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1 Overview

To facilitate a more comprehensive analysis and understanding of MetaCap
and experiment configurations, we offer additional results (Sec. 2), method de-
tails (Sec. 3, 4), implementation details (Sec. 5), method costs (Sec. 6), compar-
isons (Sec. 7, 8), ablations (Sec. 9), applications (Sec. 10), and temporal results
(Sec. 11).

2 More Results on Different Poses and Subjects

Fig. 1 presents additional qualitative results showcasing the performance of our
method across diverse motions and subjects. Since our method learns the meta
prior in the canonical pose space, it is robust to various testing poses.

3 Template Model

We revisit two types of human template, SMPL [7] and DDC [4] and demon-
strate how to compute the transformation matrix and deformed position for
each vertex, which are crucial for the canonicaliztion step. Here, each template
has vertices X̄ ∈ RV×3 in canonical pose M̄ = {θ̄, ᾱ, z̄}. θ̄, ᾱ, z̄ represents
the joint rotations, the root rotation, and the root translation of canonical
pose, respectively. We define a window size W skeletal motion at time f as
Mf,W = {θf−W ,αf−W , zf−W , ...,θf ,αf , zf}. If W is not explicitly set, it de-
faults to 1.

3.1 Parametric Template–SMPL

SMPL [7] is a parametric human body model. It characterizes V vertices and
J joint positions of the human mesh using shape parameters, β, canonical
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Fig. 1: Qualitative Results. Here, we showcase additional qualitative results of
MetaCap utilizing four-view images as inputs, demonstrating its robustness across
diverse poses and different subjects.

pose parameters, M̄, and pose parameters, M. The overall mesh deformation,
Tdef(β,M), is determined by the sum of shape dependent displacements and
pose dependent displacements. Linear Blend Skinning (LBS) is employed for
animating the deformed mesh:

TFK,i(M,M̄) =

J∑
j=1

wj,iTj(M)(

J∑
j=1

wj,iTj(M̄))−1 (1)

T = TFK(M,M̄)Tdef(β,M) (2)
X = TX̄ (3)
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Fig. 2: Illustrations of image proxy. (a) Visualization of the camera distribution for
rendering the proxy images. (b) Monocular frames used to generate in-the-wild image
proxy. (c) Proxy images in the dome. (d) Proxy images in the wild. Best viewed with
zoom.

where wj,i is the blend weight from joint j to vertex i, Tj(M) denotes the joint
j’s local transformation, TFK,i(M,M̄) represents the global transformation of
the deformed vertex i from canonical pose M̄ to the pose M.

3.2 Deformable Template–DDC

DDC [4] is a personalized deformable body model. It models motion-dependent
body deformation with embedded graph deformation and vertex displacements.
Given a window size W skeletal motion Mf,W at time f , it employs Graph
Convolutional Networks (GCN) [21] to estimate the embedded-graph’s deforma-
tion parameters A,T ∈ RK×3 and the per-vertex displacements d. The final
geometry is obtained through Dual Quaternion Skinning (DQS):

Tdef,i(Mf,W ) =
∑
k

wk,i

[
R(ak) di + (I −R(ak))gk + tk−→

0 1

]
(4)

T = TFK(Mf ,M̄)Tdef(Mf,W ) (5)
X = TX̄ (6)

where wk,i represents the weight from graph node k to vertex i, R(·) transforms
Euler representations into matrix representations, ak and tk are node k’s lo-
cal rotation and translation, gk denotes the position of node k. TFK(Mf ,M̄)
represents global transformation from initial pose M̄ to pose Mf . In the imple-
mentation of DDC, the window size is set to 3. Note that, Mf represents the
pose at frame f , and the motion window of it is 1.

4 Proxy Image Generation for Occlusion Handling

We propose the occlusion handling to address missing information when occlu-
sion happens. To offer additional information for the occluded areas, we render
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proxy images of the human in canonical pose space. Depending on the light-
ing condition and camera setup, we have two configurations: in-the-dome and
in-the-wild. Here, we demonstrate the details of proxy image generation (see
Fig. 2).

4.1 Proxy Image Generation in the Dome

We have dense-view cameras for the in-the-dome case. Consequently, we select
one frame to reconstruct its geometry and texture with space canonicalization.
This enables us to render novel-view in-the-dome proxy images in the canonical
space (see Fig. 2 (c)).

4.2 Proxy Image Generation in the Wild

Under the in-the-wild scenarios, where sparse-view or monocular cameras are
predominant, occlusion handling becomes particularly crucial, especially in monoc-
ular scenarios. Consider the most challenging scenario, namely the monocular
camera setup. In such situations, it is not feasible to directly reconstruct geome-
try and appearance like in-the-dome scenario. Instead, leveraging the capabilities
of the meta prior, we fine-tune multiple frames (see Fig. 2 (b)) into a unified
canonical space simultaneously to construct a complete human representation.
We then render it into novel-view in-the-wild proxy images in the canonical space
(see Fig. 2 (d)).

5 Implementation Details

In this section, we present implementation details of MetaCap (Sec. 5.1), im-
plementation details of methods that we compare with (Sec. 5.2), ablations
(Sec. 5.3), and comparison on in-the-wild sequences (Sec. 5.4). Fig. 3 illustrates
the camera distribution when conducting the prior learning, fine-tuning and
evaluation in the comparisons. These three sets of cameras do not overlap. Ad-
ditionally, the motions used for prior learning and fine-tuning are distinct.

5.1 MetaCap

Space Canonicalization. During comparison, we utilize the deformable tem-
plate DDC [4] as the default template for space canonicalization. To acquire
the template and the deformation parameters, we first create a character with
smoothed template, embedded graph, skeleton and default motion. Subsequently,
we follow the methodology outlined in [4] to implement multi-view silhouette su-
pervision using a differentiable renderer [1] and distance transformation [3]. For
the loose-cloth subject ’S5’, we apply additional Chamfer loss supervision. For
parametric models SMPL [7] and SMPL-X [11] used in the ablations and compar-
ison methods, we first obtain 3D marker positions by animating the character’s
skeleton with the same motions used in the deformable template. We then utilize
EasyMocap [2] to estimate the shape and pose parameters.
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Fig. 3: Visualization of the camera distribution for prior learning, inference and evalu-
ation in the comparison with state-of-the-art methods. Dense-view cameras with purple
color are the training views used for prior learning. Four-view cameras with green color
are the input views during inference. Six-view cameras with red color are the evaluation
views.

Meta-learning and Fine-tuning. During the meta-learning stage, we use ap-
proximately 100-frame images captured by 100-view cameras, paired with human
template at each frame. We apply SGD [13] with lout = 1.0 to the outer loop and
Adam [6] with lin = 1e−4 to the inner loop. In each outer loop sampling step, we
randomly sample M = 24 camera views and rays on each image simultaneously.
After M = 24 unrolled gradient steps in the inner loop, we follow Reptile [8] to
update the outer loop weights. The inner loop is warmed up by linearly updating
learning rate from 1% to 100% for the first 50 outer loop steps. The template
threshold η is set to 0.05 for ‘S2’ and ‘S5’, and to 0.01 for ‘S3’ and ‘S27’, with
a threshold decay to 50% applied after 300 outer loop steps. The total number
of meta-learning outer loop steps is 2000. The input images are resized to 50%
and applied Gaussian blur with a 5 ∗ 5 kernel. The weights of loss functions are
set as λc = 10.0, λe = 0.1, λm = 0.1, λs = 0.01.

During the fine-tuning stage, we load the meta-learned weights and apply
the Adam optimizer [6] with learning rate lr = 1e − 4, β1 = 0.9, β1 = 0.99,
ϵ = 1e − 15 to fine-tune weights for 3000 steps. In each step, we randomly
sample 8192 rays from all input observations. The template threshold η is set
0.05. There’s no warm-up in this stage. The weights of loss functions are set as
λc = 10.0, λe = 0.1, λm = 0.1, λs = 0.01.
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5.2 Comparison Methods

DeepMultiCap. As DeepMultiCap [22] is trained on a large scale human scan
dataset and exhibits generalization ability, we utilize the official checkpoint with-
out additional fine-tuning. It relies on SMPL-X as the template model to provide
geometry and global normal maps. Following the template procedure outlined
earlier, we fit SMPL-X and subsequently render it to produce normal maps.

DiffuStereo. Official DiffuStereo [16] utilizes geometry results from Double-
Field [15] for initializing the disparity maps. Since DoubleField [15] is not open
source, we employ the deformable template [4] as a substitute for initializing
the disparity maps, as it contains rough geometry information. Subsequently, we
use the official checkpoint trained with 20-degree angle images to refine the dis-
parity maps. Due to the large camera baseline from 4-view cameras, the output
point-clouds are often incomplete. Therefore, we incorporate additional template
point-clouds to complete the mesh when applying the Possion surface reconstruc-
tion [5].

Drivable Volumetric Avatars (DVA). The dataset division of DVA [12] is
the same as ours, including human template, training multi(dense)-view images
and testing sparse-view images. We utilize the official code with our estimated
SMPL-X parameters. We train the personalized DVA model using images from
dense-view training set. At the testing stage, we adhere to the original paper’s
manner that no fine-tuning added, and employ sparse-view images and template
to render novel view images. Given that DVA does not focus on geometry re-
construction, we extract their estimated primitive parameters, convert them to
box meshes, and use Possion surface reconstruction [5] to reconstruct the final
watertight mesh.

TransHuman. TransHuman [9] is trained on multi-view videos with multi-
ple subjects. However, We found that directly applying the official pre-trained
checkpoint on our data yields low-quality results. Therefore, for each subject, we
fine-tune them individually on our training set, and generate testing set results
without additional fine-tuning.

ARAH. ARAH [18] incorporates a meta prior [17] trained from a large scale
scan dataset. In our implementation, we use the official checkpoint as initializa-
tion and further fine-tune it with all the frames in the testing set. It’s worth
noting that other methods only utilize 1-frame sparse-view images as input dur-
ing inference.

5.3 Ablations

Weight Initialization and Space Canonicalization. During this ablation
study, we maintain the camera setup consistent with the comparison section.
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Specifically, we utilize dense-view cameras for prior learning and four-view cam-
eras for fine-tuning.

We have three types of network initialization consisting of two baseline meth-
ods random weights, pre-trained weights and our meta weights. Random weight
initialization utilizes the default weight initialization from PyTorch [10]. Pre-
trained weights are trained on the same views and frames as meta-learning.
It’s implemented by setting M = 1 in meta-learning process and training for
1000 steps. When performing the fine-tuning with random initialization and pre-
trained initialization, we reserve 500 warm-up steps. Meta weights are obtained
following the procedure outlined in Sec. 5.1.

In terms of space canonicalization, we employ three types: root canonicaliza-
tion, SMPL canonicalization, and DDC canonicalization. Root canonicalization
is implemented by transforming world-space points to canonical space with the
transformation of root joint of human from motions. With SMPL template and
SMPL motion parameters, we perform a more fine-grained canonicalization by
determining the transformation of each world-space point to the nearest points.
When using DDC as the template, the canonicalization procedure is similar to
SMPL template, but the transformation computation is adjusted for DDC.

Number of Camera Views and Occlusion Handling. In this ablation
study, we investigate the impact of different camera views and occlusion han-
dling. Specifically, we utilize DDC as the template for space canonicalization and
meta weights for weight initialization.

We first evaluate the effect of varying camera numbers in the meta-learning
phase. We utilize 4-view cameras for fine-tuning, while we experiment with dif-
ferent camera numbers in meta prior learning: 1, 2, 4, 8, and dense.

Next, we evaluate the influence of camera numbers in the fine-tuning phase.
Here, we utilize dense-view cameras for prior-learning but different camera num-
bers in the fine-tuning: 1, 2, 4, 8. Additionally, we examine the influence of oc-
clusion handling (OH) by employing this strategy during monocular fine-tuning.

Convergence Speed and Quality We aim to investigate the the performance
of convergence when using different weight initializations. The camera setup
remains consistent with the comparison section and we utilize DDC as the tem-
plate for space canonicalization. For dynamic evaluation during fine-tuning, we
select a single frame from testing data. The corresponding qualitative results of
the curves are presented in the supplementary video.

5.4 Comparison on In-the-wild Sequences

During the comparison on the in-the-wild sequences, we have four views to pro-
vide inputs and an additional view to offer ground truth images. We follow the
Sec. 5.1 and 5.2 to implement our method and ARAH.
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GT Ours DVA TransHuman ARAHDeepMultiCap DiffuStereo

Fig. 4: Qualitative Comparison. We additionally compare our method with other
approaches on S3 of DynaCap dataset. Our method demonstrates superior performance
in geometry capturing and rendering quality.

Table 1: Quantitative Comparison. For the S3 from DynaCap dataset, our method
still achieves state-of-the-art results for novel-view synthesis and geometry reconstruc-
tion. *Note, that ARAH requires 4D scans for meta learning and videos for the fine-
tuning whereas other methods solely require static images.

Method Subject Appearance Geometry
PSNR ↑ SSIM ↑ LPIPS ↓ NC-Cos ↓ NC-L2 ↓ Chamfer ↓ P2S ↓ IOU ↑

DeepMultiCap [22] S3 - - - 0.131 0.425 1.137 1.158 0.717
DiffStereo [16] S3 - - - 0.143 0.441 1.169 1.269 0.818

DVA [12] S3 24.862 0.824 0.284 0.109 0.378 1.593 2.119 0.465
TransHuman [9] S3 25.136 0.826 0.277 0.118 0.393 1.477 2.006 0.797

ARAH* [18] S3 25.093 0.842 0.278 0.069 0.294 0.780 0.836 0.866
Ours S3 25.528 0.839 0.251 0.106 0.382 0.671 0.792 0.908

6 Learning and Testing Cost Against ARAH

We use 100 frames for the meta prior learning, it takes around 5-6 hours on a
single GPU. When conducting fine-tuning, our method takes between 40 seconds
and 3 minutes for one frame with one GPU. The prior used in ARAH is from
MetaAvatar [17], which uses 10-48 hours for the prior learning in a single GPU.
During fine-tuning, ARAH [18] takes around 16 hours for 90 frames with 4 GPUs,
i.e. around 10 minutes per frame. Thus, our method is significantly faster than
ARAH during meta-learning and fine-tuning.

7 Additional Comparisons on S3

Fig. 4 and Tab. 1 present additional qualitative and quantitative results on the
‘S3’ from DynaCap Dataset [4]. The implementations of the methods are consis-
tent with those in the ‘Results’ section. Our approach continues to outperform
other methods in both rendering and reconstruction.

8 Additional Comparisons on Monocular Methods

Fig. 5 shows additional qualitative comparisons between our method and monoc-
ular reconstruction methods. Here, we initialize our network with the meta
prior and fine-tune it using monocular input images, with occlusion handling
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Monocular Input Image GT Ours (w OH) PiFUHD ICON ECON

Fig. 5: Qualitative Comparison. In this comparison, we compare our method, which
involves monocular fine-tuning with occlusion handling, against other monocular recon-
struction approaches, namely PiFUHD [14], ICON [20], and ECON [19]. Our method
exhibits robustness to the human pose and camera pose, and produces superior geom-
etry and appearance capture.

Table 2: Quantitative Ablation. Here, we study the influence of motion tracking
quality on our method. Comparing to dense mocap, our method with sparse mocap
exhibits a slight decrease in performance.

Method Motion Subject Appearance Geometry
PSNR ↑ SSIM ↑ LPIPS ↓ NC-Cos ↓ NC-L2 ↓ Chamfer ↓ P2S ↓ IOU ↑

ARAH* Dense S2 26.279 0.833 0.302 0.079 0.315 0.839 0.913 0.859
Ours Sparse S2 26.240 0.836 0.253 0.102 0.362 0.712 0.840 0.883
Ours Dense S2 26.529 0.841 0.249 0.096 0.351 0.679 0.814 0.887

applied. Our approach employs perspective camera projection, enabling human
reconstruction in real-world scale and coordinates. In contrast, PiFUHD [14],
ICON [20], and ECON [19] utilize orthogonal camera projection. PiFUHD [14]
exhibits sensitivity to both human and camera poses. ICON [20] demonstrates
limited generalization ability. ECON [19] predicts normal maps for the front
and back sides, and integrates them onto SMPL template. The predicted nor-
mal maps may lack accuracy or fail easily. Our method yields reasonable results
by fine-tuning the canonical space human fields. In the ‘Comparison’ section, our
method outperforms the multi-view method DeepMultiCap [22], which presents
superior results to multi-view PiFUHD.

9 Ablation on Motion Capture Quality

To evaluate the influence of motion capture quality to our method, we replace
motions from dense mocap with sparse mocap and generate rendering and re-
construction results. The sparse motions come from the same four-view camera
setup used for fine-tuning, while the dense motions are estimated from 34 cam-
eras in the dome. Tab. 2 demonstrates that, though the perfomance drops a bit,
our method with sparse mocap still produces comparable rendering quality and
better geometry compared to ARAH [18] with dense mocap.
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Fine-tuned result 1 Fine-tuned result 2Interpolated results

Fig. 6: Appearance and geometry interpolation on two fine-tuned results. The red
and green boxes represent the appearance and geometry of different frames’ fine-tuned
results displayed in both world space and canonical space.

Fig. 7: Animating our four-view fine-tuned results over time. Our hybrid representation
can be easily animated with motion and corresponding template.

10 Applications

10.1 Interpolation in Weight Space

Thanks to the space canonicalization and meta initialization, we are able to
linearly interpolate results from different frames in the weight (hyper) space
and produce meaningful novel interpolated appearance and geometry results, as
shown in Fig. 6. This experiment further validates our hypothesis that space
canonicalization narrows the range of spatial features and facilitates meta prior
learning.

10.2 Animating the Fine-tuned Results

After fine-tuning our meta prior with four-view images, we obtain a canonicalized
hybrid human avatar. This avatar can be easily animated with novel motions and
corresponding deformable template, like Fig. 7. The animated results maintain
photorealistic appearance and high-quality geometry.

11 Temporal Fine-tuned Results

Fig. 8 shows fine-tuned results on a temporal sequence. As our method is not
designed for temporal inputs, we generate these results by a frame-by-frame
fine-tuning. Please refer to the project page for the video display.
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Fig. 8: Fine-tuned results on a temporal sequence using a frame-by-frame manner.
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