
City-on-Web: Real-time Neural Rendering of
Large-scale Scenes on the Web

Kaiwen Song1 , Xiaoyi Zeng1 , Chenqu Ren2 , and Juyong Zhang1⋆

1 University of Science and Technology of China
2 East China Normal University

Abstract. Existing neural radiance field-based methods can achieve
real-time rendering of small scenes on the web platform. However, ex-
tending these methods to large-scale scenes still poses significant chal-
lenges due to limited resources in computation, memory, and bandwidth.
In this paper, we propose City-on-Web, the first method for real-time ren-
dering of large-scale scenes on the web. We propose a block-based volume
rendering method to accommodate the independent resource character-
istics of web-based rendering, and introduce a Level-of-Detail strategy
combined with dynamic loading/unloading of resources to significantly
reduce memory demands. Our system achieves real-time rendering of
large-scale scenes at 32FPS with RTX 3060 GPU on the web and main-
tains quality comparable to the current state-of-the-art novel view syn-
thesis methods. Project page: https://ustc3dv.github.io/City-on-Web/

Keywords: Real-time rendering · Neural rendering · Large-scale scene

1 Introduction

Neural radiance field (NeRF) has advanced the field of reconstruction, show-
ing an unparalleled ability to capture complex details across diverse environ-
ments. Existing works demonstrate its ability to render small scenes with ex-
ceptional quality and performance in real-time [2, 10, 16, 23, 26, 29, 35, 41, 45].
NeRF has also been successfully applied to the various scenarios, including hu-
man reconstruction, object-centric scenes, and large-scale scenes in offline set-
tings, achieving exceptional visual fidelity and generating intricately detailed
results [9, 12,13,19,28,34,37,40,41,43].

Despite these successes, real-time neural rendering of large scenes on the
web remains profoundly challenging due to inherent computational power, mem-
ory, and bandwidth limitations on commodity devices. MERF [30] has recently
achieved significant progress by employing a baking technique to reduce query
network calls in the rendering pipeline, thereby enabling real-time rendering of
small-scale scenes on the web. However, MERF struggles to capture intricate
details in large scenes due to its limited resolution. A naive solution would be
to simply increase the volumetric representation’s resolution, but this approach
⋆ Corresponding Author

https://orcid.org/0009-0007-1199-5380
https://orcid.org/0009-0007-3681-7345
https://orcid.org/0009-0005-4942-2129
https://orcid.org/0000-0002-1805-1426
https://ustc3dv.github.io/City-on-Web

2 K. Song et al.

would lead to unacceptable increases in memory usage, scaling with O(N3), and
a significant decrease in rendering speed.

To overcome these limitations, we integrate MERF with a block-based strat-
egy [37] for reconstructing large scenes, a method supported by numerous stud-
ies [34, 37, 49]. This approach not only improves the model’s representational
ability but also controls memory growth at an O(N2) rate. However, there are
certain challenges associated with a resource-independent block-based render-
ing approach on the web. Specifically, rendering on the web faces limitations on
the number and resolution of texture units that can be loaded into a shader,
which prevents loading all block resources into a single shader. Consequently,
we load the rendering resources of different blocks into their respective shaders.
Nevertheless, rendering with different shaders causes issues with 3D consistency.
Specifically, when a ray traverses multiple blocks, sampling points might belong
to different blocks loaded by different shaders, preventing standard volume ren-
dering. We are thus compelled to render each block sequentially and subsequently
combine the rendering results of the different blocks. To this end, we propose
a block-based volume rendering strategy and demonstrate that this method of
sequential block rendering is equivalent to volume rendering, thereby ensuring
correct occlusion and 3D consistency of the rendering results. Notably, unlike
existing block-based methods like Block-NeRF [34] and Mega-NeRF [37] that
require the resources of all blocks to be loaded simultaneously for rendering, our
strategy make each block can be rendered independently with its own texture in
its own shader.

Moreover, when viewing from a higher altitude viewpoint, the rendering re-
sources of all scene blocks are needed. Nonetheless, loading all blocks for ren-
dering is impractical due to the excessive memory usage that would surpass the
capacity of standard consumer devices. To address this issue, we draw inspiration
from traditional graphics techniques [6–8,14,17,22,25] to create Level-of-Detail
(LOD) for each block’s resources, dynamically selecting resources for rendering
based on the camera’s position and field of view. This approach significantly
reduces the resource demands during rendering, paving the way for smoother
user experiences even on less capable devices.

In summary, the contributions of this paper include the following aspects:

• We propose a block-based multi-shader volume rendering method, which can
be proven to be equivalent to standard volume rendering. This stategy is
designed to accommodate resource-independent environments and enabling
high-fidelity rendering of large-scale scenes.

• We employ an LOD strategy and dynamic loading/unloading strategies to
adaptively manage rendering resources and significantly reducing the quan-
tity of resources loaded and ensuring efficient resource utilization for large-
scale scene rendering.

• Our experiments demonstrate that our system achieves real-time rendering of
large-scale scenes at approximately 32FPS with 1080P resolution on an RTX
3060 GPU, while maintaining rendering quality comparable to the current
state-of-the-art (SOTA) methods for large-scale scenes.

City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 3

2 Related Work

Rendering

Training

Generate LOD

Dynamic
Loading

Shader
Block 𝒊𝒊

color &
opacity

Depth-sorting
among blocks

Block-based
volume rendering

result
𝛼𝛼𝒌𝒌
𝒄𝒄𝒌𝒌

𝛼𝛼𝒋𝒋
𝒄𝒄𝒋𝒋

𝛼𝛼𝒊𝒊
𝒄𝒄𝒊𝒊

𝛼𝛼𝑘𝑘: opacity of shader k
𝑐𝑐𝑘𝑘: color of shader k

𝐶𝐶 𝑟𝑟 = �
𝑘𝑘=1

𝑀𝑀

�
𝑗𝑗=1

𝑘𝑘−1

(1 − 𝛼𝛼𝑗𝑗) 𝑐𝑐𝑘𝑘

gt

Block 𝒊𝒊

Block 𝒌𝒌

Block 𝒋𝒋

Optimize together

Shader
Block 𝒋𝒋

Shader
Block 𝒌𝒌

Downsample
Retrain a shared

deferred MLP

virtual
grids

LOD Generation

Fig. 1: Overview of City-on-Web pipeline. During the training phase, we uni-
formly partition the scene and reconstruct it at the finest LOD. To ensure 3D consis-
tency, we use a resource-independent block-based volume rendering strategy (Sec. 4.2).
For LOD generation, we downsample virtual grid points and retrain a coarser model
(Sec. 4.4). This approach supports subsequent real-time rendering by facilitating the
dynamic loading of rendering resources.

Large-scale Scene Reconstruction. For large-scale scene reconstruction,
a key issue is enhancing the model’s ability to adequately capture and render
extensive scenes. Some works [11, 34, 37] address this by adopting a divide-and-
conquer strategy, segmenting expansive scenes into smaller blocks, and applying
localized NeRF processing to each. This approach significantly improves both
the reconstruction quality and the model’s scalability to larger scenes. Switch-
NeRF [49] employs a gating network to dispatch 3D points to different NeRF
sub-networks. Grid-NeRF [43] utilizes a compact multiresolution feature plane
and combines the strengths of smoothness from vanilla NeRF with the local de-
tail capturing ability of feature grid-based methods [4, 27, 31], efficiently recon-
structing large scenes with fine details. NeRF++ [47] enhances the reconstruc-
tion of unbounded scenes through its innovative multi-spherical representation.
On the other hand, Mip-NeRF 360 [1] introduces a scene contraction function
to effectively represent scenes that extend to infinity, addressing the challenge of
vast spatial extents. F2-NeRF [38] takes this a step further by implementing a
warping function for local spaces, ensuring a balance of computational resources
and training data across different parts of the scene.

Real-time Rendering.Early works mainly focus on the real-time rendering
of a simple single object. NSVF [23] improves NeRF by introducing a more effi-

4 K. Song et al.

cient sparse voxel field, significantly accelerating rendering speed while maintain-
ing high-quality output. KiloNeRF [29] utilizes thousands of small MLPs, each
responsible for a tiny region, significantly reducing network evaluation time. In
contrast, MERF [30] improves upon SNeRG [15] by utilizing a hybrid representa-
tion to reduce memory usage. Oblique-MERF [46] enhances real-time rendering
performance over MERF by using an occupancy plane to skip empty space. Mo-
bileNeRF [5] introduces the polygon rasterization rendering pipeline, running
NeRF-based novel view synthesis in real-time on mobile devices. BakedSDF [44]
bakes volumetric representation into meshes and utilizes spherical harmonics
for representing view-dependent color, while NeRF2Mesh [35] iteratively refine
both the geometry and appearance of the mesh. Furthermore, several meth-
ods [36, 39] exploit the real-time rendering attributes of mesh representations
alongside the robust representational potential of volume representations, par-
ticularly for rendering hair, translucent materials, and similar entities. These
hybrid methods facilitate the achievement of high-fidelity real-time rendering.
Recently, 3D Gaussian splatting [20] achieves real-time rendering by utilizing
a novel 3D Gaussian representation and rasterization-based rendering pipeline.
However, extending this representation to large scenes is challenging due to its
substantial memory consumption.

Level of Detail. Substantial works are devoted to integrating LOD meth-
ods into the fabric of traditional computer graphics [6–8,14,17,22,24,25], aiming
to streamline rendering processes, reduce memory footprint, bolster interactive
responsiveness. Recently, some works have begun to apply LOD to neural im-
plicit reconstruction. NGLoD [33] represents LOD through a sparse voxel octree,
where each level of the octree corresponds to a different LOD, allowing for a finer
discretization of the surface and more detailed reconstruction as the tree depth
increases. Takikawa et al . [32] efficiently encode 3D signals into a compact, hier-
archical representation using vector-quantized auto decoder method. BungeeN-
eRF [41] employs a hierarchical network structure, where the base network fo-
cuses on learning a coarse representation of the scene, and subsequent residual
blocks are tasked with progressively refining this representation. TrimipRF [18]
and LOD-Neus [50] leverage multi-scale triplane and voxel representations to
capture scene details at different scales, effectively implementing anti-aliasing to
enhance the rendering and reconstruction quality.

3 Background

Our exploration begins with an in-depth analysis of two influential works, SNeRG [15]
and MERF [30]. SNeRG precomputes and stores a NeRF model in a sparse 3D
voxel grid. Additionally, an indirection grid is used to enhance rendering by ei-
ther indicating empty macroblocks or pointing to detailed texels in a 3D texture
atlas. This representation allows real-time rendering on standard laptop GPUs.

The indirection grid assists in raymarching through the sparse 3D grid and
selectively accessing non-zero densities σi, diffuse colors ci, and feature vectors

City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 5

f i from baked textures. Integrating along each ray r(t) = o+ td, they compute
the sum of the weights, which can be considered as the pixel’s opacity:

α(r) =
∑
i

wi, wi =

i−1∏
j=1

(1− αj)αi, αi = 1− e−σiδi . (1)

The step size δi during ray marching is the voxel width for an occupied voxel.
The color Cd(r) and specular feature F s(r) along the ray are accumulated using
the same weights to compute the final diffuse color and specular feature of ray:

Cd(r) =
∑
i

wici, F s(r) =
∑
i

wif i. (2)

Subsequently, diffuse color and specular feature, along with the positional
encoding PE(·) of the ray’s view direction, are concatenated to pass through a
lightweight deferred MLP Φ to produce a view-dependent residual color:

C(r) = Cd + Φ(Cd,F s, PE(d)). (3)

While SNeRG achieves impressive real-time rendering results, its voxel rep-
resentation demands substantial memory, which poses limitations for further ap-
plications. MERF presents a significant reduction in memory requirements. By
leveraging hybrid low-resolution sparse voxel and 2D high-resolution triplanes,
MERF optimizes the balance between performance and memory efficiency. More-
over, it incorporates two pivotal strategies to bridge the gap between training
and rendering performance. MERF simulates finite grid approach during train-
ing, querying MLPs at virtual grid corners and simulates quantization during
training to mimic the rendering pipeline closely.

4 Method

In this section, we present a method for rendering large scenes on the web. Our
approach utilizes a block and LOD strategy for rendering large-scale scenes, as
described in (Sec. 4.1). A block-based volume rendering approach is introduced
for the seamless blending of blocks, utilized both during the training and ren-
dering stages to ensure consistency (Sec. 4.2). Sec. 4.3 details the optimization
strategies. The generation and refinement of LODs(Sec. 4.4) are also explained.
Sec. 4.5 elucidates the baking strategy suitable for the representation.

4.1 Large-scale Radiance Field

Although real-time rendering methods like MERF can achieve high-quality real-
time rendering for small-scale scenes, they face representational capacity chal-
lenges when applied to larger scenes. As mentioned in Sec. 1, utilizing a single
MERF model to represent vast scenes is problematic due to its limited reso-
lution, especially in terms of detailed and accurate reconstruction. Therefore,

6 K. Song et al.

we represent scenes using multiple blocks. However, this approach necessitates
employing an LOD strategy to reduce the number of resources that need to be
loaded during the rendering phase. Thus, we adopt a block-based and LOD strat-
egy for representing the whole scene in the rendering stage. We will elaborate
on the representation used in the rendering stage and provide the representation
used to reconstruct the scene in the finest LOD in the training stage.

Training Stage. In the training stage, we only represent and optimize the
finest LOD. We uniformly partition the entire scene into K blocks {Bk}Kk=1,
each centered at ck = (xk, yk), on the xy plane (i.e., the ground plane). This
approach stems from the observation that large scenes typically exhibit smaller
scales in the z-direction compared to the xy-plane, prompting us to partition
based on the ground plane and avoid subdividing along the z-axis. For a point
p = (px, py, pz) ∈ R3, we determine its corresponding block Bk based on its xy
coordinates, denoted as pproj = (px, py):

p ∈ Bk, k = argmin
k

∥pproj − ck∥∞ (4)

Within block k, the following trainable components are introduced: (1) fk is an
attribute query function that adopts a hash encoding and an MLP decoder that
outputs attributes of points such as densities, diffuse color and specular feature
(2) Φk is a tiny deferred MLP account for view-dependent effects. (3) ψk is a
proposal MLP for sampling.

Rendering Stage. In the rendering stage, our scene representation includes
hierarchical L LODs representation for the scene. Specifically, as shown in the
right figure, we merge 2×2 blocks into one block between two consecutive LODs.
As a result, for LOD l, where l ∈ {1, 2, . . . , L}, there are K/4l−1 blocks. In each
block, the following baked textures are used for rendering: (1) fk,l is an attribute
query function that takes the coordinates of a sample point as input and directly
accesses the opacity, diffuse color and specular features of the sample point from
the baked sparse voxel and triplane textures. (2) Φk,l represents a tiny deferred
MLP that accounts for view-dependent effects. (3) ψk,l is used as a multi-level
occupancy grid for sampling.

4.2 Block-based Volume Rendering

In the rendering stage, we create multiple shaders to render distinct blocks.
Specifically, one shader is allocated for storing the texture of an individual block.
Each block subsequently renders an image respective to the current camera view.
However, a simplistic averaging of these resultant rendering outputs can lead
to discernible seams and does not ensure correct occlusion at the inter-block
boundaries as shown in Fig. 2a. Therefore, we employ a block-based volume
rendering strategy and combine it with depth sorting followed by alpha blending
to ensure seamless boundaries and correct occlusion at the edges.

Specifically, in the rendering stage, for a ray r(t) passing through M blocks
with a total of N samples, where each block k has nk samples, we perform
volume rendering within each block to obtain its individual rendering diffuse

City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 7

In
co

rr
ec

t d
ep

th
 so

rt
in

g
In

co
rr

ec
t b

le
nd

in
g

(a) Incorrect blending

𝒘

𝒕

𝒘

(b) Ours alpha blending

Fig. 2: Visualization comparison between the alpha blending method and
others. (a) Top image: incorrect occlusion without depth sorting. Bottom image: in-
correct rendering results when simply using αi/(

∑
j αj) as blending weights. (b) Left:

rendering results of four separate blocks and the final blending result. Right: visualiza-
tion of sample points’ rendering weights before and after alpha blending.

color Ck
d, specular feature F k and opacity αk of the ray in block Bk according

to Eq. (1) and Eq. (2). Then we get final rendering color Ck of block Bk according
to Eq. (3). Subsequently, to correctly handle occlusion in rendering, we depth-
sort the blocks and apply volume rendering across multiple blocks in sequence,
using opacity to generate the blending weights:

C(r) =

M∑
k=1

k−1∏
j=1

(1− αj)Ck. (5)

Deferred Rendering

Fig. 3: Block-based volume rendering. “DR” de-
notes deferred rendering. Φ represents the deferred MLP.

Under the Lambertian
surface setting where the
specular color is zero, the
color obtained from volume
rendering on the total of N
ray samples from Eq. (2)
is equal to the results pro-
duced by our approach of
conducting volume render-
ing within each block fol-
lowed by inter-block volume
rendering Eq. (5). The proof
is given in the supplemen-
tary. Thus, our rendering approach maintains correct occlusion and keeps
3D consistency when using multiple shaders rendering on the web as shown
in Fig. 2b.

The volume rendering process in MERF involves integrating all sample points
together, followed by deferred rendering. In contrast, as shown in Fig. 3, our
block-based volume rendering is fundamentally based on segmented integration.

8 K. Song et al.

Without the deferred rendering process, it is entirely equivalent to traditional
volume rendering. However, if we adhere to the MERF rendering pipeline dur-
ing the training process, it will lead to discrepancies between the rendering re-
sults during the training and rendering phases, ultimately affecting the rendering
quality. To minimize this gap, we adopt the same rendering pipeline during the
training stage as we do in the rendering stage.

Specifically, in the training stage, for ray r(t), we uniformly sample between
the near and far boundaries based on the scene’s bounding box. Then, we de-
termine that this point is inside Bk according to Eq. (4) and query the corre-
sponding proposal MLP ψk of Bk to sample probability distributions along the
ray. Similarly, we also query the corresponding fk to obtain the attributes of the
rendering sample points. Lastly, like in the rendering stage, we render each block
sequentially to obtain the color and opacity for the ray in Bk and use Eq. (5)
to derive the final rendering result.

4.3 Optimization

In the training stage, we reconstruct the finest LOD model by optimizing it with
various losses:

Ltrain = Lcb + Lglobal + λ1Ls3im + λ2Lprop + λ3Ldist + λ4Ls + λ5Lopacity. (6)

Here, we use Charbonnier loss [3] Lcb for reconstruction and S3IM loss [42]
Ls3im to assist model in capturing high-frequency details. Additionally, we use
the interlevel loss Lprop to provide a supervision signal for proposal MLP and
distortion loss Ldist to reduce floaters like Mip-nerf 360 [1].

Sparsity Loss. We random uniform sample points set P within the bounding
box of the scene and apply L1 regularization on the opacity of sample points αi

to encourage model to predict sparse occupied space:

Lsparse =
1

|P|
∑
pi∈P

|αi| (7)

Opacity Loss. We introduce a regularization term for the opacity of the
block. This regularization encourages the opacity of the block to be as close to
0 or 1 as possible, implying either full transparency or full opaqueness:

Lopacity = −
∑
k

(αklog(αk) + (1− αk)log(1− αk)). (8)

Regularization of Deferred MLPs. In the deferred rendering context,
various combinations of specular and diffuse colors can satisfy multi-view con-
sistency constraints. This situation often leads to incorrect disentanglement of
these color components. Our training process involves using a deferred MLP
within each block, but this approach does not guarantee the smoothness of spec-
ular color across block boundaries and the multitude of possible combinations
of specular and diffuse colors.

City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 9

Table 1: Quantitative comparison. We report PSNR, LPIPS, and SSIM on the
test views. The best and second best results are highlighted.

Matrix City Campus Rubble Building
PSNR↑LPIPS↓SSIM↑ PSNR↑LPIPS↓SSIM↑ PSNR↑LPIPS↓SSIM↑ PSNR↑LPIPS↓SSIM↑

NeRFacto 24.95 0.688 0.456 23.47 0.689 0.255 19.02 0.512 0.538 17.70 0.442 0.502
Instant-NGP 23.55 0.629 0.597 21.91 0.549 0.478 20.37 0.478 0.629 - - -
Mega-NeRF 25.43 0.674 0.517 22.28 0.565 0.472 23.68 0.525 0.558 20.93 0.504 0.547
Ours 25.87 0.734 0.332 24.73 0.736 0.192 21.32 0.539 0.482 20.13 0.397 0.578

Inspired by Grid-NeRF [43], which utilizes the smoothness of MLP to reg-
ularize explicit grid representations. We also utilize a global deferred MLP to
regularize the rendering outputs from smaller, block-specific deferred MLPs, en-
suring the global smoothness of specular color. In particular, we combine the
specular color generated by this global deferred MLP with the diffuse color to
obtain the final rendering result. We then supervise the rendering result using
ground truth images in the form of a Charbonnier loss, denoted as Lglobal, to
regularize the smaller deferred MLPs. Notably, this global deferred MLP is sig-
nificantly larger and thus possesses sufficient representational capacity compared
to the smaller deferred MLPs designated for each block. Therefore, the global
MLP does not limit the model’s representational capacity.

4.4 LOD Generation

To ensure high-quality rendering from elevated viewpoints and reduce resource
usage for distant scene blocks, our method generates multiple LODs for the
scene. One conventional approach to generate LODs would be to retrain the
entire scene using fewer blocks, that is, at a lower representation resolution,
but this method extends the training time a lot. Additionally, considering the
specialized photography techniques employed for capturing large scenes, usually
from aerial or top-down perspectives, it is challenging to ensure appearance
consistency across models trained separately for extrapolated views if we retrain
the entire scene from scratch.

Therefore, we generate LODs based on the scene’s finest LOD acquired during
the training stage. Specifically, we simulate the virtual grid to store attributes
like MERF in the training stage. As merging M ×M blocks into M

2 × M
2 blocks

to generate LODs, we initially downsample the resolution of the virtual grid in
each block by a factor of 2. Subsequently, we freeze the training of the query
function fk within these submodels and retrain a new shared deferred MLP Φk,l

across merged blocks. Finally, we continue to jointly optimize these submodels
and the deferred MLP to adapt to lower-resolution voxels and triplanes.

4.5 Baking

For LOD l, we merge M ×M blocks into M
2l

× M
2l

blocks. Every 2l × 2l blocks
can be baked into a single texture asset fk,l in the baking stage thanks to the

10 K. Song et al.

Fig. 4: Qualitative comparisons with existing SOTA methods. By testing dif-
ferent methods across diverse scales and environments, it clearly reveals that our ap-
proach excels in recovering finer details and achieves a higher quality of reconstruction.

dowmsampling when generating LODs. Thus, in the rendering stage, a single
shader is responsible for rendering these 2l × 2l blocks.

Specifically, we render all training rays to collect ray samples initially. Sam-
ples with opacity and weight values above a certain threshold are retained, and
samples below the threshold are discarded. The preserved samples are used to
mark the adjacent eight grid points as occupied in the binary occupancy grids
ϕk,l. After generating binary grids to identify occupied voxels, we follow MERF
by baking high-resolution 2D planes and a low-resolution 3D voxel grid in each
block to get the attribute function fk,l used in the rendering stage. Only the
non-empty 3D voxels are stored using a block-sparse format. We downsample
the occupancy grid with max-pooling for efficient rendering. To further save
storage, we compress textures into the PNG format.

5 Experiments

5.1 Experiments setup

Dataset and Metric. Our experiments span across various scale and environ-
ments. We have incorporated a real-world urban scene dataset (Campus), public
datasets consisting of real-world scenes (Rublle and Building) [37] and synthetic
city-scale data (MatrixCity) [21]. Our datasets were recorded under uniform,

City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 11

Table 2: Comparison with existing real-time methods. We divide the scene
into four blocks and 16 blocks. We split the data into four parts, with each part being
reconstructed by an individual MERF for a fair comparison. We present the results
of Gauss splatting [20] after training 30,000 and 100,000 iterations for demonstration.
VRAM and DISK are denoted in megabytes (MB).

PSNR↑ SSIM↑ LPIPS↓ VRAM↓ DISK↓ FPS↑
MobileNeRF 19.99 0.516 0.712 712.3 242.1 68
BakedSDF 22.24 0.627 0.413 544.8 515.3 223
MERF(4 blocks) 24.02 0.713 0.254 592.4 121.2 58
GS(30k iters) 23.78 0.745 0.263 1469.3 1469.1 77
GS(100k iters) 24.94 0.783 0.227 1467.1 1467.1 58

Ours(4 Blocks) 24.82 0.741 0.190 526.6 114.4 46
Ours(16 Blocks) 25.13 0.779 0.167 2040.7 464.5 34

cloudy lighting conditions to minimize variation. To obtain precise pose infor-
mation, we employed an annular capturing approach, which has a higher overlap
rate compared to grid-based capturing methods. The dataset covers an area of
1200 × 800 square meters. It includes a total of 6515 images. We use 99% data
for training, and the rest is used as the test dataset. To assess the quality and
fidelity of our reconstructions, we employ various evaluation metrics, including
PSNR, SSIM and LPIPS [48].
Implementations and Baselines. Our experiments focus on a single part
in Campus dataset for comparative analysis with existing real-time rendering
methods. This part contains over 1600 images, covering an area of approximately
600 × 400 square meters. We divide this part of the data into four parts for a
fair comparison with the MERF method. Other methods did not divide the
dataset when conducting experiments. Moreover, we benchmark current real-
time rendering methods using three critical parameters: Peak GPU memory
usage (VRAM), frames per second (FPS), and on-disk storage (DISK). We report
these metrics based on tests conducted on an NVIDIA RTX 3060 GPU with
1920× 1080 resolution. More details can be found in the supplement.

5.2 Results Analysis

We systematically evaluate the performance of both baseline models and our
method through qualitative and quantitative comparisons in Tab. 1 and Fig. 4.
Notably, our method demonstrates a remarkable enhancement in visual fidelity
as reflected by the SSIM and LPIPS metrics, which indicate the extent of detail
restoration. Despite a reduction in PSNR compared to the SOTA methods, this is
attributable to the fact that LPIPS and SSIM are more sensitive to the recovery
of fine details, whereas PSNR mainly measures pixel-wise color accuracy. Our
approach achieves higher fidelity reconstructions, revealing finer details due to
our partitioned reconstruction strategy.

In our evaluation, detailed in Tab. 2 and Tab. 3, we compare our method with
current real-time rendering methods. The tests are conducted on a subset of the

12 K. Song et al.

Campus dataset and a significantly large scene, Block ALL and performed on an
NVIDIA RTX 3060 Laptop GPU at a 1920×1080 resolution. The results demon-
strate that our method excels in reconstruction quality. We represent each scene
block using voxels and triplanes, and store the baked grid attributes as images.
This strategy significantly reduces the memory. This reduction notably acceler-
ates resource transmission for web-based rendering applications. However, it is
observed that our frame rate during rendering is lower compared to other meth-
ods. This is attributed to their rendering pipeline based on mesh rasterization,
which is in contrast to our method, which utilizes volume rendering.

Table 3: Comparison on Block All scene. Grid-NeRF is tested on a RTX 3090
and the other methods are tested on a RTX 3060.

PSNR↑ SSIM↑ LPIPS↓ VRAM↓ DISK↓ FPS↑

Grid-NeRF 24.90 0.698 0.480 - 7102 MB 0.55
Gaussian-Splatting 25.42 0.784 0.308 1978 MB 1978 MB 17

Ours 25.87 0.734 0.332 912 MB 279 MB 34

5.3 LOD Result

Fig. 5: Visualization of LOD result.

Tab. 4 presents the quantitative ren-
dering results at various LODs, along
with the corresponding DISK and
VRAM usage. With increasing LOD,
the resources required for render-
ing significantly decrease. Notably,
our method’s lowest LOD still main-
tains high-fidelity rendering results,
as demonstrated in Fig. 5. Our LOD
strategy significantly streamlines the
management of resource loading on
web platforms, which is particularly
advantageous in rendering distant
blocks, as it requires less VRAM. It is worth noting that the VRAM usage pre-
sented in Tab. 4 represents the cumulative memory consumption of all blocks.
Our dynamic loading strategy adaptively selects resources to load based on the
camera’s field of view and the distance to each block, effectively keeping the
peak VRAM usage around 1100MB.

5.4 Ablation Study

We conduct ablation studies to demonstrate the impact of the contributions
introduced to our method.

City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 13

Table 4: The LOD results on the
whole Campus dataset. VRAM and
DISK are denoted in megabytes (MB).

PSNR↑ SSIM↑ LPIPS↓VRAM↓DISK↓

LOD3 23.72 0.660 0.306 132.1 40.2
LOD2 24.23 0.682 0.297 841.6 201.7
LOD1 24.73 0.736 0.192 3970.2 1259.6

Table 5: Ablations on LOD genera-
tion. “Time” column indicates the time re-
quired to generate the LOD.

PSNR↑ SSIM↑ LPIPS↓ Time ↓

downsample 22.43 0.614 0.362 0 hours
from scratch 24.17 0.722 0.224 12 hours
ours 24.20 0.724 0.204 4 hours

Table 6: Ablation study on our method. The result is tested on one section of
the Campus dataset. VRAM and DISK are denoted in megabytes (MB).

PSNR↑ SSIM↑ LPIPS↓ VRAM↓ DISK↓

model with 10243 Res. 24.05 0.710 0.201 540.9 147
model with 20483 Res. 24.42 0.751 0.184 3073.2 457
no alpha blending 24.03 0.684 0.345 565.4 153
no consistent training 24.21 0.702 0.281 514.4 110
no global deferred mlp 24.61 0.712 0.198 536.6 126
ours(4 blocks) 24.82 0.741 0.190 526.6 114
ours(16 Blocks) 25.13 0.779 0.167 2040.7 464

Ablation on Our Method. In Tab. 6, we conduct an ablation study of our
method on one part of Campus dataset “ours(4 blocks)” means we use four blocks
with 5123 voxel resolution and 20483 triplane resolution for scene reconstruction.
“ours(16 blocks)” means we use 16 blocks with 5123 voxel resolution and 20483

triplane resolution for scene reconstruction. In “model with 10243 Res.”, we train
a one block MERF model with 10243 voxel resolution and 40962 triplane res-
olution. In “model with 20483 Res.”, we train a one block MERF model with
20483 voxel resolution and 81922 triplane resolution. Our method has higher
rendering quality and requires less storage space. In “no alpha blending”, we
instead our alpha blending with simply using αi/(

∑
j αj) as blending weights.

This non-occlusion-aware blending strategy significantly reduces the rendering
quality. In “no consistent training”, we use MERF’s volume rendering pipeline in
the training stage. In “no global deferred MLP”, we remove global deferred MLP.
Without the regularization of deferred MLPs, the quality of the reconstruction
has decreased.

Ablation on LOD Generation. Tab. 5 shows ablation study on LOD
generation. We use our LOD generation method as basline. In “downsample”, we
simply downsample the model without re-optimization. In “from scratch”, we do
not use the finest LOD model to generate LOD. Instead, we trained the same
resolution model from scratch.

6 Conclusion and Disscussion

In this work, we introduced City-on-Web, which to our knowledge is the first
system that enables real-time neural rendering of large-scale scenes on the web

14 K. Song et al.

using laptop GPUs. Our choice of a block-based volume rendering strategy, tai-
lored for resource-independent web environments, achieves seamless integration
between blocks. Our carefully designed LOD generation and refinement strategy
support dynamic loading, minimizing necessary resources on the web while en-
suring the best visual experience. Extensive experiments have also fully proved
the effectiveness of City-on-Web.

Scientific Impact. Unlike existing block-based methods that require the
simultaneous loading of all block resources for rendering, our innovative method
allows each block to be rendered independently using its own texture in its own
shader. This strategy supports independent rendering, making it highly adapt-
able to various resource-independent environments, opening new avenues for re-
search and application, and potentially impacting the efficiency and scalability
of large-scale radiance field training.

For example, in multi-GPU and distributed system environments, our method
enables the direct transfer of rendered color and opacity of each block among
GPUs or nodes, reducing the need to transfer numerous sample attributes. This
reduction in data transfer minimizes communication overhead, thereby eliminat-
ing the common bottleneck in large-scale distributed training and substantially
improving training speeds. We are glad to see future work applying this strategy
to the parallel or distributed training of NeRF or Gaussian splatting model.

Fig. 6: Comparison to Mega-NeRF in
Rubble dataset. The dataset presents sig-
nificant variations in lighting.

Limitations. Since we derive al-
pha blending across shaders based
on the Lambertian surface assump-
tion, visible seams may occur at the
boundaries between blocks on non-
Lambertian surfaces, such as wa-
ter surfaces. Combining physically-
based rendering with multiple shaders
blending may alleviate this prob-
lem. Additionally, while our approach
achieves real-time rendering of large
scenes on consumer-grade laptops,
the inherently resource-intensive na-
ture of large scenes makes that real-
time rendering on mobile devices re-
mains a challenge. Moreover, while
our method recovers more intricate
geometrical detail, it frequently re-
sults in color discrepancies with the ground truth image due to unstable lighting
conditions and variable exposure, as shown in Fig. 6. Our deferred shading model
has limited ability to represent view-dependent colors and cannot accurately
represent lighting changes in the data as view-dependent effects. This limitation
results in slightly lower PSNR values.

City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 15

Acknowledgements

This research was supported by the National Natural Science Foundation of
China (No.62122071, No.62272433), and the Fundamental Research Funds for
the Central Universities (No. WK3470000021). The numerical calculations in
this paper have been done on the supercomputing system in the Supercomputing
Center of University of Science and Technology of China.

References

1. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470–
5479 (2022)

2. Cao, J., Wang, H., Chemerys, P., Shakhrai, V., Hu, J., Fu, Y., Makoviichuk, D.,
Tulyakov, S., Ren, J.: Real-time neural light field on mobile devices. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
8328–8337 (2023)

3. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-
preserving regularization in computed imaging. IEEE Transactions on image pro-
cessing 6(2), 298–311 (1997)

4. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In:
European Conference on Computer Vision. pp. 333–350. Springer (2022)

5. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: Mobilenerf: Exploiting
the polygon rasterization pipeline for efficient neural field rendering on mobile
architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 16569–16578 (2023)

6. Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Commu-
nications of the ACM 19(10), 547–554 (1976)

7. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: Ray-guided stream-
ing for efficient and detailed voxel rendering. In: Proceedings of the 2009 sympo-
sium on Interactive 3D graphics and games. pp. 15–22 (2009)

8. Duchaineau, M., Wolinsky, M., Sigeti, D.E., Miller, M.C., Aldrich, C., Mineev-
Weinstein, M.B.: Roaming terrain: Real-time optimally adapting meshes. In: Pro-
ceedings. Visualization’97 (Cat. No. 97CB36155). pp. 81–88. IEEE (1997)

9. Gao, X., Zhong, C., Xiang, J., Hong, Y., Guo, Y., Zhang, J.: Reconstructing per-
sonalized semantic facial nerf models from monocular video. ACM Transactions on
Graphics (TOG) 41(6), 1–12 (2022)

10. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-
fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 14346–14355 (2021)

11. Gu, J., Jiang, M., Li, H., Lu, X., Zhu, G., Shah, S.A.A., Zhang, L., Bennamoun,
M.: Ue4-nerf: Neural radiance field for real-time rendering of large-scale scene.
Advances in Neural Information Processing Systems 36 (2024)

12. Guo, J., Deng, N., Li, X., Bai, Y., Shi, B., Wang, C., Ding, C., Wang, D., Li, Y.:
Streetsurf: Extending multi-view implicit surface reconstruction to street views.
arXiv preprint arXiv:2306.04988 (2023)

16 K. Song et al.

13. Guo, Y., Chen, K., Liang, S., Liu, Y.J., Bao, H., Zhang, J.: Ad-nerf: Audio driven
neural radiance fields for talking head synthesis. In: Proceedings of the IEEE/CVF
international conference on computer vision. pp. 5784–5794 (2021)

14. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive rendering of large volume
data sets. In: IEEE Visualization, 2002. VIS 2002. pp. 53–60. IEEE (2002)

15. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Bak-
ing neural radiance fields for real-time view synthesis. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5875–5884 (2021)

16. Hong, Y., Peng, B., Xiao, H., Liu, L., Zhang, J.: Headnerf: A real-time nerf-based
parametric head model. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 20374–20384 (2022)

17. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques. p. 99–108. SIGGRAPH ’96,
Association for Computing Machinery, New York, NY, USA (1996). https://doi.
org/10.1145/237170.237216, https://doi.org/10.1145/237170.237216

18. Hu, W., Wang, Y., Ma, L., Yang, B., Gao, L., Liu, X., Ma, Y.: Tri-miprf: Tri-mip
representation for efficient anti-aliasing neural radiance fields. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 19774–19783
(2023)

19. Jiang, B., Hong, Y., Bao, H., Zhang, J.: Selfrecon: Self reconstruction your digital
avatar from monocular video. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5605–5615 (2022)

20. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (July
2023), https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

21. Li, Y., Jiang, L., Xu, L., Xiangli, Y., Wang, Z., Lin, D., Dai, B.: Matrixcity: A
large-scale city dataset for city-scale neural rendering and beyond. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 3205–3215
(2023)

22. Lindstrom, P., Pascucci, V.: Visualization of large terrains made easy. In: Proceed-
ings Visualization, 2001. VIS’01. pp. 363–574. IEEE (2001)

23. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
Advances in Neural Information Processing Systems 33, 15651–15663 (2020)

24. Losasso, F., Hoppe, H.: Geometry clipmaps: terrain rendering using nested regular
grids. In: ACM Siggraph 2004 Papers, pp. 769–776 (2004)

25. Luebke, D.: Level of detail for 3D graphics. Morgan Kaufmann (2003)
26. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duck-

worth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo col-
lections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 7210–7219 (2021)

27. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1–
15 (2022)

28. Peng, B., Hu, J., Zhou, J., Gao, X., Zhang, J.: Intrinsicngp: Intrinsic coordinate
based hash encoding for human nerf. IEEE Transactions on Visualization and
Computer Graphics (2023)

29. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 14335–14345 (2021)

https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web 17

30. Reiser, C., Szeliski, R., Verbin, D., Srinivasan, P., Mildenhall, B., Geiger, A., Bar-
ron, J., Hedman, P.: Merf: Memory-efficient radiance fields for real-time view syn-
thesis in unbounded scenes. ACM Transactions on Graphics (TOG) 42(4), 1–12
(2023)

31. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 5459–5469 (2022)

32. Takikawa, T., Evans, A., Tremblay, J., Müller, T., McGuire, M., Jacobson, A.,
Fidler, S.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference
Proceedings. SIGGRAPH ’22, Association for Computing Machinery (2022)

33. Takikawa, T., Litalien, J., Yin, K., Kreis, K., Loop, C., Nowrouzezahrai, D., Ja-
cobson, A., McGuire, M., Fidler, S.: Neural geometric level of detail: Real-time
rendering with implicit 3d shapes. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 11358–11367 (2021)

34. Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Bar-
ron, J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8248–8258 (2022)

35. Tang, J., Zhou, H., Chen, X., Hu, T., Ding, E., Wang, J., Zeng, G.: Delicate
textured mesh recovery from nerf via adaptive surface refinement. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision (2023)

36. Turki, H., Agrawal, V., Bulò, S.R., Porzi, L., Kontschieder, P., Ramanan, D., Zoll-
höfer, M., Richardt, C.: Hybridnerf: Efficient neural rendering via adaptive volu-
metric surfaces. In: Computer Vision and Pattern Recognition (CVPR) (2024)

37. Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-nerf: Scalable construction of
large-scale nerfs for virtual fly-throughs. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 12922–12931 (2022)

38. Wang, P., Liu, Y., Chen, Z., Liu, L., Liu, Z., Komura, T., Theobalt, C., Wang,
W.: F2-nerf: Fast neural radiance field training with free camera trajectories. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 4150–4159 (2023)

39. Wang, Z., Shen, T., Nimier-David, M., Sharp, N., Gao, J., Keller, A., Fidler, S.,
Müller, T., Gojcic, Z.: Adaptive shells for efficient neural radiance field rendering.
ACM Trans. Graph. 42(6) (2023). https://doi.org/10.1145/3618390, https:
//doi.org/10.1145/3618390

40. Xiang, J., Gao, X., Guo, Y., Zhang, J.: Flashavatar: High-fidelity digital avatar
rendering at 300fps. arXiv preprint arXiv:2312.02214 (2023)

41. Xiangli, Y., Xu, L., Pan, X., Zhao, N., Rao, A., Theobalt, C., Dai, B., Lin, D.:
Bungeenerf: Progressive neural radiance field for extreme multi-scale scene render-
ing. In: European conference on computer vision. pp. 106–122. Springer (2022)

42. Xie, Z., Yang, X., Yang, Y., Sun, Q., Jiang, Y., Wang, H., Cai, Y., Sun, M.: S3im:
Stochastic structural similarity and its unreasonable effectiveness for neural fields.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 18024–18034 (2023)

43. Xu, L., Xiangli, Y., Peng, S., Pan, X., Zhao, N., Theobalt, C., Dai, B., Lin, D.:
Grid-guided neural radiance fields for large urban scenes. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8296–
8306 (2023)

44. Yariv, L., Hedman, P., Reiser, C., Verbin, D., Srinivasan, P.P., Szeliski, R., Barron,
J.T., Mildenhall, B.: Bakedsdf: Meshing neural sdfs for real-time view synthesis. In:

https://doi.org/10.1145/3618390
https://doi.org/10.1145/3618390
https://doi.org/10.1145/3618390
https://doi.org/10.1145/3618390

18 K. Song et al.

ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH 2023, Los Angeles,
CA, USA, August 6-10, 2023. pp. 46:1–46:9. ACM (2023)

45. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time
rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 5752–5761 (2021)

46. Zeng, X., Song, K., Yang, L., Deng, B., Zhang, J.: Oblique-merf: Revisiting and
improving merf for oblique photography. arXiv preprint arXiv:2404.09531 (2024)

47. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

48. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)

49. Zhenxing, M., Xu, D.: Switch-nerf: Learning scene decomposition with mixture
of experts for large-scale neural radiance fields. In: The Eleventh International
Conference on Learning Representations (2022)

50. Zhuang, Y., Zhang, Q., Feng, Y., Zhu, H., Yao, Y., Li, X., Cao, Y.P., Shan, Y.,
Cao, X.: Anti-aliased neural implicit surfaces with encoding level of detail. arXiv
preprint arXiv:2309.10336 (2023)

	City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web

