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Abstract. Neural Radiance Fields (NeRFs) have become increasingly
popular because of their impressive ability for novel view synthesis. How-
ever, their effectiveness is hindered by the Rolling Shutter (RS) effects
commonly found in most camera systems. To solve this, we present RS-
NeRF, a method designed to synthesize normal images from novel views
using input with RS distortions. This involves a physical model that repli-
cates the image formation process under RS conditions and jointly opti-
mizes NeRF parameters and camera extrinsic for each image row. We fur-
ther address the inherent shortcomings of the basic RS-NeRF model by
delving into the RS characteristics and developing algorithms to enhance
its functionality. First, we impose a smoothness regularization to better
estimate trajectories and improve the synthesis quality, in line with the
camera movement prior. We also identify and address a fundamental flaw
in the vanilla RS model by introducing a multi-sampling algorithm. This
new approach improves the model’s performance by comprehensively ex-
ploiting the RGB data across different rows for each intermediate camera
pose. Through rigorous experimentation, we demonstrate that RS-NeRF
surpasses previous methods in both synthetic and real-world scenarios,
proving its ability to correct RS-related distortions effectively. Codes and
data available: https://github.com/MyNiuuu/RS-NeRF

1 Introduction

CMOS imaging sensors are commonly employed in a wide range of consumer
and industrial products. Many of these sensors utilize a Rolling Shutter (RS)
mechanism for image capture because of its cost-effectiveness and portability.
In contrast to Global Shutter (GS) cameras, which capture all pixels simultane-
ously, rolling shutter cameras capture image pixels row by row in a sequential
manner. Consequently, if the camera is in motion during image capture, visible
distortions can occur. It is widely acknowledged that rolling shutter distortions
pose challenges for various downstream computer vision tasks, as indicated by
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previous research [1,14,15,18,29,30]. Consequently, the correction of rolling shut-
ter effects has attracted significant attention in the past [11,22,28,34,39–42].

In the emerging field of novel view synthesis, technologies such as NeRF [25]
have become increasingly proficient in generating highly realistic renderings.
NeRF utilizes a continuous volumetric function that is parameterized by a mul-
tilayer perceptron (MLP) to associate 3D locations and 2D view directions with
color and density information. It relies on volume rendering techniques to enable
differentiable rendering.

Although traditional NeRF models deliver exceptional results when applied
to well-calibrated and well-captured images, they encounter difficulties when
dealing with RS effects. For example, in scenarios where the camera is in motion
during image capture, these RS effects can significantly impact the performance
of the model. Given the widespread use of RS cameras in various industrial
applications, it is imperative to take into account this phenomenon when recon-
structing 3D representations using NeRFs.

One straightforward approach involves a two-stage baseline solution, where
the first step corrects the rolling shutter effect in 2D image space, and then the
NeRF is trained using these corrected images. While these baseline methods
enhance the quality of novel view synthesis in NeRF to some extent by utilizing
2D rolling shutter correction techniques, they can not fully explore the 3D scene’s
geometry, leading to inaccuracies in correspondences, especially when there is
significant camera motion.

In this paper, we introduce RS-NeRF, a robust framework designed to ex-
plicitly incorporate the physics-based formation of rolling shutter effects into the
rendering process. RS-NeRF has the ability to reconstruct a high-quality NeRF
representation from only input data that contains rolling shutter artifacts. To
achieve this, we explicitly model the camera’s motion trajectory throughout the
exposure duration for each frame and combine the RGB rendering outcomes
from different camera poses to generate the rolling shutter image. Throughout
this procedure, we optimize both the NeRF network and the pose estimation
network simultaneously by minimizing the photometric loss.

Building upon the basic RS-NeRF framework, we delve into its shortcomings
and enhance its functionality through various refinements. Initially, we impose
a camera trajectory smoothness regularization to refine our model’s trajectory
prediction, by leveraging the sequential nature of camera movement to yield
improved results. We further identify a critical shortcoming due to the vanilla
RS camera motion model and introduce a multi-sampling technique that signifi-
cantly enhances RS-NeRF’s performance. Specifically, we reveal the issue of the
standard camera pose formulation, which assigns distinct poses per row, poten-
tially limiting RS-NeRF’s efficiency due to limited training data for each pose.
We then make a key observation that multiple poses may share the same 2D
RGB observation for the same 3D point during the exposure time, which can
drastically increase the available training data. To capitalize on this insight, we
introduce and compute the PP-ratio—a measure of camera pose movement in
3D space relative to pixel movement in 2D space, and apply this to broaden our
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Fig. 1: Pipeline of vanilla RS-NeRF. Given a series of images with RS distortion,
RS-NeRF learns the underlying normal 3D representations by jointly estimating pose
and RGB values for each row. For each RS image, we first sample the rows and obtain
their camera poses via the pose estimation network. We then sample points for each
row and feed them with the estimated camera pose to the NeRF network and optimize
the photo-metric loss with ground truths.

training data by sampling out-of-row pixel points. This approach significantly
bolsters our model’s performance by tapping into the inherent data augmenta-
tion possibilities presented by the RS formation process.

We collect both synthetic and real data to evaluate our proposed RS-NeRF.
The experimental results reveal that RS-NeRF outperforms the preceding models
and demonstrate the effectiveness of our proposed refinements on the vanilla
model. In summary, our contributions are as follows:

– We propose a framework that can reconstruct NeRF from inputs with Rolling
Shutter (RS) effects by modeling the camera trajectory and aggregating RGB
rendering results of different poses during the exposure time.

– By analyzing the vanilla framework in detail, we proposed a series of im-
provements to it, including trajectory smoothness regularization and the
multi-sampling algorithm.

– We contribute synthetic and real datasets to evaluate our framework and
future works.

2 Related Work

2D Rolling Shutter Correction. Rolling Shutter Correction (RSC) aims to
restore normal images given the input with RS distortions. In recent years, sev-
eral appealing image-based RSC methods [22,28,34,39–42] have been developed.
These methods take either single RS image or continuous RS frames as input
and predict their global shutter (GS) counterparts. However, single-image RSC
can be seriously ill-posed and struggle to correctly estimate the GS counter-
part in complex scenarios. To reduce the ill-poseness of single-image RSC, more
attention has been paid to multi-image RSC [6, 9–11, 22, 40]. However, these
multi-image RS correction methods, which are built on image space operations,
fail to exploit the 3D geometry of the scene. As a result, these methods produce
multi-view inconsistency results which largely impact the reconstruction results
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of NeRF. In contrast, our proposed method can jointly reconstruct 3D geometry
and correct RS images by effectively aggregating multi-view information of the
scene.
Neural Radiance Fields (NeRF). NeRF [25] is an end-to-end model that syn-
thesizes novel views of complex 3D scenes by optimizing an implicit continuous
volumetric scene function encoded by an MLP. Due to its simplicity in training
and high-quality rendering results, NeRF-based methods [3,4,7,12,21,27,35,37]
have attracted intensive attention from various computer vision fields, leading to
significant improvements in terms of both accuracy and efficiency. NeRF-based
models have also inspired many subsequent works that extend their continuous
neural representation to different setups [2,8,13,17,24,36]. Deblur-NeRF [24] and
BAD-NeRF [36] reconstruct sharp images given the blurry input from different
view directions. One concurrent work [19] appears in ICLR’24, which formulates
the RS process with B-cubic models. This work combines the basic modeling
of camera motion with the NeRF network to consider the RS effect, without
further technical improvements. In this paper, we first bake the RS model into
NeRF formulation, then analyze several inherit limitations of the vanilla model,
and propose a series of algorithms to further improve its performance.

3 RS-NeRF

In this section, we present the specifics of RS-NeRF. Initially, we explain the
basic formulation of RS-NeRF in Sec. 3.1. We also note that the vanilla model
possesses specific shortcomings that hinder its effectiveness. To address these,
we suggest several improvements to enhance its capabilities, which are detailed
in Sec. 3.2 and Sec. 3.3.

3.1 Vanilla RS-NeRF Model

Rolling shutter camera model. Unlike Global Shutter (GS) cameras, the
Rolling Shutter (RS) camera captures each row at distinct timestamps. Without
loss of generality, we consider the readout direction of the RS camera to be from
top to bottom, assuming an infinitesimal exposure time for each row, following
existing RS modeling techniques [10, 11, 22]. This mechanism can be described
through a mathematical model as follows:

[IR(x)]i = [IGi (x)]i, (1)

where [I(x)]i is an operator to extract the i-th row from an image I(x), IR(x) ∈
RH×W×3 is the rolling shutter image, and IGi (x) ∈ RH×W×3 is the virtual global
shutter image captured at the same pose as the i-th row of IR(x). As a result,
for one RS image IR(x), we denote the pose of the i-th row as Ti.
Camera motion trajectory modeling. In our rolling shutter camera model, it
is necessary to establish the poses for each row in each image. Given the typically
short exposure time of an RS image, we use a linear model to approximate the
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Fig. 2: Smoothness regularization
on camera trajectory. For each pair
of adjacent trajectory vectors
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motion of the camera. Specifically, we start by defining two camera poses: one
for the first row, denoted as T0, and one for the last row, TH−1. For the rows
in between, we linearly interpolate their poses within the Lie algebra of SE(3),
as informed by prior research [20,23,36]:

Ti = T0 · (1− ρ) +TH−1 · ρ, (2)

where the interpolation coefficient ρ = i
H−1 is based on the row index i. Thus,

for each RS image, RS-NeRF receives one pose initialization, then optimizes
the poses at both ends and then determines the poses for each intermediate
row through linear interpolation. This interpolation method for calculating each
row’s pose is fully differentiable, enabling the optimization of pose parameters
using a series of rolling shutter images.
Optimizing NeRF from RS observation. For a set of K rolling shutter
images, we select M rows per image and N points per row, resulting in K×M×N
distinct camera rays for each iteration. These rays are used to concurrently
optimize the NeRF network and the pose parameters. Specifically, for each image,
we initially use the row indices to access the pose estimation network. This allows
us to determine the camera ray r̂(θp;u, v)) for each sampled pixel point (u, v).
Following this, these rays are employed to train the NeRF network by computing
the ensuing photometric loss:

L = ||C(r(u, v))− Ĉ(θn; r̂(θp; (u, v))||2, (3)

where θn represents the trainable parameters of the NeRF network, and θp de-
notes the learnable parameters for camera poses. Ĉ(θn; r̂(θp; (u, v)) refers to the
predicted RGB value for the pixel at coordinates (u, v), while C(r(u, v)) de-
notes the corresponding RGB ground truth value. The workflow of our vanilla
RS-NeRF model is depicted in Fig. 1.

3.2 Trajectory Smoothness Regularization.

Given the previous description of our model, it is evident that accurately es-
timating the camera pose for each row in RS frames is crucial for effectively
reconstructing the normal NeRF representation. We observe that the basic RS-
NeRF struggles with precise camera trajectory estimation, often resulting in
high-frequency predictions, as further analyzed in our experiments. This issue
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Npose
On Traj. / Out Traj.

PSNR ↑ SSIM ↑ LPIPS ↓

100 24.36/25.16 .7321/.7727 .0703/.0578
400 24.06/24.66 .7245/.7536 .0697/.0579

Table 1: Quantitative results for
different Npose. Npose = 100 yields
better results than Npose = 400.

!!"#$ = 2 !!"#$ = 20 !!"#$ = 100 !!"#$ = 400

Fig. 3: Qualitative comparisons for differ-
ent Npose. The artifact decreases as Npose grows.

arises because the network focuses only on the photometric loss for individual
images, neglecting the consistent movement characteristics of the camera across
different RS frames. To address this, we introduce a camera trajectory smooth-
ness regularization, based on the expectation of a smooth and continuous camera
trajectory in 3D space. Specifically, for every two adjacent RS frames IRk and
IRk+1, we aim to minimize the following loss during the optimization process:

Ls = ||−→nmid −mean(−→n k +−→n k+1)||2. (4)

As illustrated in Fig. 2, −→n k and −→n k+1 represent the unit direction vectors of the
estimated camera trajectories for RS frames IRk and IRk+1, respectively. Mean-
while, −→nmid denotes the unit direction vector for the camera trajectory during
the exposure interval between these two RS frames.

3.3 Multi-Sampling Algorithm

As discussed in Sec. 3.1, each row in an RS frame is assigned a unique camera
pose. For example, in an RS frame with 400 rows, there are 400 distinct camera
poses. This rigorous approach aligns with the real-world, physics-based photog-
raphy process of RS cameras but also presents certain challenges. For example,
under this framework, the data points for each pose are confined to a single
row. This limitation can significantly affect our model’s performance due to the
sparse training data available for each pose.

A straightforward solution to this problem is to reduce the number of poses
per image. For example, assigning 200 poses to each RS frame means that all two
adjacent rows would share the same pose. This approach can lead to blurriness
since these rows are captured at different poses, but it also doubles the amount
of data available for training each pose. To further explore this trade-off, we
conducted a series of experiments. Fig. 3 shows qualitative results for different
intermediate pose numbers Npose, indicating that the artifacts decrease as Npose

increases. Interestingly, we observed that using 100 poses per frame often yields
results comparable to or even better than using 400 poses. The quantitative
results presented in Tab. 1 also support the superiority of having 100 poses per
frame.

This observation seems counter-intuitive at first, as one might assume that
having fewer than 400 poses per frame would lead to poorer results due to
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Fig. 4: Motivation for the multi-sampling algorithm. Up: Three consecutive RS
frames, labeled as (a), (b), and (c), along with the optical flow between each pair of
frames, shown in (d) and (e). Down: For a single point in 3D space, we observe its
2D projections in the first (marked in yellow) and second (marked in red) RS frames.
These projections exhibit a row displacement of 8 and a column displacement of 18, as
depicted in (f). However, during this interval, the camera undergoes a shift of at least
392 poses, as indicated in (g).

artifacts like blurriness. However, it can be rationally explained. As demonstrated
in Fig. 4, for a given point in 3D space, the 2D projections on the first and
second RS frames show relatively small pixel displacements (8 in row and 12 in
column). Meanwhile, the camera shifts through at least 392 poses in 3D space.
This is based on the assumption that there is no overlap in the trajectories of
two adjacent frames (indicated as ’≥ 0 poses’ in the figure), which is naturally
satisfied given the sparse observation setting and short exposure times typically
involved.

Following our prior analysis, we introduced a multi-sampling algorithm aimed
at explicitly increasing the sample points for each intermediate camera pose. The
fundamental concept involves computing the ratio of camera pose displacement
to pixel displacement (termed the PP-ratio) between two adjacent frames for
the same 3D point. For example, a pixel displacement of 18 combined with a
camera pose shift of 392 results in a PP-ratio of 21. This implies that at least
21 consecutive camera poses share the same pixel value, which means that all
these 21 camera poses can utilize this RGB value for training purposes.

For a pixel x = (u, v) located in the u-th column and v-th row of the k-th
RS frame IRk (x), we determine both the forward PP-ratio ρk→k+1(x) and the
backward PP-ratio ρk→k−1(x). This is because the point represented by x can
transition from IRk (x) to IRk+1(x) or IRk−1(x). Consequently, all camera poses
within the range of [v − ρk→k−1(x), v + ρk→k+1(x)] are capable of sampling the
RGB value of x for training purposes.

To compute the forward PP-ratio ρk→k+1(x) for a pixel x in the k-th RS
frame IRk (x), the first step is to estimate the forward optical flow Fk→k+1(x),
utilizing RAFT [33]. Consequently, the row displacement ∆row

k→k+1(x) and column
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displacement ∆col
k→k+1(x) of x from IRk (x) to IRk+1(x) would be the second and

the first element of Fk→k+1(x):

Fk→k+1(x) = RAFT
(
IRk (x), I

R
k+1(x)

)
, (5)

∆col
k→k+1(x), ∆

row
k→k+1(x) = Fk→k+1(x), (6)

and the calculation are similar for the backward situation.
We then calculate the forward and backward camera pose shift as:

∆pose
k→k+1(x) = v +∆row

k→k+1(x) + (H − v), (7)

= H +∆row
k→k+1(x), (8)

∆pose
k→k−1(x) =

(
H − (v +∆row

k→k−1(x))
)
+ v, (9)

= H −∆row
k→k−1(x). (10)

Finally, we calculate forward and backward PP-ratio as:

ρk→k+1(x) =
∆pose

k→k+1(x)

max(∆col
k→k+1(x), ∆

row
k→k+1(x))

, (11)

ρk→k−1(x) =
∆pose

k→k−1(x)

max(∆col
k→k−1(x), ∆

row
k→k−1(x))

. (12)

Therefore, when dealing with a sampled pixel RGB(x) in the RS frame IRk (x),
where x = (u, v), rather than directly using the v-th pose Tv of IRk (x) for
training, we randomly sample Tv̂ where

v̂ ∈ [v − ρk→k−1(x), v + ρk→k+1(x)]. (13)

Why does Multi-Sampling work? Let us consider a basic task: optimizing
NeRF with H known poses and images (non-RS). Case A: Only one row is
available per pose. Case B : all rows are accessible. Clearly, case B would yield a
better NeRF due to more data per pose. Moving to our RS setting as depicted
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Ls MS Torii Wine Pool Factory Tanabata Average
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

O
n

T
r
a
j. 23.45 .7535 .0448 23.53 .7019 .0681 22.99 .6111 .0784 19.53 .5018 .1072 17.86 .4921 .1030 21.47 .6121 .0803

! 22.25 .6729 .0564 25.60 .7749 .0712 27.22 .7705 .0582 21.81 .6128 .0949 23.42 .7916 .0679 24.06 .7245 .0697
! 26.65 .8572 .0342 25.55 .7637 .0682 25.86 .7303 .0555 25.45 .7754 .0708 20.94 .6802 .0832 24.89 .7614 .0624

! ! 30.97 .9058 .0395 28.36 .8482 .0675 28.50 .8137 .0562 25.43 .7673 .0867 26.40 .8614 .0651 27.93 .8393 .0630

O
u
t

T
r
a
j. 23.26 .7561 .0428 24.05 .7169 .0601 23.27 .6218 .0738 19.98 .5426 .0892 17.85 .5065 .0942 21.68 .6288 .0720

! 22.39 .6875 .0501 26.62 .8113 .0579 27.29 .7783 .0489 22.72 .6624 .0815 24.27 .8286 .0514 24.66 .7536 .0579
! 26.58 .8611 .0308 25.96 .7750 .0612 25.49 .7080 .0549 24.38 .7446 .0742 20.73 .6850 .0751 24.63 .7547 .0592

! ! 33.07 .9499 .0243 29.27 .8703 .0560 28.77 .8313 .0458 25.11 .7738 .0807 27.02 .8881 .0498 28.65 .8627 .0513

Table 2: Quantitative results on synthetic scenes for ablation study. Ls de-
notes the camera trajectory smoothness regularization, and ‘MS’ denotes the multi-
sampling algorithm. We color code each result as best and second best .

in Fig.5, case A is the vanilla RS observation for one RS frame (H rows lead to
H poses), and case B is the virtual GS observation, where all rows are available
for each pose. Thus, case B is the upper bound for case A. Essentially, MS
aims to transport all possible pixel values from nearby poses to fill the missing
observation that can be potentially recovered (case C in Fig.5), i.e., partially
restore the virtual GS observation from the vanilla RS observation, by allocating
additional poses for each pixel, which ensures better results than vanilla RS. Also,
interpolating two poses does not harm MS. We optimize two poses for each frame,
and each in-between pose becomes a fixed blend ratio of two poses. The best
case is virtual GS (Fig.5(B)), where every pixel coordinate can be sampled in all
ratios ( 0

H , 1
H−1 , ...,

H
0 ), resulting in a total of H×W×H data points to optimize

the two poses. In vanilla RS (Fig.5(A)), each coordinate only contributes to one
ratio determined by row indices, producing only 1×W×H data points. With MS
(Fig.5(C)), some pixels are replicated to other poses, allowing multiple ratios for
them. Thus, the number of data points is greater than 1×W×H but less than
H×W×H. This ensures better pose estimation and view synthesis than vanilla
RS.

4 Experiments

4.1 Settings

Datasets. Evaluating RS-aware view synthesis technologies requires synthetic
datasets that have multi-view images with RS distortions and the corresponding
GS ground truth. We synthesize 5 scenes via blender to evaluate our method.
For each scene, we rendered images from various camera poses while moving
the camera gradually around the scene in a forward-facing manner. We then
combined rows from different poses to produce the final RS images. Each scene
comprises 34 images with a resolution of 400×400. We employed the pose of the
middle row of each RS image as the initial camera pose for our model. We also
analyze our model’s robustness to pose initialization in the experiment section.
For evaluation, we used 34 on-trajectory views and 16 out-trajectory views to
test RS correction and novel view synthesis results, respectively. To test our
model in real-world scenarios, we also captured real scenes using the RS camera
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Vanilla Vanilla + ℒ! Vanilla + Mul.Sam. Vanilla + ℒ! 	+ Mul.Sam. Ground Truth

Fig. 6: Qualitative results on synthetic scenes for ablation study. The corre-
sponding error maps and zoomed regions are visualized in the bottom. Our full model
has the smaller error to the GT, with less spatial misalignment and twist caused by
the RS distortion.

Vanilla Vanilla+Ls Vanilla+MS Vanilla+Ls+MS
0.0509 0.0358 0.0462 0.0319

Table 3: Average MSTE (the
lower the better) results for ab-
lation study.

EO-1312C. These RS images were captured by manually moving the camera
during exposure, in a forward-facing manner, with a resolution of 400× 500. We
utilize COLMAP [31,32] for the initial camera pose in our model.
Evaluation Metrics. The quality of the rendered image is evaluated with the
commonly used metrics including PSNR, SSIM and LPIPS [38]. To evaluate
the accuracy of the estimated camera trajectory, we calculate the Mean Square
Trajectory Error (MSTE) with the ground-truth camera trajectory.

4.2 Implementation Details

In each training iteration, we randomly choose 64 rows from each of the images
and 2 pixels from each of these rows. We employ the Adam optimizer [16] with
β1 = 0.9 and β2 = 0.999 to optimize our model. The learning rate is initially
set at 5 × 10−4 and undergoes exponential decay throughout the optimization
process. To avoid potential errors from inaccurate optical flow estimation, we
disable multi-sampling and use the vanilla sampling strategy in the later part
of the training process. This makes the model use much fewer but absolutely
accurate data points in the final training phase. Each scene is trained for 200,000
iterations. All this training is conducted on a single NVIDIA 4090 GPU.

4.3 Ablation Study

To comprehensively evaluate the effectiveness of each component in our RS-
NeRF model, we carried out extensive ablation studies. The quantitative and
qualitative results are presented in Tab. 2, Fig. 6 and Tab. 3, respectively.
Trajectory Smoothness Regularization. The accurate estimation of camera
trajectory is crucial for effectively restoring normal images from RS inputs, given
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Methods Torii Wine Pool Factory Tanabata Average
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

O
n

T
r
a
j. DU 21.23 .6409 .0845 19.87 .4520 .1329 23.08 .5394 .1189 19.95 .5128 .1325 18.17 .5262 .1213 20.46 .5343 .1180

CVR 19.94 .6148 .1454 18.86 .4090 .2052 21.51 .5173 .1885 18.59 .4851 .1883 17.45 .5277 .1848 19.27 .5108 .1824
JAM 20.66 .6311 .0872 19.50 .4214 .1595 22.43 .5180 .1263 19.34 .4907 .1510 17.87 .5342 .1292 19.96 .5191 .1307
RS-NeRF 30.97 .9058 .0395 28.36 .8482 .0675 28.50 .8137 .0562 25.43 .7673 .0867 26.40 .8614 .0651 27.93 .8393 .0630

O
u
t

T
r
a
j. NeRF 19.35 .5976 .2535 19.06 .3845 .3550 22.02 .4740 .3196 17.87 .4075 .3570 17.56 .4958 .3019 19.17 .4719 .3174

DU+NeRF 20.33 .6585 .2528 20.85 .4923 .3404 23.25 .5403 .2860 19.16 .5037 .3219 18.14 .5226 .3102 20.35 .5435 .3022
CVR+NeRF 23.67 .7779 .1967 22.27 .6114 .2791 24.56 .6802 .2408 19.81 .5619 .2996 18.58 .6250 .2736 21.78 .6513 .2580
JAM+NeRF 24.13 .7852 .1512 22.14 .5801 .2822 25.51 .6867 .1855 20.46 .5834 .2717 18.63 .6357 .2388 22.18 .6542 .2259
RS-NeRF 33.07 .9499 .0243 29.27 .8703 .0560 28.77 .8313 .0458 25.11 .7738 .0807 27.02 .8881 .0498 28.65 .8627 .0513

Table 4: Quantitative comparison on synthetic scenes of different methods.
DU, CVR, and JAM represent DeepUnroll [22], CVR [10], and JAMNet [11] respec-
tively. We color code each result as best and second best .

the inherent formation process of RS effects. As evidenced in Tab. 2, RS-NeRF
enhanced with trajectory smoothness regularization (Ls) shows notable improve-
ments over the vanilla model. Specifically, it achieves a PSNR increase of 2.59
for on-trajectory views and 2.98 for out-trajectory views. Additionally, removing
Ls from our full model leads to a PSNR decrease of 3.04 for on-trajectory views
and 4.02 for out-trajectory views. The qualitative results further underscore the
effectiveness of Ls. As illustrated in Fig. 6, the vanilla RS-NeRF, when comple-
mented with Ls, exhibits reduced spatial misalignment and a smaller synthesis
error to the ground truth. Furthermore, Tab. 3 reveals that the vanilla RS-NeRF
tends to provide an inaccurate trajectory estimation, primarily focusing on the
photo-metric loss for each image and overlooking the pattern of camera move-
ment across different RS frames. In contrast, the ‘Vanilla + Ls’ model, with the
addition of smoothness regularization, yields a more accurate estimation of the
camera trajectory, resulting in improved synthesis outcomes.
Multi-Sampling Algorithm. The Multi-sampling algorithm in RS-NeRF sig-
nificantly enhances the training data available for each intermediate pose by
calculating the PP-ratio for each pixel, marking a notable advancement over the
vanilla model. According to the results in Tab. 2, RS-NeRF equipped with the
multi-sampling algorithm shows substantial improvements: a PSNR increase of
3.42 for on-trajectory views and 2.95 for out-trajectory views. Moreover, exclud-
ing the multi-sampling algorithm from our full model leads to a PSNR reduction
of 3.87 for on-trajectory views and 3.99 for out-trajectory views. The qualitative
results also affirm the effectiveness of it. As depicted in Fig. 6, our model, with
the multi-sampling algorithm, displays fewer artifacts and a smaller synthesis er-
ror to the ground truth. Interestingly, the multi-sampling algorithm also seems
to enhance trajectory estimation. As shown in Tab. 3, RS-NeRF with only the
multi-sampling algorithm (Vanilla + MS) provides a more accurate trajectory
estimation than the vanilla model, which likely contributes to its significantly
improved synthesis results.

4.4 Comparisons

To evaluate the effectiveness of RS correction for on-trajectory images, our
method is compared with three state-of-the-art 2D RS correction techniques:
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Input RS Frame DU CVR JAM RS-NeRF GT

O
N

 T
R
A
J.

O
U
T
 T

R
A
J.

NeRF DU + NeRF CVR + NeRF JAM + NeRF RS-NeRF GT

Fig. 7: Qualitative comparison results on synthetic scenes. The corresponding
error maps and zoomed regions are visualized in the bottom. DU, CVR, and JAM
represent DeepUnroll [22], CVR [10], and JAMNet [11] respectively.

Methods Torii Wine Pool Factory Tanabata Average
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

O
n

T
r
a
j. USB-NeRF [19] 26.32 .8283 .0825 24.72 .7105 .1673 26.72 .7130 .1592 24.32 .7213 .1369 23.05 .7359 .1333 25.02 .7418 .1359

DRSC [26] 23.04 .8008 .0539 21.84 .6895 .0880 22.85 .6962 .0874 20.85 .6901 .0967 21.19 .7492 .0731 21.95 .7251 .0798
RS-NeRF 30.97 .9058 .0395 28.36 .8482 .0675 28.50 .8137 .0562 25.43 .7673 .0867 26.40 .8614 .0651 27.93 .8393 .0630

O
u
t

T
r
a
j. USB-NeRF [19] 28.95 .8932 .0736 25.75 .7446 .1619 28.13 .7765 .1576 25.25 .7676 .1427 24.62 .7853 .1204 26.54 .7935 .1313

DRSC [26]+NeRF 21.51 .6790 .2831 20.30 .5145 .3001 22.66 .5614 .3021 18.99 .5295 .2904 18.35 .5643 .2962 20.36 .5697 .2944
RS-NeRF 33.07 .9499 .0243 29.27 .8703 .0560 28.77 .8313 .0458 25.11 .7738 .0807 27.02 .8881 .0498 28.65 .8627 .0513

Table 5: Quantitative comparisons on synthetic scenes with DRSC [26]+NeRF
and USB-NeRF [19]. We color code each result as best and second best .

DeepUnroll [22], CVR [10], and JAMNet [11]. To evaluate out-trajectory views,
we selected several baselines for comparison. The most basic approach is to train
NeRF directly using RS images. We further compare our method with two-stage
baselines that initially apply state-of-the-art 2D RS correction methods (Deep-
Unroll [22], CVR [10], and JAMNet [11]) to restore GS images, followed by train-
ing NeRF with these restored images. For 2D RS correction methods, we utilized
the official checkpoints for evaluation. Furthermore, we compare RS-NeRF with
DRSC [26] and USB-NeRF [19].
Quantitative Results. Quantitative comparison results are shown in Tab. 4
and Tab. 5. 2D RS correction methods do not yield satisfactory outcomes and
receive obvious lower metrics due to twist artifacts and spatial misalignment. In
contrast, our approach significantly exceeds these methods in all metrics from
both on-trajectory and out-trajectory views by incorporating the RS formation
process into the modeling and utilizing the multi-view information from con-
tinuous RS frames. USB-NeRF [19] integrates basic camera motion modeling,
i.e., assigning unique camera poses for different rows to account for the RS ef-
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NeRF DU + NeRF RS-NeRFCVR + NeRF JAM + NeRF

Fig. 8: Qualitative comparison results on real-world scenes. Our method
achieves superior performance on real-world scenes.

DRSC+NeRF USB-NeRF RS-NeRF

DRSC+NeRF USB-NeRF RS-NeRF GT

Fig. 9: Qualitative comparison results on synthetic and real-world scenes
with DRSC [26]+NeRF and USB-NeRF [19].

fect, without additional technical improvements. The comparison shows that this
approach fails to deliver satisfactory results compared to RS-NeRF.
Qualitative Results. The qualitative performance of our method is compared
to others through tests on synthetic and real-world datasets. In synthetic scenes,
as shown in Fig. 7, 2D RS correction methods struggle with twisting artifacts
and spatial misalignment for on-trajectory views. In contrast, our method takes
advantage of multi-view information for RS correction, leading to significantly
better results. For out-trajectory views, while 2D RS correction methods com-
bined with NeRF moderately enhance the reconstruction results, they still ex-
hibit noticeable visual flaws, such as blurriness. RS-NeRF excels by integrating
the RS formation process into the model and accurately learning the underlying
3D representation for joint RS correction and novel view synthesis. Qualitative
results in real world scenes are shown in Fig. 8. We can observe that baseline
methods show obvious artifacts, particularly around object edges. Also, the per-
formance of 2D RS correction combined with NeRF is poorer in real-world scenes
than in synthetic ones, which further demonstrates the generalization issues of
2D RS correction methods with real-world data. RS-NeRF, on the other hand,
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Perturbation On Traj. Out Traj. MSTE ↓
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

None 27.93 .8393 .0630 28.65 .8627 .0513 .0319
U [−0.01, 0.01] 27.97 .8403 .0610 28.84 .8680 .0485 .0297
U [−0.03, 0.03] 28.31 .8479 .0578 29.00 .8693 .0470 .0304
U [−0.05, 0.05] 28.47 .8530 .0580 29.24 .8769 .0466 .0308
U [−0.07, 0.07] 28.43 .8504 .0597 29.25 .8771 .0471 .0336

Table 6: Quantitative re-
sults on synthetic dataset
for different noise pertur-
bations on pose initializa-
tion. The results demonstrate
that our model is robust to the
accuracy of pose initialization.

significantly outperforms these methods with clear edges and detailed rendering,
consistent with results in synthetic scenes. Fig. 9 also demonstrates the superi-
ority of RS-NeRF over DRSC [26]+NeRF and USB-NeRF [19] on synthetic and
real-world scenes.

4.5 Discussion and Limitations

Robustness to pose initialization. We evaluated the robustness of our method
to the precision of pose initialization on synthetic dataset by introducing ran-
dom noise of varying scales to the initial poses in the SE(3) space and using
these altered poses for initialization. The results, as detailed in Tab. 6, indicate
that our method maintains superior performance across different levels of noise
perturbation. These results confirm the robustness of RS-NeRF in the accuracy
of pose initialization. However, it is important to note that our method might
fail when completely random poses are used for initialization. This challenge is
also an ongoing issue in the field of NeRF-without-Poses, as discussed in works
like [5, 20]. Addressing this limitation is a direction that we plan to pursue in
future research.
Limitations. Similar to previous works that address NeRF with abnormal in-
puts [24, 36], our model is designed to handle degradation (referred to the RS
effects in our context) caused by camera movements, since we primarily model
the camera trajectory. When encountering scenarios where RS effects are caused
by object movements, i.e., dynamic scenes, our method may fail and produce
unsatisfying results. We plan to involve the modeling of object movements based
on dynamic NeRFs in future work.

5 Conclusion

In this paper, we present RS-NeRF, a method designed to synthesize normal
images from novel views using input with Rolling Shutter (RS) distortions. We
formulate a physical model that replicates the image formation process under RS
conditions and jointly optimizes the NeRF parameters and the camera extrinsic
for each image row. We then identify and address the fundamental limitations
of the standard RS-NeRF model by introducing two innovative approaches: tra-
jectory smoothness regularization and the multi-sampling algorithm. Through
rigorous experimentation, we demonstrate that RS-NeRF surpasses previous
methods in both synthetic and real-world scenarios, confirming its efficiency
in rectifying distortions caused by RS cameras.
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