
Parameter-Efficient and Memory-Efficient Tuning
for Vision Transformer: A Disentangled Approach

(Appendix)

Taolin Zhang1*, Jiawang Bai2,3*, Zhihe Lu3, Dongze Lian3, Genping Wang4,B,
Xinchao Wang3,B, and Shu-Tao Xia1,5

1Tsinghua Shenzhen International Graduate School, Tsinghua University
2Tencent 3National University of Singapore

4Shenzhen Qiji Technology Co., Ltd.
5Research Center of Artificial Intelligence, Peng Cheng Laboratory

ztl23@mails.tsinghua.edu.cn; jiawangbai@tencent.com;
zhihelu.academic@gmail.com; dzlianx@gmail.com;

genpingwang@163.com; xinchao@nus.edu.sg; xiast@sz.tsinghua.edu.cn

1 Analysis on Memory Cost and Entanglement

0 1 2 3 4 5 6 7 8 9 10 11
Fine Tuning Layer

3

4

5

6

7

8

9

M
em

or
y

Co
st

 (G
B)

LoRA

Fig. 1: Memory usage with differ-
ent fine-tuning layer.

In this section, we conduct an additional ex-
periment to investigate the connection be-
tween memory cost and entanglement. To
achieve varying degrees of entanglement, we
fine-tune only one layer of the pre-trained
model using LoRA and provide memory us-
age at different positions in Fig. 1.

When tuning the highest layer, the degree
of entanglement is minimal and the features
of the lower layers remain unchanged, not en-
gaging in gradient descent, resulting in a small
memory cost. As the layer being fine-tuned
becomes lower, the degree of entanglement in-
creases and the intermediate features that participate in gradient descent become
heavier, leading to a larger memory cost.

2 Analysis on Inference Cost

The inference cost of the model is important in some real-world applications.
Compared to the original pre-trained model, SynQT, with the lightweight archi-
tectures QSM and KEM, could potentially introduce additional inference costs.
Therefore, we evaluate the inference time, memory usage, and FLOPS in com-
parison to traditional PETL methods, and present the results along with the
optimal number of tokens in Table 1.

Notably, the low inference speed and high FLOPS of VPT-Shallow [2] are
attributed to its optimal number of tokens on CIFAR100 reaching up to 100. In

2 Taolin Zhang, Jiawang Bai et al.

contrast, the inference speeds and FLOPS of BitFit [7], VPT-Deep [2], VQT [6],
and SynQT are similar without any significant differences. It suggests that the
important factor affecting inference speed is the number of prompt tokens rather
than the additional lightweight architectures. Given that we use an extremely
small number of tokens for the lightweight design of QSM, which is chosen from
{1, 4, 16}, the overall inference speed of SynQT is comparable to VQT and the
additional inference cost is affordable.

Table 1: Inference speed analysis on CIFAR100. We evaluate different methods
with their optimal number of tokens on a single NVIDIA V100 32GB GPU and report
the frames per second (fps).

Methods Optimal #Tokens Inference Speed (fps) Memory (G) FLOPS (G)

BitFit [7] - 249.94 2.8 16.9
VPT-Shallow [2] 100 172.69 2.9 25.3
VPT-Deep [2] 10 245.76 2.9 17.7

VQT [6] 1 246.95 2.8 17.2

SynQT (Ours) 4 244.91 2.9 17.2

3 Analysis on Feature Importance

The classification head in SynQT is instance-aware, by adopting the feature
weights conditioned on the output of the last block. To gain deeper insight into
the feature selection within the classification head, we investigate the generated
feature weights for different input samples. Specifically, we randomly select 50
samples and visualize the importance across 36 distinct features in Figure 2. The
features are divided into 3 groups: the output of KEM Hi, the attention features
F attn
i , and the FFN features F ffn

i , where i ∈ {1, 2, ..., 12}. The features within
the groups are sorted by the layer index and their importance is determined by
their absolute values of the feature weight. The experiments are conducted on
EuroSAT, SVHN, and DMLab.

As illustrated in Figure 2, the feature selection in the classification head
assigns varying weights to different samples, thereby enabling SynQT to be
instance-aware and enhancing the model’s performance. An interesting obser-
vation is that the importance of most features is either greater than 0.8 or less
than 0.2, suggesting that the classification head distinguishes between useful and
non-useful features by assigning relatively extreme values within the 0∼1 range
for a given sample. Specifically, the number of features with a weight greater
than 0.8 is noticeably fewer than those assigned a weight less than 0.2, thereby
demonstrating the effectiveness of the feature selection in reducing information
redundancy.

Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer 3

| Hi | Fattn
i | Fffn

i |
0.0

0.2

0.4

0.6

0.8

1.0

(a) Eurosat

| Hi | Fattn
i | Fffn

i |
0.0

0.2

0.4

0.6

0.8

1.0

(b) SVHN

| Hi | Fattn
i | Fffn

i |
0.0

0.2

0.4

0.6

0.8

1.0

(c) DMLab

Fig. 2: Feature importance visualization of 50 samples on different datasets.
The feature weights of different samples are marked with different colors. For a given
sample, SynQT tends to assign relatively extreme values within the 0∼1 range to
distinguish useful and un-useful features.

Table 2: Comparison with versions of VPT-Deep and VQT that employ a
larger number of tokens (VPT-Deep† and VQT†) on the VTAB-1K bench-
mark, with ViT-B/16 pre-trained on ImageNet-21K. “# Param” specifies the
number of trainable parameters in backbones. Average accuracy are averaged over
group-wise mean values.

Natural Specialized Structured

#
P
ar

am
(M

)

C
IF

A
R

10
0

C
al

te
ch

10
1

D
T

D

F
lo

w
er

10
2

P
et

s

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

A
ve

ra
ge

VPT-Deep [2] 0.17 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
VPT-Deep† [2] 2.84 26.6 69.5 50.9 82 63.6 27.4 18.7 77.6 92.1 72.1 74.3 53.7 39.3 32.9 70.5 14.0 11.0 9.9 25.9 53.2
VQT [6] 0.09 66.3 89.9 67.8 97.9 84.7 79.9 45.5 79.0 95.2 80.9 74.7 46.7 61.6 45.1 63.6 62.9 32.1 30.0 28.8 68.3
VQT† [6] 2.84 66.5 88.3 68.1 98.2 88.4 58.8 50.4 78.3 95.5 79.3 74.2 53.7 58.1 39.0 67.5 30.8 15.1 14.5 26.9 64.7
SynQT (Ours) 2.73 70.9 89.7 68.8 98.5 89.6 77.8 50.6 82.3 96.7 83.5 75.2 71.8 62.7 48.5 75.4 74.1 49.0 31.7 36.1 72.9

4 Discussion on Trainable Parameters

SynQT outperforms previous PETL methods while requiring slightly more train-
able parameters due to a few projection layers and FFN operations. To validate
that the superior performance of our method does not come from the additional
parameters, we match the numbers of trainable parameters used in VPT-Deep [2]
and VQT [6] with ours, by increasing their number of tokens to 300. We term
the VPT-Deep and VQT with more trainable parameters as VPT-Deep† and
VQT†, respectively. The comparison results are provided in Table 2.

We can see that increasing the number of tokens does not consistently yield
a performance improvement across different datasets but may result in a signifi-
cant performance drop. The observation is consistent with that in their original
papers. That is, the optimal prompt length should not be too large, as the in-
creased model complexity may cause overfitting due to the limited training data
on VTAB-1K. Our results suggest that the key to the success of our SynQT is
not the increased trainable parameters but the appropriate designs of our QSM
and KEM.

4 Taolin Zhang, Jiawang Bai et al.

5 Comparison among SynQT, Head2Toe, and LST

We further present a comparison among SynQT, Head2Toe [1], and LST [5]
on the VTAB-1K benchmark, using ViT-B/16 pre-trained on ImageNet-1K, as
shown in Table 3. Head2Toe is another method that utilizes intermediate repre-
sentations for classification and simply applies an averaging over these features
to reduce dimension. The input of Head2Toe consists of features from four dis-
tinct stages: after the layer normalization, after the Multi-head Attention block,
inside, and after the MLP block. LST proposes a side network to sequentially
take intermediate features as inputs for memory saving. LST also initializes the
ladder-side network based on structural pruning to enhance performance.

Compared to Head2Toe and LST from the results, SynQT achieves a signif-
icant performance improvement. Specifically, SynQT outperforms Head2Toe on
16 out of 19 tasks and surpasses LST by 3.3% on average, indicating that the
intermediate representations extracted by the task-specific synthesized query are
more powerful than features derived from the original pre-trained model.

6 Discussion on Scaling Factors

In SynQT, we introduce two scaling factors s′ and s′′ to control the informa-
tion flow in the QSM. A recent work [3] indicates that shifting the intermediate
features helps close the gap between pre-training and the downstream task. In-
spired by [3], in our case, we make use of these scaling factors to cope with
the significant gaps between pre-training and various downstream tasks, e.g., 19
datasets in VTAB-1K.

To have a better understanding of these scaling factors, we further set them
as 1 and report the results in Table 4. The results indicate that the scaling
operation significantly improves the performance across different datasets. In
particular, SynQT shows a 5.9% improvement in the Structured category and
an average improvement of 2.4% due to these scaling factors.

7 Discussion on Frozen KEM

In SynQT, we reuse the original model’s weights in the KEM due to their ability
to effectively extract features from the intermediate features. In our case, we
keep them frozen to leverage their abilities and preserve the feature interaction
in the original space. Additionally, the frozen KEM is beneficial for PETL meth-
ods, effectively reducing the number of trainable parameters during training and
preventing overfitting on downstream small datasets.

We also provide the comparison with a variant incorporating trainable KEM,
whose training complexity would be similar to full-tuning. As shown in Table 5,
a trainable KEM would not benefit SynQT due to the large number of trainable
parameters and the limited training samples available in the downstream tasks.

Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer 5

Table 3: Comparison among SynQT, LST and Head2Toe on VTAB-1K
benchmark with ViT-B/16 pre-trained on ImageNet-1K. Average accuracy
are averaged over group-wise mean values.

Natural Specialized Structured

C
IF

A
R

10
0

C
al

te
ch

10
1

D
T

D

F
lo

w
er

10
2

P
et

s

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

A
ve

ra
ge

Head2Toe [1] 58.2 87.3 64.5 85.9 85.4 82.9 35.1 81.2 95.0 79.9 74.1 49.3 58.4 41.6 64.4 53.3 32.9 33.5 39.4 63.3
LST [5] 51.8 83.7 62.0 93.2 78.9 77.1 28.7 80.5 96.6 79.6 75.1 76.3 61.0 44.1 73.4 73.9 35.6 27.1 35.9 68.1
SynQT (Ours) 59.2 89.7 66.2 91.9 88.9 77.4 39.0 84.0 96.6 82.9 75.4 68.1 60.2 47.9 76.9 73.8 52.4 32.4 37.7 71.4

Table 4: Comparison with variant having
a scale equal to 1 (SynQT†).

Methods Natural Specialized Structured Average

SynQT† 77.7 83.6 50.3 70.5
SynQT 78.0 84.4 56.2 72.9

Table 5: Comparison with variants hav-
ing trainable KEM (SynQT‡).

Methods Natural Specialized Structured Average

SynQT‡ 60.5 77.7 36.6 58.3
SynQT 78.0 84.4 56.2 72.9

8 t-SNE Visualization on More Datasets

We provide t-SNE [4] visualization on more datasets in Figure 3. Similar to the
visualization in the main manuscript, it further shows that the features obtained
by SynQT are more separable compared to the original CLS Token and VQT.

References

1. Evci, U., Dumoulin, V., Larochelle, H., Mozer, M.C.: Head2toe: Utilizing interme-
diate representations for better transfer learning. In: International Conference on
Machine Learning. pp. 6009–6033. PMLR (2022)

2. Jia, M., Tang, L., Chen, B.C., Cardie, C., Belongie, S., Hariharan, B., Lim, S.N.:
Visual prompt tuning. In: European Conference on Computer Vision. pp. 709–727.
Springer (2022)

3. Lian, D., Zhou, D., Feng, J., Wang, X.: Scaling & shifting your features: A new base-
line for efficient model tuning. Advances in Neural Information Processing Systems
35, 109–123 (2022)

4. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research 9(11) (2008)

5. Sung, Y.L., Cho, J., Bansal, M.: Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Information Processing Systems 35,
12991–13005 (2022)

6. Tu, C.H., Mai, Z., Chao, W.L.: Visual query tuning: Towards effective usage of
intermediate representations for parameter and memory efficient transfer learning.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 7725–7735 (2023)

7. Zaken, E.B., Ravfogel, S., Goldberg, Y.: Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. arXiv preprint
arXiv:2106.10199 (2021)

6 Taolin Zhang, Jiawang Bai et al.

Clevr-Count
(Structured)

DMLab
(Structured)

dSpr-Loc
(Structured)

CLS Token VQT SynQT

Fig. 3: t-SNE visualization on more datasets including Clevr-Count, DM-
Lab, and dSpr-Loc.

	Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach (Appendix)

