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Abstract. Due to space constraints, some of the content from the main
text has been arranged in this supplementary material.

1 More Model Details

1.1 Details of Ev and Tv

In the proposed model, the visual encoder Ev and embedding layer Tv together
are used to extract the high-level embedding corresponding to the object of
interest in the input image. The two independent sub-networks are split from
the visual network of CLIP [2, 10]. Ev contains all the feature encoding layers
for extracting the multi-scale image features. And Tv corresponds to the final
high-dimensional projection layer, which is used to convert the high-level image
feature f5 into the visual embedding vector fv.

1.2 Multi-scale Image Features {f i}5
i=1

The multi-scale image features {f i}5i=2 is from the four stages of ConvNeXt [8]
with different output resolutions, respectively. While the feature f1 is obtained
by up-sampling the feature f2 2× by bilinear interpolation.

1.3 Class Embedding

In the proposed algorithm, for each image input, the textual encoder needs to
extract text embedding for all class texts. However, due to the nature of the
algorithm design, these text embeddings are shared in each iteration, so they
can be pre-computed in the inference to save inference cost.
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1.4 Details of Classification

During the inference, the class prediction Pc is generated from the pair-wise
correlation matrix Mcor after the softmax operation, where Mcor is from the
multiplication between the normalized visual embedding and textual embedding,
i.e. fv and ft. Besides, in our experiments, introducing classification supervision
on top of the existing form interferes with the training process of the model,
which brings about significant performance degradation, with relative reductions
of 8.6% and 15.7% for cSm and cFω

β , respectively. Therefore, we do not consider
classification loss during training, and Mcor is only used to construct the top-
down iterative guidance.

2 More Ablation Studies
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(b) Semantic similarity score histogram.

Fig. 1: Class semantic similarity of OVCamo based on the Open English WordNet [9].
The classes belonging to the training and testing sets are separated here using black
dashed lines in (a). Note that only the similarity between two different classes is con-
sidered in (b).

2.1 Class Semantic Similarity

To analyze the semantic similarity between the relabelled classes, we compute
the path similarity between the classes based on the Open English WordNet [9]
as shown in Fig. 1. Specifically, when p is the length of the shortest path between
two classes, the path similarity score s is:

s =
1

p+ 1
(1)
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The score s ranges between 0.0 and 1.0, where the higher the score is, the more
similar the two classes are. The score s is 1.0 when a class is compared to itself,
and 0.0 when there is no path between the two classes (i.e., the path distance
is infinite). As shown in Fig. 1b, the semantic similarity between classes in our
class set C is very low. Most of them lie around 0.1, while the maximum is only
0.5. Such low similarity can better alleviate the complexity due to class semantic
similarity during open vocabulary evaluation.

2.2 Class Hierarchy Relationships

In Fig. 2, we use the alluvial graph to show the class relationships at different
levels, including super, base, and sub-classes. The sub-classes shown here include
class names with clearer meanings preserved from the original data and class
names after initial manual correction. The base classes represent the class names
obtained after careful manual filtering and merging, which was used in all the
experiments in this paper. The super classes generalize the base classes from a
broader perspective.

3 Limitations and Future Works

3.1 Class Embedding Setting

In our proposed algorithm, the class embedding setting follows the existing OV-
SIS methods. Although our iteration process does not impose much compu-
tational burden due to our caching mechanism, there is still a computational
complexity associated with the number of classes. This is not ideal for practi-
cal applications in open vocabulary scenarios. More flexible and efficient class
embedding designs are still worth exploring.

3.2 CLIP-based Architecture

The transfer application of the CLIP in downstream dense prediction tasks is
limited by its pre-training form and the camouflage scenes that we focus on may
be more affected. Some work [3,6,13] attempts to further finetune CLIP, but the
finetuning strategy still needs to be designed more carefully due to the potential
disruption to the CLIP’s open vocabulary ability. And it also suggests that there
is room for further improvement. Besides, as mentioned in the main text, the
current ideal performance of the CLIP-based architecture is still far from the
limit, which suggests that future breakthroughs in this field may require more
powerful paradigms.

3.3 Data Scale

Although the number of finely labeled samples in our proposed dataset is over
ten thousand, the data scale is still smaller than existing large datasets such as
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COCO-Stuff [1] and ADE20K [18]. So there is still a need to collect more data,
especially for classes with fewer samples. We can resort to rich web images, which
also may lead to significant manual labeling costs. In addition, the data synthesis
technique has been demonstrated in some recent work [15,16] to greatly facilitate
the performance of semantic image segmentation tasks. This technique based on
object masks and textual descriptions in existing datasets, may bring some new
insights. But this also needs to address the ensuing interference problem.

3.4 Class Scale

Open-vocabulary segmentation as a hot topic, currently focuses on how to use
the open-vocabulary capability of VLMs to segment objects with unseen classes.
More data classes will indeed facilitate the development of OVCOS. However,
the imperceptibility of camouflaged objects poses a great challenge for further
expansion. This is the focus of our future work.

3.5 Prompt

The importance of prompt engineering for visual language modeling can be re-
flected in the existing literature [3, 5, 6, 10, 12–14, 17] and the experiments in
this paper. The prompt forms used in this paper rely heavily on manual de-
sign, which is still limited by the knowledge of the prompter. More automated
prompt-generation strategies may be needed in the future, which deserve more
attention and exploration.

4 Dataset Copyright

We have investigated the copyright information of these data sources, and they
are currently now widely used in the CSU field [4], and available for non-
commercial academic use. Much of existing work [7,11] provides only new anno-
tations and an index of the original data rather than the data itself. And users
can download original data from the sources. Following these existing commu-
nity practices, for the proposed OVCamo dataset, we list the data links provided
by the original authors in the documentation. We also provide the class annota-
tions we created and a detailed description of the way the data is organized in
OVCamo. In addition, we thank the contributors of the relevant datasets in the
our acknowledgements.
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Fig. 2: Hierarchy of sample classes contained in the proposed OVCamo. Only the
base classes are used in our experiments. Sub-classes that do not meet the criteria
are simply removed and are not displayed here.
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