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Abstract. This paper presents LLaVA-Plus (Large Language and Vision
Assistants that Plug and Learn to Use Skills), a general-purpose multi-
modal assistant trained using an end-to-end approach that systematically
expands the capabilities of large multimodal models (LMMs). LLaVA-
Plus maintains a skill repository that contains a wide range of vision and
vision-language pre-trained models (tools), and is able to activate relevant
tools, given users’ multimodal inputs, to compose their execution results
on the fly to fulfill many real-world tasks. To acquire the ability of using
tools, LLaVA-Plus is trained on multimodal instruction-following data
that we have curated. The training data covers many tool use examples
of visual understanding, generation, external knowledge retrieval and
their compositions. Empirical results show that LLaVA-Plus outperforms
LLaVA in existing capabilities, and exhibits many new capabilities. Com-
pared with tool-augmented LLMs, LLaVA-Plus is distinct in that the
image query is directly grounded in and actively engaged throughout
the entire human-Al interaction sessions, significantly improving tool use
performance and enabling new scenarios.

Keywords: Multi-modal large language model - Tool use - Visual-
language agent

1 Introduction

A long-standing aspiration in artificial intelligence is to develop general-purpose
assistants that can effectively follow users’ (multimodal) instructions to complete
a wide range of real-world tasks [3}/19]. Recently, the community has witnessed
a growing interest in developing foundation models with emergent abilities of
multimodal understanding and generation in open-world tasks [10,[20]. While the
recipes of using Large Language Models (LLMs) such as ChatGPT [30] to develop
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general-purpose assistants for natural language tasks have been proved effective
in many tasks, the recipes of building general-purpose, multimodal assistants for
computer vision and vision-language tasks remain to be explored.

Ongoing efforts of developing multimodal agents can be broadly categorized
into two classes [19]: (i) End-to-end training with LLMs, where image-text data
and multimodal instruction-following data are collected to continually train
LLMs to acquire the ability of processing visual information, resulting in a
series of Large Multimodal Models (LMMs). Impressive visual understanding
and reasoning performances have been demonstrated by both proprietary models
such as Flamingo [2|] and multimodal GPT-4 [32], and open-sourced models
such as LLaVA [24] and MiniGPT-4 [56]. Although these end-to-end training
methods are effective in helping LMMs to gain emergent abilities (such as in-
context learning), it remains challenging to develop a unified architecture that
can seamlessly incorporate a wide range of skills, such as image segmentation
and generation, which are crucial for real-world multimodal applications. (%)
TOOEI chaining with LLMs, where the prompts are meticulously crafted to enable
LLMs (e.g. through LangChain [1]) to invoke different tools (e.g. pre-trained
vision models) to perform desired (sub-)tasks, without the need of additional
model training. Some prominent works include VisProg [12], ViperGPT [43],
Visual ChatGPT [45], X-GPT [57], and MM-REACT [47]. The strength of these
methods is the ability to perform a broad spectrum of visual tasks through the
use of (new) tools, which can be incorporated into an Al agent with very low
development cost. However, prompting is neither adaptable nor robust enough
to allow multimodal agents to always accurately select and activate appropriate
tools (from a large and diverse toolset) and compose their results to generate
final answers on the fly for real-world multimodal tasks.

In this paper, we present LLaVA-Plus (Large Language and Vision Assistants
that Plug and Learn to Use Skills), a general-purpose multimodal assistant that
learns to use tools using an end-to-end training approach that systematically
expands the capabilities of LMMs via visual instruction tuning. To the best of
our knowledge, this is the first attempt reported to combine the strengths of the
end-to-end training and tool chaining methods mentioned above. LLaVA-Plus is
equipped with a skill repository that contains a wide range of vision and vision-
language tools. The design is an embodiment of the “Society of Mind” scheme |29],
where each tool is originally designed for a specific skill and by itself is only
useful for specific scenarios, but the combinations of these tools lead to emergent
abilities that show signs of higher intelligence. For example, LLaVA-Plus is able
to construct a new workflow on the fly, given users’ multimodal inputs, select
and activate relevant tools from the skill repository, and compose their execution
results to fulfill many real-world tasks that are unseen during model training.

LLaVA-Plus can be continually improved by incorporating new skills or tools
via instruction tuning. Consider a new multimodal tool that has been developed
for a specific scenario or skill. We collect pertinent user instructions that request

! The term “tools” in this paper is used to describe the APIs or pre-built models that
LMM interfaces with.
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Fig. 1: Visual illustration of LLaVA-Plus’ capabilities enabled by learning to use skills.

this tool and their execution results (or following) to form instruction-following
data for tuning. After instruction tuning, LLaVA-Plus expands its abilities as it
learns to use this new tool to deal with the tasks that it cannot handle before.
LLaVA-Plus also differs from those existing works on teaching LLMs to use
tools , where visual signals are only used when the multimodal tools are
activated. In contrast, LLaVA-Plus uses the raw visual signals through the entire
human-AT interaction sessions to improve LMM’s ability of planning (determining
the most appropriate tools to use for a given task) and reasoning.
In summary, our paper makes the following contributions:

— New multimodal instruction-following tool use data. We present a new
pipeline for curating vision-language instruction-following data, dedicated
for tool use in human-Al interaction sessions, leveraging ChatGPT and
GPT-4 as labeling tools.

— New large multimodal assistant. We have developed LLaVA-Plus, a general-
purpose multimodal assistant that extends LLaVA by incorporating a
large and diverse set of external tools that can be selected, composed, and
activated on the fly for performing tasks. As shown in Figure[I] LLaVA-Plus
significantly extends LMM’s capabilities. Our empirical study validates the
effectiveness of LLaVA-Plus with consistently improved results on multiple
benchmarks, and in particular, new SoTA on VisiT-Bench with a diverse
set of real-life tasks.

— Open-source. We will release the following assets to the public: the generated
multimodal instruction data, the codebase, the LLaVA-Plus checkpoints,
and a visual chat demo.

2 Learning to Use Tools with Visual Instruction Tuning

2.1 Preliminaries: Visual Instruction Tuning in LLaVA

Inspired by the impressive performance of multimodal GPT-4 and the open-
source LMMs such as LLaVA /MiniGPT-4, the community has witnessed a surge
in developing LMMs and the multimodal instruction-following data, following
the instruction tuning paradigm . In this paper, we use LLaVA as a
running example. But note that the proposed recipe can be easily applied to
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other LMMs. Starting with a user input image query I, existing LMMs such as
LLaVA typically accept a natural language instruction input Xq from the user,
and output a natural language response X.swer- 1 herefore, we can use a unified
scheme to represent multimodal instruction-following data as:

Human : I; <\n> X <STOP> Assistant : Xansuer<STOP>, (1)

where Human and Assistant are special role tokens, <\n> and <STOP> are the
line break token and sequence end token, respectively. It naturally covers any
multimodal tasks that can be formulated as language-image input and language
output, ranging from simple visual understanding tasks such as recognition,
captioning, and visual question answering (VQA) to complex visual reasoning
tasks. Due to its simplicity, the data pipeline is easy to construct and scale.
By training a single Transformer-based model with an auto-regressive objective,
the resulting LMM enables a seamless human-assistant interaction, proficiently
completing many visual tasks in the wild. However, it is limited in flexibility
regarding skill expansion and engagement in human-Al interactions.

2.2 LLaVA-Plus

We propose a modularized system architecture that allows an LMM, working as
a planner, to learn to use a wide range of skills at scale, and thus facilitating easy
expansion of its capabilities and interface. Specifically, we build a skill repository,
where the LMM can leverage a broad range of existing vision and vision-language
specialist models as tools for their respective skills when needed, to complete
various tasks in the wild. The LMMs in most existing multimodal agents typically
perform user-oriented dialogues, where the LMMs are required to immediately
respond to user instructions based solely on the knowledge encoded in model
weights, as shown in equation [I] and the left part of Figure 2] In addition to
this, the LMM in LLaVA-Plus also performs skill-oriented dialogues, where the
LMM initiates requests to call appropriate tools from the skill repository, and
subsequently aggregate the tool execution results after applying proper skills, as
shown in the right part of Figure [2]

O Instruction O Tool Use Visual Generation Visual Interaction
J— | Conditional Gen. Point to multi-level Seg
. Box to Seg
. Editing
Human Assistant Skill Stroke to Seg

Segmentation + Generation
Social Media Post

Repository

Visual Understanding External Knowledge Composition

O Response O Tool Output

Fig. 2: The four-step LLaVA-Plus pipeline. The skill repository is shown on the right.

A Full Dialogue of LLaVA-Plus. We illustrate how LLaVA-Plus works with a
full dialogue session in Figure [2| It proceeds in four steps: (1) Humans provide
a task instruction X4 related to an image I;. (2)The LMM-powered assistant
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analyzes both X4 and I, and outputs Xgyii11_use that chooses the tool from
skill repository and writes the appropriate prompt as the tool argument. 3) By
executing the tool, the result Xgxi11_resuit is returned to the assistant. (4) The
assistant aggregates Xgyi11_resurt With Xg and Iy, and outputs Xapuser to humans.
The interaction can be represented as:

Human : I; <\n> Xg<STOP> Assistant : X w11 4. <STOP>
Human : Xgxi11 resu1t<STOP> Assistant : X0, <STOP> (2)

Compared with equation [I] which is used to train LLaVA, the only newly intro-
duced component for LLaVA-Plus training is the skill-oriented dialogue. Table [I]
illustrates one sequence example of calling detection and segmentation skills in
human-AT interactions. LLaVA-Plus is trained with an auto-regressive objective
on the sequence of equation where only the green sub-sequences (or tokens) are
used to compute the loss, and thus the model learns to predict skill use, answers,
and when to stop.

Human Can you segment the girl and the cart in the image and describe IT
(Xq, Ig) their relationship?
(The source image from COCO with ID 569536)

Assistant “thoughts" To accurately segment and identify the girl and the cart in the lmage we can

(Xeki11_use) leverage the grounding_dino model for open-set detection and the segmentation model SAM.
Integrating these models will enable us to generate a comprehensive summary of the segmented
subjects.

“actions" ["API_name": "grounding_dino+sam", "API_params": "caption": "little girl and cart ."|
‘“value" I will use grounding_ dino-f-sam to help to answer the question. Please wait for a moment.
Skill Repo. Tool execution: Grounding DINO + SAM
Human grounding_dino+sam model outputs: ’boxes’: [[0.35, 0.37, 0.66, 0.97], [0.0, 0.57, 0.69, 1.0]],
(Xski11_resute "logits™ [0.58, 0.41], 'phrases’: ['little girl’, "cart’]

)

Can you segment the girl and the cart in the image and describe their relationship?
Assistant “thoughts" Thanks to the output of grounding dino-+sam. I can answer the question better.
(CR =) “actions" ||

“value" Sure! I segment and identify the little girl and the cart 7

in the image.

- Centered in the image, a little girl is discernible with bound-
ing box coordinates [0.35, 0.37, 0.66, 0.97]. She’s seen actively
maneuvering a cart within the airport’s ambiance.

- To the bottom left of the image, a cart can be pinpointed,
bounded by the coordinates [0.0, 0.57, 0.69, 1.0]. It’s laden with
various luggage items, indicating travel preparations or arrivals. [ ol | (65

The interaction between the girl and the cart epitomizes a typical airport scenario: a traveler
utilizing the cart to facilitate her movement with luggage. This tableau, whether signifying an
arrival or departure, encapsulates the vibrancy and expectation inherent to air travel.

\ J

Table 1: An example of a LLaVA-Plus workflow that plugs and learns to use the skills
of object detection and segmentation, enhanced by a rich region language description.
The gray text is not in the training sequence.
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Unified Prediction Format from LMMs. Figure [2]shows that the LMM of LLaVA-
Plus needs to perform both user-oriented and skill-oriented dialogues. To this end,
we use a unified model prediction format to represent dialogues with and without
the need of calling the skill repository. Inspired by [48], the format consists of
three fields, as illustrated in Table [1} (i) Thought is a text sequence representing
a reasoning process, which determines whether the skill repository is needed to
follow the user instruction, and if so, which tools to use. (i7) Action is a list
of function calls for the tools to execute the thought. The list is in the JSON
format, with each item consisting of two sub-fields: API_name to call the tool
and API_params for the corresponding function arguments if applicable. When
action is an empty list, no skill is invoked. (i#i) Value is a natural language
response that LLaVA-Plus generates by aggregating tool execution results and
the human-Al session history. When presented in Xggi11 use Of user-oriented
dialogues, it is the final response returned to human users. When presented in
Xanwser Of skill-oriented dialogues, it is a natural language description about
tool execution. In the serving stage, we find it important to ensure a good user
experience that we only return the content in the value field of X pyser to human
users, but hide the entire skill-oriented dialogues unless we need to debug the
system.

2.3 Skill Repository: Multimodal Tool Use Instruct Data Generation

The skill repository of LLaVA-Plus consists of multimodal tools of different
skills. To allow the LMM to always activate the most appropriate tools to
complete a task, the corresponding tool-use multimodal instruction-following
data is needed for LMM tuning. In alignment with the LLaVA approach, we input
image information into a text-only GPT-4 model, prompting it to generate both
questions and responses based on the visual data. Without loss of generality, in
this study we want LLaVA-Plus to deal with the scenarios that requires novel skills
that LLaVA does not have, e.g. the individual skills for visual understanding,
generation, and external knowledge retrieval and the compositions of these
individual skills, as summarized in Table 2] In what follows, we treat visual
understanding skills as core skills and the others as extended skills, and describe
the way instruction data is curated.

Core Skills: Understanding Visual understanding skills enable machines to
interpret and comprehend visual signals. Existing LMMs have only a limited
subset of visual understanding skills, constrained by language inputs and outputs.
We expand them to a broader skill set with visual input prompts and visual out-
puts, including open-set detection and grounding, semantic/instance/interactive
segmentation, tagging, captioning, OCR and their compositions, and so on. These
understanding skills can be grouped into two categories, depending on whether
additional function arguments are required.

Skills with Image-only. The skills without additional function arguments
include captioning, tagging, semantic segmentation, caption+grounding, tag-
ging+grounding, and OCR. We have curated training samples for each tool
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Skills ‘Tools Source Size
Detection/Grounding G-DINO |26] COCO 13783
Semantic Segmentation OpenSeeD |51 COCO 5989
Instance Segmentation G-DINO+SAM COCO 5228
| Understandin Caption + Grounding BLIP2+G-DINO COCO 4037
§ ¢ & Tagging + Grounding RAM+G-DINO COCO 4439
&% Caption BLIP2 (22 CoCco 4064
E Tagging RAM |54 COCO 6045
= OCR EasyOCR |[13] Hiertext 6528
=2
= ‘External Knowledge Retrieval CLIP Retrieval |39] InfoSeek 4087
£
Generation Image Generation Stable Diffusion [40 JourneyDB 4694
’ Image Editing Instruct P2P |6] Instruct 6981
P2P
Visual Prompt Interactive Segmentation SAM |14 COCO 5601
1su P Multi-granularity Semantic SAM [21 CoCo 5601
Example Based Segmentation|SEEM [58| COCO 5601
E: Mix of Detection, Segmentation, Tagging, Caption |G-DINO, SAM, BLIP2, RAM COCO 37,431
& |Interactive Segmentation + Inpainting SAM + Stable Diffusion COCO 3063
T |Semantic Segmentation + Generation OpenSeeD + ControlNet [52] COCO 5989
é Image Generation + Social Media Post Stable Diffusion JourneyDB 4694
§ Image Editing + Social Media Post Instruct P2P [6] Instruct 5924
O p2p

Table 2: LLaVA-Plus skill repository and dataset statistics of our created visual
instruction-following data for each tool use case. G-DINO indicates Grounding DINO [26].
HierText [27,[28|, InfoSeek [8], and JourneyDB [34] are datasets for OCR, external
knowledge, and image generation, respectively.

individually. To collect the training samples for a given skill, we fill in the four
data variables in equation [2| using different strategies. (i) For Xq4, we use GPT-4
to generate a set of instructions that require the use of tools for proper answers.
For each sample, we randomly select a question and rewrite it to enhance data
diversity. A rewriting example is shown in Table@ in Appendix. (i) For Xgki11_use,
its thoughts and value are generated by randomly selecting from some preset
responses with rewriting. The actions is known, so it can be directly assigned.
(791) Xgki1l resuis 18 generated with a fixed rule: first presenting the tool outputs
and then repeating the initial question. (iv) For Xapuser, its thoughts is created
in a similar way to thoughts in Xgxi11 use, and action is set empty. The value
of Xanuser is the most important field, as it is the visible response to humans in
chat. We feed all previous information, including previous questions, the previous
tool outputs, and the context of the image to language-only GPT-4, which then
generates responses to form instruction-following data. Inspired by LLaVA, we
consider the ground-truth captions, object coordinates, and object categories as
image contexts.

Skills with Additional Function Arguments. Visual skills such as object
detection and instance segmentation often require humans to provide very specific
instructions regarding the concepts of interests. Their instruction-following data
is more challenging to create. We use two methods in this study. (i) The first
method is similar to that in the image-only skill setting, where the initial Xg
contains a placeholder concept, one or more categories presented in the image
are randomly chosen to replace this placeholder, and the final X, is obtained
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via rewriting, as shown in Table[9] (i7) To allow the LMM to learn more diverse
prompts beyond category information, we use GPT-4 to generate questions.
Specifically, we manually create two seed samples following the full dialogue in
equation [2] send them, together with image contexts, to GPT-4, and ask GPT-4
to generate a full dialogue based on a new image context. An example is shown
in Table [10] in Appendix.

Extended Skills The LLaVA-Plus recipe can be applied to any tool to improve
the system’s capabilities. We demonstrate its versatility by onboarding multimodal
tools of different categories. Due to the limited space, we describe the instruction-
following data creation process in Section [B]in Appendix, and summarize the
extended skills we have enabled.
— External Knowledge. To enable LMMs to use knowledge beyond that
encoded in pre-trained model weights, we use the CLIP search API to
retrieve external knowledge from LIAON.

— Generation. To allow LLaVA-Plus to output images, we use Stable
Diffusion (SD) and Instruct-Pix2Pix for image generation and editing, re-
spectively.

— Visual Prompts. To better follow human intents, we support various visual
prompts for human-AI interaction, such as user-drawn points, sketches and
boxes. SAM, Semantic-SAM and SEEM are used for different interactive
segmentation tasks.

— Skill Composition. To allow LLaVA-Plus to deal with real-world compo-
sitional tasks. We curate data for the following scenarios: (i) The scenarios
where various visual understanding results of the same image in a multi-turn
human-AT interaction session are required. We generate instruction data
by applying different tools (including detection, segmentation, tagging, and
captioning). (i7) Interactive Segmentation + Inpainting. By combining the
SAM segmentation results from the user pointing and SD, we enable in-
painting with visual interaction. (i#4) Semantic Segmentation + Generation.
By combining the spatial layout from OpenSeed semantic segmentation
and ControlNet, we enable instructional visual-conditioned generation. (iv)
Image Generation/Editing + Social Media Post. It is time-consuming for
human users to generate posts that contain both images and text. Thus, we
use SD to generate an image, or Instruct Pix2Pix to edit an image, then
combine the image with its description generated by a pre-trained LMM to
create a multimodal post.

2.4 Model Training and Serving

Training. To train LLaVA-Plus, we combine the curated tool use instruction data,
as shown in Table 2] with the LLaVA-158K dataset. To convert LLaVA-158K into
the unified prediction format as described in Section [2.2] we treat the responses
in LLaVA-158K as value, and add the fields of thoughts and actions with
templates, as illustrated in the example in Table [8] in Appendix. LLaVA-Plus
are built in two settings. (i) LLaVA-Plus (All Tools), where tool use is cast
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as external knowledge. All visual understanding tools except segmentation in
Table [2] are utilized to process the input image, and the extracted recognition
results are organized as symbolic sequence representations to enrich the image
features in both the training and evaluation stages. (i7) LLaVA-Plus (Fly), where
tools are used on the fly. To reduce the cost of calling all tools, we only provide
the execution results of related tools for a given instruction. When reporting
quantitative numbers, we train models on the 81K understanding instruction
data, because existing benchmarks focus mainly on understanding capabilities.
When building demo systems, we train our models on the full dataset.

Serving. LLaVA-Plus is served using the FastChat [44] system, which is composed
of web servers that interface with humans, model workers that host the LMM and
multiple tools, and a controller to coordinate the web-server and model workers.
The 7B LLaVA-Plus and all the tools can be loaded and served in a 80G GPU.

3 Related Works

We summarize the connections and differences between LLaVA-Plus and existing
general-purpose multimodal systems in Table [3} where only representative meth-
ods are shown due to space constraint. They can be broadly categorized into two
classes as discussed below.

Capabilities |Image Understanding‘Knowledge Image Gen.| Visual Interaction Combined‘ Too Use
Input (Text, Image) (Point, Box) Al llocator Trainin
Output Text Box Mask ‘ Text Image (Text, Image, Mask) All g
MM-REACT v v v LLM

GPT4Tools v 7/ v v LLM v
LLaVA-Plus v v v v v v LMM v
LLaVA/GPT-V| v

Kosmos-2 v 7/

CM3Leon v v 4 v

Table 3: Comparison with existing multimodal systems. The empty cells indicate
inapplicable. “Allocator” indicates which base model is used to invoke the tools, and
“Training” indicates whether model training is needed to enable tool use.

Al Agents with Multimodal Tool Use. There is a growing interest in exploring
a paradigm of building general-purpose Al agents that synergistically leverage
multiple tools with LLMs to solve sophisticated, open-world problems. The
idea is originated in NLP to invoke general tools whose skills are lacked from
LLM (e.g. ToolFormer [41], ChatGPT-Plugin [31]), and is recently extended to
the multimodal space. There are two ways to leverage multimodal tools with
the LLM as a planner to determine which tools to invoke: (i) tool chaining
by prompt engineering and in-context-learning, such as Visual ChatGPT [45],
MM-ReAct 47|, and (i7) instruction tuning of LLM with a focus on multimodal
tool use, such as GPT4Tools [46] and Gorilla [35]. Prismer |25] can efficiently
aggregate the knowledge of an ensemble of domain experts and adapt it to
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various vision-language reasoning tasks. LLaVA-Plus represents the first work of
utilizing the LMM as the planner for tool use, where image inputs are considered
throughout the entire interaction sessions for improved user experience.

Unified Multimodal Models with Versatile Capabilities. Inspired by the success
of a unified architecture of LLMs to complete many language tasks, the Al
community has witnessed an increasing interest in building unified models with
versatile multimodal capabilities. Proprietary models such as Flamingo [2] and
multimodal GPT-4 [32] (or GPT-4V [33]) have demonstrated strong multimodal
performance on zero-shot task transfer, which quickly inspired their open-source
counterparts: LLaVA, MiniGPT-4, Open-Flamingo [4], Otter [17], to name a few.
These LMMs can deal with the tasks with image-text input and text output. The
capabilities have been extended to support the tasks with image-text output, such
as image editing and segmentation, as demonstrated in CM3Leon [49], Emu [42],
and GILL [15]. Bounding box outputs for grounding are recently supported, as
shown in Kosmos-2 [37], Shikra [7] and DetGPT [38]. GPT4ROI [53] allows
users to select regions of interest with bounding boxes for human-Al visual chat.
BubaGPT [55] and LISA [16] use an extra referring segmentation model to enable
the mask prediction capability. Compared with them, LLaVA-Plus enables a
much wider range of multimodal skills and their compositions, as illustrated in
Table [3

4 Experiments
4.1 The Effectiveness of Learning to Use Skills

Tool Use Improves Ezisting Capabilities. We consider two benchmarks. LLaVA-
Bench [24] evaluates the visual chat of LMMs, with three types of questions:
conversation, detailed description and visual reasoning. It consists of two datasets:
the COCO set containing 30 COCO images and 90 chat questions, and the In-
the-Wild set containing 24 web images with 60 questions. Language GPT-4
(gpt4-0314) is used to score the generated answers. The relative scores between
the model output and gold response are reported. SEED-Bench [18] evaluates the
image-level and instance-level perception and reasoning of LMMs, with 19K multi-
choice questions. The results are shown in Table [d] Both LLaVA-Plus variants
outperform LLaVA on these two benchmarks, demonstrating the effectiveness
of adding visual recognition results of applying new skills in the LMM pipeline.
LLaVA-Plus (All Tools) shows superior performance to LLaVA-Plus (Fly) because
the former leverages more tools as additional contexts. We further conducted
several ablations: (i) We tried to directly add the skill execution results in the
testing stage of LLaVA, shown as the row of LLaVA (Tools in Test). The degraded
performance compared with LLaVA demonstrates the necessity of learning to
use skills in training. (i¢) We removed thoughts in the unified data format and
observed a performance drop, indicating chain-of-thoughts style data format is
beneficial. (i4i) GPT4Tools trains an LLM for multimodal tool use. Its lower
performance indicates that visual instruction tuning of tool use in LLaVA-Plus
is important.
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LLaVA-Bench (COCO) LLaVA-Bench (In-the-Wild)
Conv. Detail Reasoning All ‘Conv. Detail Reasoning  All

LLaVA 82.0 69.1 92.6 81.2| 42.6 51.9 68.9 57.1
LLaVA (Tools in Test) 56.2  67.9 53.3 59.1] 40.7 48.1 51.2 47.5
LLaVA-Plus (All Tools) 81.6 T4.5 95.7  83.9| 65.5 56.8 79.1 69.5
LLaVA-Plus (Fly) 76.2 722 92.3 80.4| 45.2 50.4 72.6 59.1
LLaVA-Plus (Fly) (no thoughts)| 76.6 70.4 90.7  79.4| 38.8 39.8 59.8 48.7
GPT4Tools ‘ 75.3 53.8 86.9 72.1] 31.1 27.1 54.1 40.7

(a) LLaVA-Bench.

Scene Identity Attr. Loc Count Spatial Interact. Reason. Text |Average

LLaVA 59.50 54.29 56.06 42.54 39.35 33.03 43.30 41.39 30.59| 44.45
LLaVA (Tools in Test) |67.13 56.85 45.24 47.24 45.69 40.18 60.82 70.09 30.59| 51.54
LLaVA-Plus (All Tools)|68.94 56.80 58.89 47.34 48.14 45.21 60.82 71.30 37.65| 55.01
LLaVA-Plus (Fly) 68.43 56.47 59.69 45.40 41.68 44.14 59.79 69.49 34.12| 53.25

(b) SEED-Bench.

Table 4: LLaVA-Plus variants improves LLaVA on two LMM benchmarks.

‘Grounding Tagging Caption OCR ‘ All

LLaVA 47.1 87.1 77.0 23.6 58.7
LLaVA (Tools in Test) |41.7 48.5 72.0 31.9 48.5
LLaVA-Plus (All Tools)|89.3 94.4 96.7 48.8 82.3
LLaVA-Plus (Fly) 88.6 88.9 90.2 384 76.5
Bard (0730) 36.5 105.3  103.3  60.0 76.3
Bing Chat (0730) 56.0 84.0 96.0 44.8 70.2
MM-REACT 30.2 94.7 103.8 773 76.5
All Tools + GPT4 7.5 95.6 95.2 39.3 76.9

Table 5: LLaVA-Bench (Tool Use).

LLaVA-Bench (Tools). To study the novel capabilities enabled by learning to
use skills, we create an evaluation set LLavA-Bench (Tools), which measures
four capabilities (grounding, tagging, caption, and OCR) with 10, 12, 12, and 10
samples in each. In Table |5] we also compare against the commercial visual chat
systems such as Microsoft BingChat and Google Bard. LLaVA-Plus significantly
outperforms the others on this benchmark, mainly because the other systems are
not equipped with some of these capabilities. By comparing with chaining tools
with GPT-4 (row of “All tools + GPT4”) and MM-REACT, we demonstrate the
advantage of training an open-source LMM as a planner for tool use.

4.2 Comparisons with SoTA LMM systems

MMVet [50] contains 200 images and 218 questions, aiming to evaluate six
core vision-language (VL) capabilities and their combinations. For evaluation,
an LLM-based evaluator (gpt4-0613) is used to score open-ended outputs of
different forms. The results are reported in Table [} LLaVA-Plus consistently
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outperforms LLaVA on both 7B and 13B model sizes. The categories with most
significant improvements are OCR and spatial, indicating the positive impact of
the corresponding visual skills on LMM outputs.

Model ‘Rec OCR Knowledge Generation Spatial Math| Total
Results of various open-source LMM on reported in the MM-VET paper [50]

OpenFlamingo-9B [4] 24.6 14.4 13.0 12.3 18.0 15.0 | 21.84+0.1
BLIP-2-12B |22] 27.5 11.1 11.8 7.0 16.2 5.8 |22.440.2
LLaVA-7B |24 28.0 17.1 16.3 18.9 21.2  11.5| 23.840.6
MiniGPT-4-14B [56] 29.9 16.1 20.4 22.1 22.2 3.8 | 24.44+0.4
Otter-9B |17| 28.4 16.4 19.4 20.7 19.3  15.0 | 24.6+0.2
InstructBLIP-14B |9 30.8 16.0 9.8 9.0 21.1 10.5 | 25.6+0.3
MM-ReAct-GPT-3.5 47| 24.2 31.5 21.5 20.7 32.3  26.2 | 27.9+0.1
LLaMA-Adapter v2-7B |11 32.9 20.1 19.0 20.1 229 3.9 | 31.440.1
LLaVA-13B (V1.3, 336px) |24] 38.1 22.3 25.2 25.8 31.3 11.2 | 32.54+0.1
MM-ReAct-GPT-4 [47] 33.1 65.7 29.0 35.0 56.8  69.2 | 44.6+0.2
Results with our own experiment runs

LLaVA-7B 30.4 13.3 19.2 20.1 18.7 8.1 | 24.14£0.0
LLaVA-Plus-7B (All Tools) 30.5 23.6 20.5 22.5 28.5 7.7 | 27.5£0.3
LLaVA-Plus-13B (All Tools, V1.3, 336px)|37.5 29.4 22.3 24.5 37.3 11.5|35.040.0
LLaVA-1.5-13B 38.0 25.0 22.6 25.0 30.9 3.8 | 33.3£0.1
LLaVA-1.5-Plus-13B (All Tools) 40.6 30.9 25.7 29.8 34.5 15.0 |36.84+0.4

Table 6: Performance of various open-source LMM on MM-VET. Note that MM-
ReAct is not a single multimodal model, it is a system built on chaining visual tools
via GPT-3.5 or GPT-4, which we append as a reference. Our experiment running on
LLaVA-7B yields very similar scores with the same checkpoint reported in MM-VET
paper, indicating that our evaluation pipelines are consistent.

VisIT-Bench [5] is a real-world use oriented LMM benchmark, comprising
592 questions and 1,159 public images categorized into 70 instruction families.
The results are shown in Table [7, which summarizes the battles between LMMs
with GPT-analog human judgment. Elo ratings are computed by treating each
pairwise human judgment as a “match”. The difference between the Elo ratings
of two models provides an estimate for the win probability when pitting model
A vs. model B. The “#matches” column indicates the number of total matches
in which a particular model participates. Win-rate indicates the win rate of a
model against the human-verified reference outputs. LLaVA-Plus significantly
outperforms the leading method LLaVA by 100+ ELO score, achieving a new
SoTA on the leaderboard.

4.3 Visual Examples of New Capabilities

In Figure [3] we illustrate new capabilities of LLaVA-Plus with visual examples.
Please see Section [D] in Appendix for many other interesting scenarios that
demonstrate the versatile capabilities of LLaVA-Plus by learning to use skills
and their compositions.
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Model ‘ Size ELO Matches Win(#Ratings)
Human Reference 1382 5880 —
LLaVA-Plus 13B 1203 678 35.07% (134)
LLaVA 13B 1095 5420 18.53% (475)
mPLUG-Owl 7B 1087 5440 15.83% (480)
LlamaAdapter-v2 |13B 1066 5469 14.14% (488)
Lynx 8B 1037 787 11.43% (140)
Idefics 9B 1020 794 9.72% (144)
Instruct BLIP 13B 1000 5469 14.12% (503)
Otter 8B 962 5443 7.01% (499)
Visual GPT 941 5437 1.57% (510)
MiniGPT-4 11B 926 5448 3.36% (506)
Octopus V2 925 790 8.90% (146)
OpenFlamingo V1 851 5479 2.95% (509)
PandaGPT 13B 775 5465 2.70% (519)
MultimodalGPT 731 5471 0.19% (527)

Table 7: Current ELO rankings on ViSiT-Bench leaderboard as of Sept. 27th, 2023.
Some model sizes are skipped due to unrevealed.
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1will use controlnet to help to answer the question. Please wait for a moment.
controlnet model outputs: {'message': 'The controlnet has processed the image.}
Please summarize the model outputs and answer my first question: Can you generate a similar

image under sea?
" Thanks o the outputof controlnet. | can answer the question better
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Yes, there is a frisbee in the
image. Based on the results of
the grounding_dino model,
the frisbee is located in the
middle of the image, with
bounding box coordinates of
[0.76, 0.64, 082, 0.66]. This
suggests that the frisbee is in

Absolutely! Utilizing the potent ControlNet model, I've created an image
the air, possibly being thrown that resembles your underwater description. Check out the results
or caught by one of the below. I trust you'll find it appealing!

players. g Y,
make the image like autumn. then generate some attractive texts for Instagram posts

“thoughtsé" To complete the image editing task, | need the instruct pix2pix model.
“actions®" [{"API_name": "instruct-pix2pix", "AP|_params": {"prompt": "make the image like autumn "}}
"value™"
I will use instruct-pix2pix to help to answer the question. Please wait for a moment.
instruct-pix2pix model outputs: {'message': ‘The instruct-pix2pix has processed the image.}

1 e

del d my first question: make the image like autumn. then generate some attractive texts for Instagram posts
“thoughts&" Thanks to the output of instruct-pix2pix. | can answer the question better

“actions#" ]

"values”

Great! I'll use instruct pix2pix to edit the image, and you can see the changes below. Now, let's craft some Instagram captions for
this new image:
1."Embrace the cozy vibes of autumn with this stunning lake view! et gAutumnFeels #LakeViews #NatureLover"

2."Who says fall's colors aren't pretty? Check out this vibrant view of the lake! “az nnVibes #LakeLife #ScenicRiver"
3."Take a moment to soak in the vivid shades of autumn with this ing view! “a {ue: ul pt
#SereneLocation"

4."Why rush through the season when you have views like this? a2 #AutumnDays #LakeEscape #GetawayGoals"
5."Get lost in the beauty of autumn nature with this captivating view of the lake! sfez_ #AutumnWonder #LakeLife #NatureLover"

Fig. 3: New capabilities in LLaVA-Plus. Human questions X4 are in purple, LLaVA-Plus
responses Xanwser are in green. (Left) Object detection and visual chat; (Right) Semantic
segmentation and mask-based conditional image generation; (Bottom) Multimodal social
media post by editing an image and writing a message.
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In the left example, the questions require identifying the precise object
locations. LLaVA-Plus can successfully detect the frisbee’s coordinates, which
help determine its status of flying in the air and thus describe the outdoor
scene/activity. The same example is shown to Bard, Bing Chat, MM-REACT
and LLaVA in Figure[6]in Appendix. They all fail, revealing the lack of grounding
ability.

In the right example, we illustrate an interactive image editing scenario, where
users aim to see the spatial layout of the scene first and then generate an image of
a similar layout, but with a new “under water” scene. The LMM not only applies
the correct skills, but also generates a function argument “A bicycle parked next
to a bench under the sea” for conditional image generation. This reveals the
appealing property of LMM as a planner, as it can see the raw image, and provide
necessary image analysis results throughout the human-AI interaction process.
More such examples are in Appendix Figure

In the bottom example, we show that LLaVA-Plus can be used to help create
multimodal social media posts. For example, when capturing an image, the user
wants to post the same image in an autumn scene and associate the image with
some attractive text to post Instagram. LLaVA-Plus can use the editing skills
to revise the image, and combine the context of visual images and their related
language topics to suggest several caption options. In Appendix Figure we
create all four seasons for the same scenarios, and observe that LLaVA-Plus can
follow the instruction to easily switch among them while consistently maintaining
the original image cue.

5 Conclusion

We have presented LLaVA-Plus, a general-purpose, multimodal assistant which
is based on an LMM that plugs and learns to use skills to complete a wide
range of vision-language tasks in the wild. The first visual instruction dataset
specifically designed for multimodal tool use has been collected for model training.
By incorporating the execution results of new skills, LLaVA-Plus consistently
outperforms LLaVA across many benchmarks, creates a new SoTA and shows
emergent multimodal interaction capabilities. However, LLaVA-Plus is limited
due to hallucinations and tool use conflicts in practice. There are interesting
problems yet to be addressed in future research on building reliable general-
purpose multimodal Al agents.

Reproducibility

To ensure the reproducibility of our research, we will publicly release a
comprehensive set of assets including the generated multimodal instruction data,
our codebase, the LLaVA-Plus checkpoints, and a visual chat demo. Additionally,

we have ensured complete transparency by elaborating on every facet of our
training data collection and model training within this paper, as shown in Sec. 2]
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