernel size of 5, as suggested by the authors
of KIN. To reduce distortion in the margins during translation, each patch is
initially reflectively padded, and then unpadded post-translation.

Fig. S1: The impact of varying kernel size in KIN [1]. Careful selection of kernel
size is critical for balancing the removal of tiling artifacts and preservation of color and
hue details to enhance the quality of translated images generated by KIN. Red arrows
(↘) indicate tiling artifacts, and yellow arrows (↘) indicate over/under-colorizing.
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Fig. S2: A translated result of an ultra-high-resolution image
(24,000×28,000 pixels) generated using our Dense Normalization (DN).
Our DN is able to transform a whole slide image stained with hematoxylin and
eosin (H&E) into a progesterone receptor (PGR) stain without any discernible tiling
artifacts, while also retaining all color and hue details. The right side of the image
contains four close-up boxes for closer examination.
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Fig. S3: Reciprocal-based interpolation. These figures illustrate the challenges in-
volved in computing interpolation on the reciprocal. In (a), two points (0, 2) and (20, 4)
are given in the Cartesian coordinate system, and the interpolated value of y at x = 10
is obtained by taking the mean of 2 and 4, resulting in 3. In (b), when the interpolated
results are transformed into the reciprocal form, they exhibit a hyperbolic function
(orange line). However, it is preferable for the reciprocal of the interpolated standard
deviation to be a linear function (green line) to prevent any nonlinear transformations
from occurring during normalization of the image.

Fig. S4: Comparison of two-stage and single-pass DN. A naïve implementation
of DN might resemble KIN, operating in two stages. However, our dispatcher design and
prefetching strategy enable the prefetching branch to run in parallel with the inference
branch across most neural network (NN) layers, and to execute asynchronously in the
DN layer, effectively hiding the runtime of the prefetching branch.

Table S1: Comparison of runtime and GPU memory usage. Using an NVIDIA
RTX 3090 GPU, we benchmarked the runtime and GPU VRAM usage for a 4,302
× 3,024 image. One-stage DN, despite involving substantial operations on statistical
moments, runs faster than KIN.

IN* TIN KIN DN DN

Statistics type patch-level image-level patch-level pixel-level pixel-level
# of pipeline stage 1 1 2 2 1
Operations on statistics ! ! !

Runtime (s) 2.46 2.62 4.42 5.51 4.35
GPU VRAM usage (mb) 2951 3335 3145 3161 4157

IN*: patch-wise IN
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Fig. S5: Results of translation on natural images. The figure compares the trans-
formation results on UHR images using four normalization methods: patch-wise IN [2],
TIN [3], KIN [1], and DN with a CUT [4] framework. Red close-up boxes highlight both
tiling artifact comparisons, while yellow close-up boxes focus on evaluating over/under-
colorizing and local hue preservation. DN shows the best performance overall. For a
better view, please zoom in.
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Fig. S6: Results of translation on pathological whole slide images. The fig-
ure compares the stain transformation results on UHR whole slide images using four
normalization methods: patch-wise IN [2], TIN [3], KIN [1], and DN with a CUT [4]
framework. Red close-up boxes highlight both tiling artifact comparisons, while yellow
close-up boxes focus on evaluating over/under-colorizing and local hue preservation.
DN shows the best performance overall. For a better view, please zoom in.
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Fig. S7: Results of translation on natural images with a CycleGAN frame-
work. The figure compares the translation results on ultra-high-resolution images us-
ing four normalization methods: patch-wise IN [2], TIN [3], KIN [1], and DN with a
CycleGAN framework. Red close-up boxes highlight both tiling artifact comparisons,
while yellow close-up boxes focus on evaluating over/under-colorizing and local hue
preservation. DN shows the best performance overall. For a better view, please zoom
in.
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Fig. S8: Results of translation on natural images with an L-LSeSim frame-
work. The figure compares the translation results on ultra-high-resolution images us-
ing four normalization methods: patch-wise IN [2], TIN [3], KIN [1], and DN with
an L-LSeSim framework. Despite the limitations of the L-LSeSim framework in effec-
tive translation, DN is still capable of removing tiling artifacts and maintaining color
details. Red close-up boxes highlight both tiling artifact comparisons, while yellow
close-up boxes focus on evaluating over/under-colorizing and local hue preservation.
DN shows the best performance overall. For a better view, please zoom in.
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Fig. S9: Fidelity evaluation. Images generated by DN are nearly indistinguishable
from real pathological images.
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