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Fig. 1: We propose MetaCap, a new approach for capturing 3D humans from sparse-
view or even monocular images, which enables high fidelity 3D geometry recovery and
photoreal free-view synthesis within a range of seconds to minutes.

Abstract. Faithful human performance capture and free-view render-
ing from sparse RGB observations is a long-standing problem in Vision
and Graphics. The main challenges are the lack of observations and the
inherent ambiguities of the setting, e.g. occlusions and depth ambiguity.
As a result, radiance fields, which have shown great promise in cap-
turing high-frequency appearance and geometry details in dense setups,
perform poorly when naïvely supervising them on sparse camera views,
as the field simply overfits to the sparse-view inputs. To address this,
we propose MetaCap, a method for efficient and high-quality geome-
try recovery and novel view synthesis given very sparse or even a single
view of the human. Our key idea is to meta-learn the radiance field
weights solely from potentially sparse multi-view videos, which can serve
as a prior when fine-tuning them on sparse imagery depicting the hu-
man. This prior provides a good network weight initialization, thereby
effectively addressing ambiguities in sparse-view capture. Due to the ar-
ticulated structure of the human body and motion-induced surface de-
formations, learning such a prior is non-trivial. Therefore, we propose to
meta-learn the field weights in a pose-canonicalized space, which reduces
the spatial feature range and makes feature learning more effective. Con-
sequently, one can fine-tune our field parameters to quickly generalize to

https://vcai.mpi-inf.mpg.de/projects/MetaCap/
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unseen poses, novel illumination conditions as well as novel and sparse
(even monocular) camera views. For evaluating our method under differ-
ent scenarios, we collect a new dataset, WildDynaCap, which contains
subjects captured in, both, a dense camera dome and in-the-wild sparse
camera rigs, and demonstrate superior results compared to recent state-
of-the-art methods on, both, public and WildDynaCap dataset.

Keywords: Human Performance Capture · Meta Learning

1 Introduction

Human performance capture has made enormous strides in recent years. Typ-
ically, the quality of the reconstruction improves with the number of cameras
being used. The highest-quality results are obtained using many—8 or more—
calibrated cameras in a dome-like configuration [9, 17, 64, 67, 92]. However, such
capture domes are expensive and difficult to set up, which restricts their appli-
cability. A truly practical solution ought to be easy to deploy while supporting
arbitrary camera configurations, including sparse ones, i.e. four or less cameras.
Unfortunately, sparsity comes with its own challenges, such as self-occlusions
and depth ambiguities, which often result in lower quality outcomes.

How to mitigate the effects of these ambiguities and missing information is
the core problem of sparse-view reconstructions and researchers have explored
different priors to compensate for the ambiguities of such an ill-posed problem.
Earlier works introduce priors on template meshes [20, 21, 27, 85] to solve the
above ambiguities. However, meshes suffer from limited resolution and are not
easy to incorporate into learning frameworks. Implicit surface representations
offer a promising alternative and some methods [59, 94] can learn implicit field
priors from large-scale human scan datasets. However, they suffer from blurry
appearance and poor generalization capability because the amount of data is
limited and model capacity is small. While many works have recently focused
on animatable implicit radiance fields for humans [18,37,55,78,80,93], only few
[16,38,48,87] have explored priors for optimizing or fitting a neural implicit field
given sparse imagery. They usually only show results for simple objects, but not
for complex structures like articulated humans.

Recently, some works [68, 72] showed that meta-learning can learn powerful
neural field priors for few-shot learning. To learn the field prior for personalized
high fidelity human capture more effectively, we argue that we should decom-
pose the human model into a coarse-level geometry represented by mesh-based
templates [19, 39] and a fine-level neural implicit field [76, 79, 92] accounting for
details such as clothing wrinkles. The coarse-level prior from multi-view images
is easier to obtain and can serve as a crucial component in fine-level prior learn-
ing. At the fine level, we, for the first time in literature, explore learning a meta
prior from images for an implicit human representation, which at test time can
be optimized using sparse image cues, thereby allowing fast adaptation to unseen
poses, novel views, different camera setups, and novel illumination conditions.
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Our method, dubbed MetaCap, represents the fine-level human body as a
signed distance field (SDF) and an appearance field parameterized with an effi-
cient hashgrid encoding [45], which can be volume rendered [76] into an image.
To learn an effective prior for such a representation, we propose to meta-learn
the hashgrid parameters solely from multi-view imagery during training in an
end-to-end manner, i.e. learning the optimal weights, which, at test time un-
der the sparse settings, yield improved convergence rate and accuracy. However,
naïvely meta-learning these implicit parameters for static scenes [68,72], leads to
poor performance on complicated settings such as human performance capture
(Fig. 5). This is because the human surface is highly articulated and always de-
forms. Thus, learning hashgrid parameters, which live on a spatially fixed grid,
is not effective, e.g. the limbs can be mapped onto entirely different hash ta-
ble parameters depending on their articulation. Therefore, we further propose
a space canonicalization step, i.e. we transform points from global space to a
canonical pose space. To obtain the transform, we query the nearest transforma-
tion of a coarse-level human template. We highlight that this canonicalization is
not tightly bound to a specific template, but supports deformable human mod-
els [19] as well as parametric (piece-wise rigid) body models [39]. Additionally,
we introduce occlusion handling, where we use a visibility map to guide the ray
sampling, enabling reconstruction of heavily occluded regions at sparse or even
monocular inputs at inference time.

We evaluate our method on the DynaCap [19] benchmark, which provides
multi-view recordings of humans in a controlled studio setup. However, DynaCap
lacks in-the-wild scenes for evaluating the robustness to various environment
conditions such as the difference in lighting and camera parameters. Thus, we
provide a new dataset, WildDynaCap, containing paired dense multi-view stu-
dio captures and sparse multi-view in-the-wild recordings for each subject. In
summary, our main contributions are:

– A meta-learning method learned from multi-view imagery for high-quality
reconstruction of human geometry and appearance under sparse cameras.

– At the technical core, we propose a meta-learning strategy to learn the op-
timal weights of an implicit human representation solely from multi-view
images, which effectively serves as a prior when deployed to the sparse re-
construction task.

– We further demonstrate the importance of space canonicalization for the
human-specific meta-learning task, and introduce a dedicated occlusion han-
dling strategy.

Our quantitative and qualitative experiments demonstrate that MetaCap achieves
state-of-the-art geometry recovery and novel view synthesis compared to prior
works. Our evaluations also demonstrate that MetaCap generalizes to novel
poses and induced surface deformations, change of lighting conditions, and cam-
era parameters. Moreover, we highlight the versatility of our approach as our
meta-learning strategy can be supervised on an arbitrary number of views also
including monocular videos. Similarly, during fine-tuning, our approach supports
reconstruction from sparse in-the-wild multi-view images as well as monocular
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imagery (see Fig. 1). Last, our method is agnostic to the choice of the deformable
human model, thus, even supporting loose types of apparel.

2 Related Work

In the following, we discuss prior works on (1) scene-agnostic implicit represen-
tations for novel view synthesis and reconstruction, (2) human-specific sparse-
view reconstruction and rendering methods, (3) personalized performance cap-
ture and (4) 3D reconstruction using meta-learning. Animatable avatar meth-
ods [18,19,32,34,37,40,41,51,61,65,95,98], which only take the skeletal pose as
input during inference, are not in our scope, since we focus on the reconstruction
task, i.e. recovering geometry and appearance from 2D imagery during inference.
Scene-agnostic Implicit Representations. The emergence of implicit rep-
resentations for 3D scene reconstruction [42, 52, 59, 76] and novel-view synthe-
sis [3–5, 44] paved the way towards compact and high-fidelity scene representa-
tions. Subsequent methods have attempted to improve upon a variety of aspects,
such as faster training [7, 13, 45], faster inference [29, 88], sparse [8, 16, 38] and
monocular-view [15, 89] reconstruction. In our work, we build upon the scene
representation introduced in NeuS2 [79] and Instant-NSR [92]. They leverage
multi-grid hash encoding [45] for parameterizing the implicit surface [76] to en-
able fast and high quality reconstruction. However, they require sufficiently dense
multi-view images to ensure accurate geometry and appearance recovery. Due to
occlusions and the depth ambiguity inherently present in the sparse setup, sim-
ply optimizing such methods with sparse RGB imagery leads to poor reconstruc-
tions. More recently, some methods explored different geometry priors [16, 38]
or regularizations [28, 48, 87] to enable few-shot novel view synthesis. However,
none of them proves to be effective under large camera baselines or sparse 360◦

scenarios, where the image observations are very limited and occlusions happen
more frequently. We address these challenges by meta-learning an optimal set of
initial hashgrid parameters, which effectively serves as a prior during inference
on sparse observations, and a human-specific space canonicalization.
Sparse-View Performance Capture and Rendering. Beyond occlusions
and the depth ambiguity, sparse performance capture comes with the additional
challenges of modeling and capturing the body articulations as well as complex
surface deformations of the clothes. To compensate for the absence of dense
supervision, sparse human reconstruction methods typically employ additional
priors. They range from using a parametric template for a coarse initialization
of the geometry [54–56, 62, 94, 96], to using depth supervision [49, 70, 86, 90, 99]
and data-driven priors [10, 24, 59, 60, 64, 73, 77, 83, 84, 94, 97]. Several volumetric
rendering-based methods focus on learning the human geometry and appearance
in the canonical space [26, 50, 54, 56, 58, 63, 74, 75], which learns shared features
across different poses. While such methods excel in novel view synthesis tasks, the
recovered geometry is often coarse. Some works [6,31,43,50] learn radiance field
priors from large scale datasets. However, their conventional learning strategy
limits their fine-tuning ability. Another key challenge in human reconstruction is
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associated with the modeling of loose clothing. Previous methods have attempted
to address this by optimizing the vertex deformations on top of a template
model [19–21, 41, 82] or by modeling clothes as a separate layer [11, 75]. In this
work, we utilize a hybrid representation where we leverage an explicit human
model to facilitate meta-learning an optimal set of weights parameterizing an
implicit field in a pose-canonicalized space.
Personalized Performance Capture. In contrast to generalizable perfor-
mance capture methods [50, 59, 78, 94], personalized human capture first builds
a person-specific prior on multi-view data [10, 21, 35, 36, 66, 74, 81] while during
inference the avatar can be reconstructed from sparser signals, e.g. a monocular
image. Therefore, the goal of such methods is less about cross-identity general-
ization, but rather highest-fidelity surface and appearance recovery from sparse
sensory data while ensuring generalization to different human motions, lighting
condition, camera poses, camera numbers, and surface dynamics. Our setting
is most closely related to these methods. However, we for the first time in lit-
erature propose meta-learning as a prior on the implicit human representation
solely from images while experimentally showing that we outperform previous
methods operating under the same setting.
Reconstruction with Meta-Learning. Meta-learning is intended to learn
from multiple tasks or a single task [23]. When new observations are presented,
domain adaptation or improved performance can be achieved with minimal train-
ing iterations. Here, we focus on optimization-based methods [2, 12, 33, 47, 57],
especially MAML [12] and Reptile [47]. MetaSDF [68] learns SDF priors and
achieves faster inference than auto-decoder methods [52]. Tancik et al. [72] ap-
ply a similar strategy to different coordinate-based neural representations, such
as image fields and radiance fields [44]. MetaAvatar [77] extends this idea from
static to dynamic human representations. After meta-learning on 3D human
scans [41], the learned SDF weights can be fine-tuned using a few depth maps.

ARAH [78] is methodically most closely related to our work. However, there
are significant differences: 1) They meta-learn human priors from 3D scans while
only supporting image-only supervision during fine-tuning. In stark contrast,
our formulation allows meta-learning from potentially sparse images directly
as we deeply entangle the volume rendering and hash-grid parameterization
with the meta-learning routine. Our end-to-end prior learning and fine-tuning,
thus, enables better recovery of high-frequency geometry and appearance. 2) Our
whole design, i.e. space canonicalization and scene parameterization, is geared
towards efficiency, significantly improving the fine-tuning time, reducing from
hours (ARAH) to minutes (MetaCap). 3) We experimentally show that our
canonicalization is agnostic to specific template choices, thus, we can also ac-
count for loose clothing while ARAH solely shows tightly clothed people.

3 Method

Our goal is to recover high-quality human models from few, or even only one,
RGB image. Let us consider an implicit function fϕ parameterized by a network
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Fig. 2: Overview. MetaCap is a novel performance capture method, which meta-
learns the pose-canonical and optimal network weights of an implicit human repre-
sentation solely from multi-view images. At inference, with only sparse in-the-wild
images, those weights effectively act as a prior and resolve the inherent ambiguities,
i.e. occlusion and depth, while maintaining high geometric and visual quality.

with weights ϕ that encodes the geometry and the appearance of the clothed
human. Our sparse-view reconstruction method comprises two phases, multi-
view meta-learning followed by sparse-view fine-tuning, as shown in Fig. 2.

During the meta-learning phase (Sec. 3.1 and 3.2), we are given a multi-view
video using Kd cameras, which captures the performer. We denote the images of
frame f as If = {Ikf |k ∈ [1;Kd]} and assume the availability of paired masks Of

and the corresponding skeletal motion Mf,W = {θf−W ,αf−W , zf−W , ...,θf ,αf , zf},
defined over a window of W frames, with θ,α, z representing the joint rotations,
the root rotation, and the root translation, respectively. Given this, we aim at
meta-learning a personalized and optimal set of weights ϕ∗ for the implicit hu-
man representation, effectively serving as a data-driven prior.

During the fine-tuning phase (Sec. 3.3), we fine-tune the meta-learned weights
ϕ∗ to sparse in-the-wild images If = {Ikf |k ∈ [1;Ks]} paired with masks Of =

{Ok
f |k ∈ [1;Ks]} with Ks << Kd. Notably, the motion Mf,W and surface dy-

namics of the performer as well as the lighting conditions and camera configu-
ration during fine-tuning can significantly differ from the ones observed during
training. We later show that fine-tuning the meta-learned weights ϕ∗ on If leads
to faster and better convergence compared to random weights ϕ0.

3.1 Meta-Learning a Reconstruction Prior

Meta-Learning [12, 47] trains a neural model in a way that makes it easier to
adapt to novel tasks. In our case, the novel tasks are sparse-view reconstruction
and novel-view synthesis under unseen motions as well as lighting conditions.
For meta-learning the 3D geometry and appearance of the human, we represent
the human as an implicit SDF and radiance field. Given a ray r(o,v) emanating
from an image If with origin o, and viewing direction v, we sample n points
{pi = o + tiv|i ∈ [1;n]} on depths ti, and the implicit network fϕ predicts
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the color ci and the SDF si for each sample. We then utilize unbiased volume
rendering [76] along ray r to obtain RGB value Ĉ(r) and mask value M̂(r) :

Ĉ(r) =

n∑
i=1

Tiαici, M̂(r) =

n∑
i=1

Tiαi, αi = max
(Ψ(si)− Ψ(si+1)

Ψ(si)
, 0
)
, (1)

where Ti is the accumulated transmittance, αi is the unbiased weight function,
and Ψ(·) represents the derivative of a sigmoid function. These rendered rays
can be used to supervise the implicit network fϕ(·) using the following loss:

L(fϕ,R) = λcLcolor + λeLeik + λmLmask + λsLsparse, (2)

where R = {rk|k ∈ [1;m]} is a collection of m rays, Lcolor =
1
m

∑
k H(Ĉ(rk), C(rk))

is the Huber loss [25], Leik = 1
mn

∑
k,i

∣∣1− ⟨n(pk,i), ∇pk,i
fϕ(pk,i)

〉∣∣2
2

is the
Eikonal loss [14] on the normal n(pk,i) of the sample point pk,i. Lmask =
1
m

∑
k BCE(M̂(rk), O(rk)) is the binary cross entropy loss. s(pk,i) is the SDF

value of point pk,i, and Lsparse = 1
mn

∑
k,i exp

−|s(pk,i)| is a sparseness regular-
ization term [38]. C(rk) and O(rk) are the ground truth color and mask values
of ray rk. To accelerate the rendering process, we parameterize the implicit field
using a multi-resolution hashgrid [45]. Thus, the overall learnable parameters ϕ
include the MLP weights of the implicit function as well as the hashgrid param-
eters.

Now, the initial weights ϕ0 for our coordinate-based implicit function fϕ can
be learned through optimization-based meta-learning algorithms, like MAML [12]
or Reptile [47]. Let us assume we have a dataset of tasks following the distribution
T , where a task T ∼ T is defined as a set {L, {Rf ∼ If ,Of}, fϕ}f comprising
the loss function, the input rays and the implicit function fϕ. Our meta-learning
optimization is performed in two nested loops. For the jth iteration of the in-
ner loop with sampled rays Rj , it follows a gradient-descent optimization of the
model parameters ϕ′

j using a learning rate lin:

ϕ′
j ← ϕ′

j−1 − lin∇ϕL(fϕ,Rj)|ϕ=ϕ′
j−1

. (3)

We leverage the model-agnostic meta-learning algorithm, Reptile [47], to opti-
mize the initial weights by nesting an outer loop on top of the inner loop. The
outer loop then updates the meta-learned parameters ϕi through the first-order
update equation:

ϕi ← ϕi−1 + lout(ϕ
′
M (ϕi−1, Ti)− ϕi−1), (4)

where Ti are the tasks sampled at the ith outer iteration, lout denotes the learning
rate of outer loop. ϕ′

M (ϕi−1, Ti) represents the network weights initialized by the
inner-loop with ϕi−1, which are then optimized for M steps on Ti. The resulting
weights, ϕN , at the end of N outer loop iterations serve as the optimal initial
weights ϕ∗ for the fine-tuning stage. To keep the meta-learning computation
tractable, we choose Reptile [47] in Eq. 4 as it uses a first-order approximation
instead of MAML’s second order gradient update.

Note that the above formulation directly meta-learns a volumetric rendering-
based implicit network in the world-space. This proves to be suboptimal (as
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shown in Fig. 5 and Tab. 3) as humans are highly articulated; a challenge further
exacerbated by loose clothing. In the task set T consisting of humans in different
body poses, the meta-learned hash encoding can map the same body point into
different hash-table parameters. To address this issue, we modify the volume
rendering formulation in Eq. 1 by proposing our human template guidance.

3.2 Template-guided Meta-Learning

Human Template. Here, we introduce a generic motion-driven human tem-
plate, defined as a deformable mesh X̄ ∈ RV×3, of a character in the canonical
pose M̄ (as shown in Fig. 2). The template mesh X̄ can be deformed accord-
ing to a given skeletal motion Mf,W . Each vertex in the human template first
undergoes a per-vertex motion-dependent deformation in the canonical space
through a transform Tdef(Mf,W ) ∈ R4×4. After being deformed locally with
Tdef , one can perform forward kinematics TFK(Mf ,M̄) to transform the de-
formed canonical space vertices TdefX̄ to world space vertices X. The total
invertible transformation from the template’s canonical space to world space is:
T = TFKTdef and the template vertices are transformed as X = TX̄.
Template-guided Ray Warping. The template mesh defined above provides
us a coarse geometry information, which effectively guides our meta-learning
since we are now able to learn the meta-weights in a pose-canonical space. The
sampled points pi can be warped from the world space into the canonical space
through our proposed template guided ray warping. Concretely, we first project
each sampled point onto the nearest face (triangle) of the posed template mesh
X. To compute the transformation matrix Ti, we barycentricaly interpolate the
transformation of the vertices defining the nearest triangle. Next, we apply the
inverse transformation T−1

i of the sampled point to obtain its canonical position
p̄i = T−1

i pi. The canonical points, p̄i, can now be encoded with the learnable
hash encoding and rendered using the volumetric rendering approach described
in Eq. 1. Moreover the template allows us to perform empty skipping [22] for
point samples whose distance to the template exceeds a threshold η, thereby
significantly accelerating the convergence. In this way, our final meta-learning
approach (see also Alg. 1) is more efficient and effective compared to the baseline,
i.e. learning in global space.

3.3 Occlusion Handling and Fine-tuning

At inference, when only the calibrated monocular or sparse-view RGB images
If , masks Of , and skeletal motion Mf,W are available, we initialize our implicit
human field with the meta-learned weights ϕ∗, conduct the space canonicaliza-
tion with the fitted template X (Sec.3.2), and fine-tune using the loss from Eq.2.
This can also be denoted as the task {L, {Rf ∼ If ,Of}, fϕ|ϕ0 = ϕ∗}f .
Occlusion Handling. For extreme occlusion cases, which may occur in the
monocular setting (see also Fig. 3), we further propose a dedicated occlusion
handling strategy by leveraging the posed human template. Inspired by [71],
we first pre-build an implicit human field on one frame of dense images If
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Algorithm 1 MetaCap’s Meta-Learning Procedure

Initialize: Weights ϕ, outer/inner learning rate lout and lin

for i = 1, . . . , N do
Sample frames {f (j)}Mj=1, views {k(j)}Mj=1 and generate rays {R(j)}Mj=1

Set ϕ
′
0 = ϕ

for j = 1, . . . ,M do
Find closest triangle of points p and compute the point to face distance d
Filter points with d larger than threshold η
Compute inverse transformation T
Transform points into canonical space p̄ = T−1p
ϕ

′
j = ϕ

′
j−1 − lin∇ϕL(fϕ(R̄(j))|

ϕ=ϕ
′
j−1

)

end for
ϕ← ϕ+ lout(ϕ

′
M − ϕ)

end for
Result: Optimal weights ϕ∗ ← ϕ

Monocular Input Results without OH Visibility Map and Proxy Image Results with OH

Fig. 3: Occlusion Handling. Our occlusion handling (abbreviated as OH) helps to
regularize largely occluded regions.

or multiple frames of (in-the-wild) sparse images If , and then render virtual
views of the canonical space as proxy RGB images Iproxy. Next, during the fine-
tuning stage, we determine per-vertex visibility by checking whether the vertex
of the template is visible in any of the sparse input views. Finally, in addition to
sampling rays from the input images, we sample additional virtual rays for the
occluded regions from Iproxy. In practice, we found that the occlusion handling
is only required in the case of monocular reconstruction (also see ablations).

4 Results

Implementation Details. For meta-learning, we perform M = 24 inner-loop
gradient steps with lout = 1.0 and lin = 1e − 4. The inner loop optimizer
is Adam [30] while the outer one uses stochastic gradient descent. Following
NeuS [76], we perform a warmup in the inner loop at the beginning of training.
If not stated otherwise, we use DDC [19] for space canonicalization, ∼80 cameras
for meta learning, 4 cameras for fine-tuning in comparisons and ablations. For
more details, please refer to the supplemental material.
Datasets. We evaluate our approach on the publicly available dense-view
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S2

GT Ours DVA TransHuman ARAHDeepMultiCap DiffuStereo

S27

S5

Fig. 4: Qualitative Comparison. Compared to previous works, our method better
captures high-frequency geometry on cloth wrinkles and faithfully recovers appearance
details such as facial details and clothing textures.

dome dataset DynaCap [19] and our WildDynaCap dataset. DynaCap pro-
vides around 100-view videos, foreground masks, and motions. We choose two
subjects wearing loose (S5) and tight clothing (S3 in the supplemental). To
compensate for the lack of in-the-wild sequences in DynaCap, we collect a new
dataset WildDynaCap. It contains 110 cameras to capture the performer inside
a dome, and a movable 5-camera setup to record videos in different in-the-wild
scenarios. We captured two subjects in two camera setups. We recover the skele-
tal motion using markerless motion capture [69] using 34 views for the dome
setups and 5 views for the in-the-wild sequences. For all experiments and meth-
ods, we use this motion (if not stated otherwise) as this work focuses on surface
recovery rather than motion capture. We also provide ablation on motions only
from sparse cameras in the supplemental.
Metrics and Ground Truth. To obtain the ground truth geometry for the
dome captures, we leverage the recent state-of-the-art implicit reconstruction
method InstantNSR [92] trained on the dense RGB views. To evaluate the ren-
dering quality, we report the peak signal-to-noise ratio (PSNR), structural simi-
larity index (SSIM), and learned perceptual image patch similarity (LPIPS) [91].
To evaluate geometry results, we report Chamfer distance (CD), point-to-mesh
distance (P2S), intersection over union (IOU), cosine normal consistency (NC-
Cos), and L2 normal consistency (NC-L2). For all metrics, we sample every 100th
frame from the test set, where the actor is performing unseen motions, and re-
port the average. We provide an illustration of input cameras and evaluation
cameras distribution in the supplementary material.

4.1 Comparisons

We compare our method with recent reconstruction and novel synthesis methods
providing each of them wide-baseline four camera views as input during infer-
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Table 1: Quantitative Comparison. Our method achieves state-of-the-art results
for novel-view synthesis and geometry reconstruction. *Note, that ARAH requires 4D
scans for meta learning and videos for the fine-tuning whereas other methods solely
require static images.

Method Subject Appearance Geometry
PSNR ↑ SSIM ↑ LPIPS ↓ NC-Cos ↓ NC-L2 ↓ Chamfer ↓ P2S ↓ IOU ↑

DeepMultiCap [94]
S2 - - - 0.143 0.445 1.305 1.303 0.764
S27 - - - 0.149 0.454 1.466 1.831 0.797
S5 - - - 0.183 0.504 2.238 2.224 0.794

DiffStereo [64]
S2 - - - 0.150 0.450 1.150 1.261 0.813
S27 - - - 0.161 0.471 1.093 1.185 0.818
S5 - - - 0.173 0.491 1.714 1.787 0.805

DVA [58]
S2 25.469 0.817 0.307 0.123 0.402 1.647 2.245 0.426
S27 24.709 0.826 0.295 0.137 0.429 1.624 2.145 0.399
S5 23.093 0.750 0.344 0.167 0.482 2.308 2.805 0.247

TransHuman [50]
S2 25.770 0.810 0.305 0.150 0.445 1.618 2.238 0.767
S27 23.876 0.800 0.304 0.146 0.440 1.487 1.970 0.791
S5 23.072 0.736 0.349 0.183 0.495 1.898 2.039 0.763

ARAH* [78]
S2 26.279 0.833 0.302 0.079 0.315 0.839 0.913 0.859
S27 24.666 0.841 0.282 0.080 0.316 0.776 0.815 0.850
S5 23.532 0.775 0.332 0.139 0.419 1.620 1.915 0.842

Ours
S2 26.529 0.841 0.249 0.096 0.351 0.679 0.814 0.887
S27 25.284 0.849 0.247 0.104 0.370 0.614 0.734 0.891
S5 23.996 0.777 0.302 0.147 0.448 1.133 1.277 0.877

Table 2: Quantitative Ablation. Here, we evaluate different initialization strategies
and canonicalization types on rendering quality. Networks initialized with random or
pre-trained weights tend to overfit the inputs, while our meta weights generalize well
to novel views.

Init Type Cano Type Input View Novel View
PSNR ↑ SSIM ↑ LPIPS ↓ NC-Cos ↓ NC-L2 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ NC-Cos ↓ NC-L2 ↓

Random
Root 31.678 0.955 0.113 0.173 0.455 23.802 0.782 0.276 0.171 0.454
SMPL 31.180 0.953 0.120 0.225 0.535 23.691 0.770 0.292 0.214 0.523
DDC 31.429 0.954 0.120 0.223 0.530 23.566 0.772 0.289 0.216 0.523

Pretrain
Root - - - - - - - - - -
SMPL - - - - - - - - - -
DDC 32.423 0.959 0.114 0.110 0.386 25.829 0.820 0.239 0.116 0.395

Meta
Root 24.477 0.870 0.253 0.170 0.480 23.094 0.764 0.326 0.168 0.475
SMPL 28.224 0.903 0.215 0.092 0.345 26.120 0.833 0.258 0.096 0.349
DDC 29.176 0.912 0.209 0.089 0.341 26.529 0.841 0.249 0.096 0.351

ence. Specially, we compare our method with generalizable reconstruction [64,94]
and rendering [50] methods, a subject-specific rendering method [58], and a
subject-specific optimization method with geometry prior initialization [78]. For
more details, please refer to supplementary materials.
(1) Generalizable Methods. Given large-scale 3D human datasets [1, 94],
DeepMultiCap [94] learns to predict occupancy fields from multi-view RGBs by
fusing RGB features, normal features and voxel features with an attention layer,
while DiffuStereo [64] trained a diffusion model to refine coarse stereo disparity.
TransHuman [50] captures global relationships of human parts in the canonical
space and learns to predict radiance fields from multi-view videos.
(2) Subject-specific Methods. Given dense-view RGB videos, DVA [58] learns
articulated volumetric primitives attached to a parametric body model combined
with texel-aligned features. ARAH [78] extends a meta-learned SDF prior [77]
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Fig. 5: Qualitative Ablation. We show results for different weight initialization
strategies and space canonicalization types. Our meta-learning paradigm, together with
the proposed space canonicalization, achieves the best result. We highlight that this
applies irrespective of the choice of the character model (SMPL [39] or DDC [19]).

with a root-finding method to reconstruct clothed avatars from a sparse set of
multi-view RGB videos.

We demonstrate qualitative and quantitative comparisons in Fig. 4 and Tab. 1.

Table 3: Quantitative Ablation. Here,
we study initialization strategies and
canonicalization types in terms of geometry
results. Again, our meta-learning paradigm
in combination with space canonicalization
outperforms the baselines.

Init Type Cano Type Chamfer↓ P2S↓ IOU↑

Random
Root 1.610 2.253 0.823
SMPL 1.291 1.596 0.806
DDC 1.184 1.498 0.815

Pretrain
Root - - -
SMPL - - -
DDC 0.726 0.855 0.882

Meta
Root 1.692 2.001 0.817
SMPL 0.799 0.897 0.885
DDC 0.679 0.814 0.887

DeepMultiCap [94] directly regresses
occupancy in world space, due to the
articulated structure of humans and
the limited scale of 3D scan datasets,
their generalization ability is rather
limited. DiffuStereo [64] struggles to
find correct image correspondences
under our challenging wide-baseline
camera setup, leading to noisy recon-
struction. DVA [58] learns rotation,
translation, and scale of primitives
to recover rough geometry. However,
their texture un-projection step is sen-
sitive to the template, and tracking
errors of the template lead to blurred

results. TransHuman [50] integrates pixel-aligned features to improve texture
details. However, they do not model geometry explicitly, which result in noisy
geometry and texture boundaries. ARAH’s geometry network [77] learns a meta
prior taking 3D position as input and outputs the SDF value. However, due to
their purely MLP-based architecture and non-end-to-end design, we found their
results suffer from blurred appearance and less detailed geometry. Besides, the
root-finding is not efficient taking over ten hours with 4 GPUs to finetune. In
contrast, we use explicit hash encodings for spatial features, which is efficient
and effective for meta feature learning. All the rendering methods above use
parametric models [39, 53] as template, so they can not model loose clothing
correctly (see S5 in Fig. 4). In contrast, our method recovers high-fidelity ap-
pearance and geometry even for loose types of apparel in minutes under this
challenging setup, i.e. 4 wide-baseline cameras.
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Fig. 6: Qualitative Ablation. A study
of the influence of occlusion handling
and the numbers of views during meta-
learning (top) and fine-tuning (bottom).

Fig. 7: Convergence and Quality.
Note that our meta-learned weights
achieve faster convergence and higher ac-
curacy.

4.2 Ablation Studies

We perform ablation studies on the test set of the “S2” subject to evaluate the
effectiveness of our design choices.
Weight Initialization and Space Canonicalization. Tab. 2/3 and Fig. 5
show the ablation results for weight initialization and space canonicalization.
We choose the following baselines for weight initialization: Random: Network
weights are initialized randomly. Pretrain: Network weights are pre-trained on all
training frames. Meta: Network weights are learned through meta-learning. For
space canonicalization, we choose the following baselines: Root : The space trans-
formation is defined by the skeletal root rotation and translation. SMPL: The
space transformation is defined by the nearest surface point on the SMPL [39]
template. DDC : The space transformation is defined by the nearest point on the
deformable DDC [19] template.
Random initialization typically overfits the input views, however, on novel views
it performs poorly. Meta-learning in root-normalized space also performs poorly
as the articulated nature of the humans poses a significant challenge for meta-
learning the optimal network weights. In contrast, the combination of our key
technical components, i.e. meta-learning weights and space canonicalization, ef-
fectively addresses those issues and achieves the best result for, both, geometry
reconstruction and novel view synthesis. Moreover, we highlight that this holds
true irrespective of the specific choice of the human template, i.e. SMPL or DDC.
Number of Camera Views and Occlusion Handling. Since our method
solely takes videos for meta-learning and images for fine-tuning, it naturally
supports arbitrary camera setups in both stages. As illustrated in Fig. 6, when
increasing the number of cameras, our method obtains better rendering and re-
construction results. While this is not too surprising, we highlight that even
under sparser settings our method performs reasonably well. Most interestingly,
meta-learning can even be performed on a monocular video, which is not possible
for ARAH [78] and MetaAvatar [77], since they rely on scans for meta-learning.
Besides, at inference, our method allows fine-tuning using just a single view.
Moreover, when performing monocular fine-tuning, our occlusion handling ap-
proach (1+OH) outperforms the baseline, which is not using this component.
Convergence Speed and Quality. In Fig. 7, we evaluate the convergence
of our method compared to random and pre-trained weight initializations. Our
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Fig. 8: Qualitative In-the-wild Comparison. To evaluate the robustness to in-the-
wild conditions, we compare our work and ARAH on WildDynaCap. Our approach
achieves significantly better results in terms of appearance and geometric details.

proposed design outperforms the baselines in, both, convergence speed and accu-
racy. Since one fine-tuning step only takes 50ms, our meta-learned initialization
already converges after 40s.

4.3 Evaluation on In-the-wild Sequences

Table 4: Quantitative In-the-wild
Comparison. We outperform ARAH
on in-the-wild sequences.

Method Subject PSNR ↑ SSIM ↑ LPIPS ↓

ARAH* [78] S2 19.027 0.608 0.412
S27 22.075 0.702 0.343

Ours S2 19.156 0.661 0.351
S27 22.080 0.750 0.260

Fig. 8 and Tab. 4 show results on our
WildDynaCap dataset. Our method re-
covers high-fidelity geometry and appear-
ance, consistently outperforming ARAH.
These results show the robustness of our
method to complex background, lighting
conditions, and camera types.

5 Conclusion

This paper introduced MetaCap, a novel approach towards high-fidelity perfor-
mance capture and photo-realistic rendering of humans from very sparse multi-
view or even monocular RGB images. We introduced a hybrid representation that
benefits from both explicit and implicit human representation. Through compre-
hensive evaluations, we demonstrated that performing meta-learning with space
canonicalization proves to be a crucial design factor, thereby providing a strong
data-driven prior on the human capture. Our results demonstrate high-fidelity
human reconstruction and free-view rendering as well as the versatility of ap-
proach in terms of camera setups, clothing types, and canonicalization strategies.
In the future, we plan to explore even faster, potentially real-time, fine-tuning
strategies as well as learning priors across individuals.
Limitations. Although our method achieves high-fidelity personalized human
reconstruction and rendering from sparse observation, it still has a few limita-
tions. First, our method can be sensitive to template fitting or motion capture
results. Second, we do not take the temporal information into consideration. Inte-
grating reliable observations or constraints from adjacent frames like Newcombe
et al. [46] may lead to more robust geometry and rendering results. Third, our
method can not handle hands very well. Modeling hand with a more fine-grained
template and motion capture could be a potential solution.
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