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Table 1: Details of the datasets for image restoration tasks.

Task Dataset Train Number Test Number Testset Rename

Dehazing

RESIDE-ITS [29] 13990 500 SOTS-Indoor
RESIDE-OTS [29] 313950 500 SOTS-Outdoor

O-HAZE [7] 35 5 0-HAZE
NH-HAZE [6] 45 5 NH-HAZE

DENSE-HAZE [5] 45 5 DENSE-HAZE

Deraining

Rain200H [58] 1800 200 Rain200H
Rain200L [58] 1800 200 Rain200L
DID-Data [64] 12000 1200 DID-Data
DDN-Data [20] 12600 1400 DDN-Data
SPA-Data [52] 638492 1000 SPA-Data
Raindrop [37] 861 58 Raindrop-A
Raindrop [37] 0 239 Raindrop-B

Motion Deblurring

GoPro [35] 2103 1111 GoPro
HIDE [43] 0 2025 HIDE

RealBlur-R [42] 0 980 RealBlur-R
RealBlur-J [42] 0 980 RealBlur-J

Defocus Deblurring DPDD [2] 350 76 DPDD

Desnowing
CSD [13] 8000 2000 CSD(2000)
SRRS [12] 15000 15000 SRRS(2000)

Snow100K [32] 50000 50000 Snow100K(2000)

Underwater Enhancement
UIEB [30] 750 90 U-90
LSUI [36] 3500 400 L-400

Low-light Enhancement

LOL-v1 [54] 485 15 LOL-v1
LOL-v2-real [59] 689 100 LOL-v2-real
LOL-v2-syn [59] 900 100 LOL-v2-syn

MIT-Adobe FiveK [9] 4500 500 FiveK
Denoising SIDD [1] 320 1280 SIDD

Super-Resolution

DIV2K [4] 800 0 -
Set5 [8] 0 5 Set5

Set14 [63] 0 14 Set14
B100 [33] 0 100 B100

Urban100 [22] 0 100 Urban100
Manga109 [34] 0 109 Manga109

⋆ Corresponding author
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1 Datasets and Experimental Details

In tab.1, we list the datasets used for training and evaluation. Next, we
describe them for each individual task.

1.1 Image Dehazing

We performing dehazing experiments both on the synthetic benchmark RE-
SIDE [29] and real-world hazy dataset Dense-Haze [5], O-Haze [7] and NH-
Haze [6]. For RESIDE, we train our model for the indoor and outdoor scenarios
separately, and then test on the corresponding SOTS dataset. For the indoor ex-
periment, ITS contains 13990 hazy/clear pairs for training and the SOTS-indoor
contains 500 hazy/clear pairs for testing. For the outdoor experiment, OTS con-
tains 313,950 hazy/clear pairs for training and the SOTS-outdoor contains 500
hazy/clear pairs for testing. SFHformer is trained for 600k steps both on ITS
and OTS with a batch size of 24. O-HAZE, NH-HAZE and DENSE-HAZE are
high-resolution real-world datasets. O-Haze consists 35 training images, 5 vali-
dation images and 5 test images. NH-HAZE is a non-homogeneous hazy dataset
containing 45 training images, 5 validation images and 5 test images. DENSE-
HAZE is a dense hazy dataset consists of 45 training images, 5 validation images,
and 5 test images. For above three datasets, SFHformer is trained for 10k steps
with the patch size of 800 × 800.

1.2 Image Deraining

Following previous work [14], we compare PSNR/SSIM on the Y channel in
YCbCr color space. We perform the experiments on Rain200H [58], Rain200L
[58], DID-Data [64], DDN-Data [20] and SPA-Data [52]datasets. Rain200H and
Rain200L meanwhile contains 1800 synthetic rainy/clear image pairs for training
and 200 ones for testing. DID-Data and DDN-Data respectively consist of 12000
and 12600 synthetic rainy/clear pairs varying in rain directions and density lev-
els, with testing set of 1200 and 1400 pairs. SPA-Data is a large-scale real-world
dataset containing 638492 rainy/clear pairs for training and 1000 ones for test-
ing. SFHformer is trained for 300k steps.

1.3 Image Motion Deblurring

We evaluate SFHformer on GoPro [35], HIDE [43] and RealBlur [42] for
single-image motion deblurring, following recent methods [18,61]. Gopro dataset
contains 2103 blurry/clear training pairs and 1111 blurry/clear testing ones,
which is obtained by a high-speed camera. To assess the robustness and gener-
alizability of our approach, we conduct an evaluation by deploying the model
trained on GoPro dataset directly onto the HIDE and RealBlur dataset. The
HIDE dataset comprises 2025 pairs of blurry/clear images specifically curated
for evaluation. The blurry images in both the GoPro and HIDE datasets are
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synthetically generated. As a complement, RealBlur dataset [42] is adopted, in
which the blurry-sharp image pairs are acquired in real-world conditions. The
RealBlur dataset has two subsets: (1)RealBlur-J contains 980 image pairs ob-
tained directly as camera JPEG outputs, and (2)RealBlur-R is generated offline
by applying white balance, demosaicking and denoising operations to the RAW
images, which also has 980 images. SFHformer is trained for 600k steps with a
batch size of 24.

1.4 Image Defocus Deblurring

We compare our proposed SFHformer with state-of-the-art approaches on
DPDD [2] dataset for single-image defocus deblurring. DPDD comprises images
spanning 500 distinct indoor and outdoor scenes, with each scene containing
four images: right-view, left-view, center-view, and an associated all-in-focus
ground truth image. Specifically, DPDD is partitioned into training, validation,
and testing sets, containing 350, 74, and 76 scenes (37 indoor and 39 outdoor),
respectively. In our work, we conduct SFHformer on the single-image defocus
deblurring task, which involves training on the center-view image along with its
corresponding ground truth. SFHformer is trained on DPDD for 150k steps.

1.5 Image Desnowing

We compare our method on CSD [13], SRRS [12], and snow100K [32] dataset
with existing state-of-the-art methods for image desnowing. CSD is a large-scale
snow dataset consisting of 8000 synthesized snow images. SRRS contains 15000
synthesized snow images and Snow100K has 100k synthesized snowy images. The
dataset settings follow previous works, where we randomly sample 2500 image
pairs from the training set for training, and 2000 images from testing set for
evaluation. SFHformer is trained for 150k steps on each dataset.

1.6 Image Raindrop Removal

Following previous work [50], We perform experiments on Raindrop [37] for
image raindrop removal. The Raindrop dataset contains 861 raindrop/clear pairs
for training and, 58 ones of testset A and 239 ones of testset B for evaluation,
respectively. SFHformer is trained for 60k steps.

1.7 Underwater Image Enhancement

We compare our method on UIEB [30] and LSUI [36] datasets with existing
state-of-the-art methods for underwater image enhancement. The UIEB dataset
contains 890 real underwater images with corresponding ground truths. We ran-
domly selected 750 pairs for training, 50 pairs for validation, and 90 pairs for
testing (U-90). LSUI, which builds in a similar method to UIEB but its scale is
larger, contains 4279 image pairs. We randomly selected 3500 pairs for training,
379 pairs for validation, and 400 pairs for testing (L-400). SFHformer is trained
for 40k and 120k steps on UIEB and LSUI, respectively.
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1.8 Low-light Image Enhancement

We evaluate SFHformer on LOL-v1 [54], LOL-v2 [59] and FiveK [9] for
low-light image enhancement, following recent methods [10]. The LOL dataset
comprises versions v1 and v2. LOL-v2 is further categorized into real and syn-
thetic subsets. The division of training and testing sets follows a ratio of 485:15,
689:100, and 900:100 for LOL-v1, LOL-v2-real, and LOL-v2-synthetic, respec-
tively. The MIT-Adobe FiveK dataset, denoted as FiveK, is partitioned into
training and testing sets, comprising 4500 and 500 pairs of low-/normal-light
images, respectively. These images undergo manual adjustments by five photog-
raphers, labeled as A to E. The reference images used in our study are those
adjusted by expert C, and the adopted output mode is sRGB. SFHformer is
trained for 20k steps both on LOL-v1 and LOL-v2 with a patch size of 128 ×
128. As for FiveK, SFHformer is trained for 150k steps.

1.9 Image Denoising

Following [61], we train our SFHformer on the SIDD dataset [1] for image
denoising, which has 320 high-resolution images. With the SIDD-trained model,
we evaluate our SFHformer on 1280 patches from the SIDD validation set [1].

1.10 Efficient Image Super-resolution

Following [15,27,48], we evaluate SFHformer on the DIV2K dataset [4] for ef-
ficient image super-resolution, which is composed of 800 high- and low-resolution
image pairs. Meanwhile, five common benchmarks are used for evaluation, in-
cluding Set5 [8], Set14 [63], BSD100 [33], Urban100 [22] and Manga109 [34] with
two magnification factors: ×2 and × 4. In practice, we introduce two variants of
different sizes: SFHformer-T and SFHformer-M. All PSNR and SSIM values are
calculated on the Y channel of images transformed to YCbCr color space.

2 More Experimental Results

2.1 Additional Results for Low-light Enhancement

Table 2: Quantitative evaluations on FiveK [9] dataset.
Methods DeepUPE [51] URetinexNet [55] Uformer [53] MAXIM [50] Restormer [61] Retinexformer [10] SFHformer
PSNR↑ 23.04 23.51 23.89 24.64 24.52 24.94 25.12
SSIM↑ 0.893 0.826 0.906 0.913 0.926 0.907 0.915

#Param. 1.02M 0.34M 20.60M 14.14M 26.10M 1.61M 3.87M
FLOPs 21.10G 57G 41.09G 216G 141.0G 15.57G 26.59G

Low-light Image Enhancement. As shown in Tab.2, we conduct addi-
tional experiments on the FiveK dataset [9] to verify the effectiveness of our
SFHformer on the low-light enhancement task. Our SFHformer achieves the
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best performance of PSNR compared to various SOTA approaches. Although
our model ranks second in the terms of SSIM, SFHformer has only 14.8% of the
parameter size and 18.9% of the computational complexity compared to the best
Restormer [61].

2.2 Additional Results for Motion Deblurring

Table 3: Quantitative results on RealBlur dataset [42].
Methods RealBlur-R [42] RealBlur-J [42]

(CVPR22)Restormer [61] 36.19/0.957 28.96/0.879
(ECCV22)Stripformer [49] 36.08/0.954 28.82/0.876
(CVPR23)FFTformer [24] 35.87/0.953 27.75/0.853

(Our)SFHformer 36.33/0.963 29.05/0.884

Motion Deblurring. As shown in Tab.3, following [61], we directly apply
the GoPro-trained model on real-world motion deblurring dataset: RealBlur [42],
to evaluate the generalization and effectiveness of our SFHformer in the real
world. The experimental results indicate that our model obtains the best per-
formance in terms of PSNR/SSIM compared with various related methods. In
particular, compared to the similar method FFTformer [24] of extracting features
in the frequency-domain, our SFHformer achieves a significant improvement in
generalization, with PSNR increases of 0.46 and 0.30 in the RealBlur-R and
RealBlur-J datasets [42], respectively.

2.3 Additional Results for Single-image Defocus Deblurring

Table 4: Quantitative evaluations on single-image defocus deblurring.
Method Indoor Scenes Outdoor Scenes Combined

PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓
(CVPR’19)DMENet [25] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349

(CVPR’15)JNB [44] 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315
(ECCV’20)DPDNet [3] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
(ICCV’21)KPAC [45] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
(CVPR’21)IFAN [26] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217

(CVPR’22)Restormer [61] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178
(CVPR’23)NRKNet [40] - - 26.11 0.810 - 0.210
(ICCV’23)INIKNet [41] - - 26.01 0.803 - 0.185

(Ours)SFHformer 28.95 0.874 0.024 0.182 23.44 0.743 0.049 0.260 26.12 0.807 0.037 0.222

Single-image Defocus Deblurring. Tab.4 shows the quantitative results
against SOTA defocus deblurring methods on DPDD [2]. Our model achieves
the best PSNR and MAE against the previous SOTA methods.
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Table 5: Quantitative evaluations on SIDD dataset [1] for denoising.
Methods MPRNet [62] UFormer [53] Restormer [61] SFHformer
PSNR↑ 39.71 39.77 40.02 40.19
SSIM↑ 0.958 0.959 0.960 0.961

2.4 Additional Results for Image Denoising

Image Denoising. As shown in Tab.5, we evaluate the effectiveness of our
SFHformer on the SIDD dataset [1] for image denoising task. As suggested by
the quantitative results against SOTA methods, our model obtains the superior
performance.

2.5 Additional Results for Super-resolution

Table 6: Super-resolution results. Train on DIV2K [4] dataset and test on five common
benchmarks. PSNR/SSIM is adopted for metrics.

Methods Scale Params FLOPs Set5 [8] Set14 [63] B100 [33] Urban100 [22] Manga109 [34]
(ICCV23)SAFMN [48]

×2

228K 52G 38.00/0.9605 33.54/0.9177 32.16/0.8995 31.84/0.9256 38.71/0.9771
(Our)SFHformer-T 310K 63G 38.02/0.9607 33.52/0.9186 32.21/0.9001 32.23/0.9295 38.82/0.9775

(AAAI23)HPUN-L [47] 714K 160G 38.09/0.9608 33.79/0.9198 32.25/0.9006 32.37/0.9307 39.07/0.9779
(CVPR23)NGswin [15] 998K 140G 38.05/0.9610 33.79/0.9199 32.27/0.9008 32.53/0.9324 38.97/0.9777
(ICCV23)CRAFT [27] 737K 173G 38.23/0.9615 33.92/0.9211 32.33/0.9016 32.86/0.9343 39.39/0.9786
(Our)SFHformer-M 919K 168G 38.24/0.9617 33.95/0.9216 32.38/0.9020 33.08/0.9364 39.33/0.9782

(ICCV23)SAFMN [48]

×4

240K 14G 32.18/0.8948 28.60/0.7813 27.58/0.7359 25.97/0.7809 30.43/0.9063
(Our)SFHformer-T 330K 16G 32.14/0.8943 28.48/0.7817 27.61/0.7371 26.10/0.7848 30.50/0.9073

(AAAI23)HPUN-L [47] 734K 40G 32.31/0.8962 28.73/0.7842 27.66/0.7386 26.27/0.7918 30.77/0.9109
(CVPR23)NGswin [15] 1019K 37G 32.33/0.8963 28.78/0.7859 27.66/0.7396 26.45/0.7963 30.80/0.9128
(ICCV23)CRAFT [27] 753K 44G 32.52/0.8989 28.85/0.7872 27.72/0.7418 26.56/0.7995 31.18/0.9168
(Our)SFHformer-M 939K 43G 32.45/0.8984 28.80/0.7864 27.77/0.7419 26.63/0.7998 31.09/0.9149

Efficient Image Super-resolution. To evaluate our SFHformer for super-
resolution task, we conduct extensive experiments on DIV2K dataset [4] with
two magnification factors: ×2 and ×4. For a more complete comparison with the
recent approaches, we set up two configurations of different sizes: SFHformer-T
and SFHformer-M. As shown in Tab.6, with similar model parameter size and
computational complexity, our model achieves very competitive performance in
terms of PSNR and SSIM among five common benchmarks.

2.6 Additional Results for Running time

Table 7: Run time in deraining.
Methods Run time PSNR FLOPs

Restormer [61] 77.23ms 47.98 141.0G
IDT [56] 139.72ms 47.35 58.4G

DRSformer [14] 171.90ms 48.53 242.9G
SFHformer 43.29ms 50.11 26.6G

Table 8: Run time in dehazing.
Methods Run time PSNR FLOPs

Dehazeformer [46] 37.39ms 38.46 48.6G
C2PNet [65] 81.47ms 42.56 460.9G

MB-Taylorformer [39] 377.86ms 42.64 88.1G
SFHformer 43.29ms 43.03 26.6G
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Running time vs. Performance. As shown in Tab.7 and Tab.8, we con-
duct additional experiments to evaluate our SFHformer’s throughput and real-
time performance efficiency on image deraining and image dehazing tasks. In
practice, we measure the running time at one 256×256 image input under one
NVIDIA 3090 GPU for both restoration tasks. The experimental results demon-
strate that our model obtains faster running time with better performance.

3 Discussion and Future Work

While our proposed SFHformer has delivered competitive performance across
a range of image restoration tasks and achieved a favorable balance between
running time, model size, and computational cost, there remain areas that could
benefit from further refinement and exploration. In the following discussion, we
will delve into these aspects in greater detail.

(1) Modest improvements in some benchmarks. Despite performing
well in tasks such as dehazing and deraining, our SFHformer exhibits less sig-
nificant enhancements in others, notably deblurring. We infer that a key factor
resulting in these modest gains in deblurring may primarily stem from the dis-
crepancy between the training and testing image sizes. For instance, in tasks
like deraining and debluring, we train the models at 256×256 size, yet test at
480×320 and 1280×720 sizes respectively. This larger size inconsistency tends
to impact frequency domain operations more significantly than spatial domain
operations, as the former are inherently more sensitive to changes in image di-
mensions. While solutions (e.g. TLC [16]) have been developed to address this
challenge from a spatial perspective, exploring resolutions within the frequency
domain presents an intriguing and promising avenue for future research.

(2) Depthwise Convolution vs. Pointwise Convolution. The global op-
eration of the Fast Fourier Transform (FFT) consolidates the characteristics of
the spatial domain into specific components within the frequency domain. This
transformation principle leads to a lack of correlation and inductive bias among
adjacent points in the frequency domain. Our network design confirms this in-
tuition, showing that pointwise (PW) convolution for channel dimensions out-
performs depthwise (DW) convolution for spatial dimensions. The introduction
of DW convolution, while initially promising, actually increases the instability
of network training and reduces model performance. Although our experiments
demonstrate that directly applying DW convolution to extract frequency features
is not effective, the presence of significant macroscopic patterns and representa-
tions of various degradation processes in the frequency domain, as shown in the
introduction, suggests that exploring effective methods for extracting frequency
features from spatial dimensions remains a valuable research avenue.

In summary, we aspire for our SFHformer to provide substantial insights from
the frequency-domain perspective and to pioneer a new avenue in model design
for the image restoration community.
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4 More Visual Results

We provide images recovered by various methods for different image restora-
tion tasks, organised as,

• Image dehazing: Fig.1, Fig.2, Fig.3.
• Image deraining: Fig.4, Fig.5.
• Image motion deblurring: Fig.6.
• Image raindrop removal: Fig.7.
• Image desnowing: Fig.8.
• Low-light image enhancement: Fig.9.
• Underwater image enhancement: Fig.10.
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Fig. 1: Visual results for image dehazing on RESIDE [29] among AODNet [28], Grid-
DehazeNet [31], MSBDN [19], FFANet [38], FocalNet [17] and ours.
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Fig. 2: Visual results for image dehazing on O-HAZE [7] among AODNet [28], Grid-
DehazeNet [31], MSBDN [19], FFANet [38], Dehazeformer [46] and ours.
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Fig. 3: Visual results for image dehazing on NH-HAZE [6] among AODNet [28], Grid-
DehazeNet [31], MSBDN [19], FFANet [38], Dehazeformer [46] and ours.
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Fig. 4: Visual results for image deraining on DID-Data [64] and DDN-Data [20] among
MPRNet [62], SPDNet [60], IDT [56] , Restormer [61], DRSformer [14] and ours.
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Fig. 5: Visual results for image deraining on Rain200H [58] among MPRNet [62],
SPDNet [60], IDT [56] , Restormer [61], DRSformer [14] and ours.
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Fig. 6: Visual results for image motion deblurring on GoPro [35] among MPRNet [62],
Restormer [61], SFNet [18], NAFNet [11] and ours.
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Fig. 7: Visual results for image raindrop removal on raindrop [37] among Attentive-
GAN [37], MAXIM [50], IDT [56] and ours.
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Fig. 8: Visual results for image desnowing on SRRS [12] among NAFNet [11], FocalNet
[17] and ours.
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Fig. 9: Visual results for low-light image enhancement on LOL-v2 [59] among Spare
[59], SNR-Net [57], Retinexformer [10] and ours.
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Fig. 10: Visual results for underwater image enhancement on UIEB [30] among Wa-
terNet [30], PRWNet [23], PUIE-Net [21] and ours.
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