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Abstract. Pre-trained large language models (and multi-modal models) offer ex-
cellent performance across a wide range of tasks. Despite their effectiveness, we
have limited knowledge of their internal knowledge representation. To get started,
we use the classic problem of Compositional Zero-Shot Learning (CZSL) as an
example, and first provide a structured view of the latent space that any gen-
eral model (LLM or otherwise) should nominally respect. We obtain a practical
solution to the CZSL problem that can deal with both Open and Closed-World
single-attribute compositions as well as multi-attribute compositions with relative
ease, where we achieve performance competitive with methods designed solely
for that task (i.e., adaptations to other tasks are difficult). Then, we extend this
perspective to analysis of existing LLMs and ask to what extent they satisfy our
axiomatic definitions. Our analysis shows a mix of interesting and unsurprising
findings, but nonetheless suggests that our criteria is meaningful and may yield
a more structured approach for potential incorporation in training such models,
strategies for additional data collection, and diagnostics beyond visual inspection.
The code is available at https://github.com/SPChytas/CatCom.

1 Introduction

Fig. 1: The implicit structure of concepts
should be reflected in a model too. Arrows
“add” new information to concepts and are
shared among different concepts.

In the theory of Forms, Plato argues that ev-
ery entity in the physical world – animals,
persons, and all other entities – correspond
to a Form (or Idea) that answers “What is
that?” [49]. In fact, the objects in our world
are merely imitations of these “Forms”, their
impure realizations. The Idea on the other
hand refers to the non-physical essence of all
things. For instance, we can only observe the
Idea “car”, via an imitation of its attributed
Form, red car, small car, sports car, and so
on. We are almost never shown the Idea, by
itself. Still, we inherently possess the ability to perform such compositional classifica-
tion, and more importantly, recognize novel combinations of attributes and Ideas.

Since we observe the world in this compositional view of attributes and Ideas, it is
reasonable to ask whether a model can be trained to perform such compositional learn-
ing or whether a model already possesses this ability. The reader will acknowledge that
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despite intensive (and impressive) ongoing work in foundation and generative mod-
els [6, 37, 53, 54], their ability to compose known concepts in novel ways is a work in
progress [13,32]. For the remainder of this paper, we will refer to the Ideas as primitives.

A simple example. Consider two objects, a red car and a sports car. These two
objects have something in common: the primitive. How can we leverage this knowl-
edge? What about two other objects: a red car and a big red car? How are the objects
related? How about a small blue car? We can appreciate that we are traversing multiple
compositions: from car to red car to big red car, and these traversals can often involve
backtracking: big red car to red car to small red car. If the primitives are commonly
occurring, we may find that a pre-trained diffusion model [54] can already provide such
capabilities out of the box. When it fails for a primitive with multiple nested attributes,
say for a less common primitive, it is not easy to diagnose such cases in advance and/or
simply re-run the model with additional guidance.

This “compositional” problem setting is not unique or novel to our work – indeed,
many existing approaches [9, 38, 42, 44, 46, 55] have variously approached the task of
compositional learning. However, even now, when Foundation models dominate nearly
every popular benchmark, compositionality remains an open question and contempo-
rary architectures can fail on even simple compositionality tasks [16,22,31]. In the com-
positional task above, the main focus is on the relationships between the samples, often
with various levels of nesting. The individual samples are relevant but only as a “seed”.
For the “relations”, what constraints should be checked when operating in the latent
spaces of large models? Given recent discussions surrounding emergent capabilities in
large models, can we check to what extent the latent spaces support compositions?

What is required for understanding compositions is a mechanism to handle, operate
on, and reason with structured inclusion relations (i.e., directed) between entities (e.g.,
car in the example above) during or post- training. It turns out that Category theory
provides us with precisely these types of tools. Category Theory [35] is a general (but
abstract) mathematical theory of structures and of systems of structures [20,41,43] and
unifies seemingly unrelated fields (such as Group Theory and Topology) using Cate-
gories as its building blocks. One of the basic operations in category theory is to com-
pose more complicated objects/systems via simpler ones – when these objects/systems
correspond to “relations” or “structure”, we directly obtain the main ingredients we will
need to bake into our learning model. The high-level goal of our paper is to check what
these tools can reveal about the latent space of foundation models commonly used in the
community. In doing so, we will see that solutions for compositional zero shot learning
(CSZL) fall out directly by a simple instantiation of basic axioms from category theory.

Contributions and paper organization: On the technical side, using the setting in
compositional zero-shot learning as a jumping off-point, we give a succinct mathemati-
cal formulation based on Category Theory, as introduced in §2. To impose structure, we
study a simpler formulation that allows a direct generalization to multi-attribute compo-
sitional learning tasks (§3). On the practical side, we propose a simple, attention-based,
instantiation of our formulation that can handle both single and multi-attribute compo-
sitions with no adjustments (§3). After demonstrating how our machinery can handle
a well-studied problem setting (CSZL), we study what the formulation can say in the
context of the latent space of contemporary LLMs (§4).
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2 Category Theory: A brief review

A Category consists of (i) Objects that correspond to individual entities (e.g., sets) and
(ii) Morphisms that represent the connections (or arrows) between the Objects (e.g.,
functions). A Category follows two basic axioms: each Object has an identity Morphism
(i.e., a self-loop), and the Morphisms compose. To be precise, consider a Category C
and any three Objects a, b, c ∈ C. If ∃f : a → b and ∃g : b → c then the composition
of these two Morphisms also exists in C and is denoted as g ◦ f : a → c. As the
above description suggests, Category theory deals with morphisms and not the objects;
it discourages worrying about what a, b and c actually are. It is highly diagrammatic,
with graphical descriptions common in both definitions and proofs.

Definition 1. Functors are structure-preserving maps between Categories. For two Cat-
egories A , B, we define the Functor F : A → B as a mapping with the properties:
• F (ida) = idF (a), ∀a ∈ A
• F (g ◦ f) = F (g) ◦ F (f), ∀f : a1 → a2, g : a2 → a3 in A

A Functor transforms not just the objects but also their morphisms across categories.

Example 1. Consider the set of ImageNet [14] images and Rn as two categories. An
image encoder, e.g., ResNet [26], which maps each image to an embedding vector in
Rn is an example of a Functor from the Category of Images to the Category of Vectors.

Example 2. Consider the category E ngtoF r where each object represents a sentence
in English or French, and there is a unique morphism (translation) between corre-
sponding English and French sentences. Mapping this category to an embedding space
involves finding a functor Enc that preserves the structure. Assuming Enc has an in-
verse morphism (Dec = Enc−1), we recover the standard language translation model.

Definition 2. For two Categories A ,B, define the Product Category A × B as the
Category with the properties: (i) Its Objects are pairs (a, b) ∀a ∈ A , b ∈ B (ii) Its
Morphisms are the pairs (f, g) : (a1, b1) → (a2, b2) ∀f : a1 → a2, g : b1 → b2
(iii) The composition of Morphisms is defined element-wise as (f2, g2) ◦ (f1, g1) =
(f2 ◦ f1, g2 ◦ g1) for all composable Morphisms.

Fig. 2: A Functor F : A → B and the Product Cate-
gory A × B shown graphically (self-loops omitted).
The Functors PA , PB also map the Morphisms be-
tween (a2, b2) → (a1, b3) and (a2, b2) → (a1, b1),
i.e., the Morphisms a2 → a1 and b2 → b1, b2 → b3.

For each Product Category A ×
B, we can also define two Func-
tors PA : (A × B) → A , PB :
(A × B) → B that correspond to
the “projections”:
• PA

(
(a, b)

)
= a; PA

(
(f, g)

)
=

f
• PB

(
(a, b)

)
= b; PB

(
(f, g)

)
= g

for each Object, Morphism of A ×
B respectively. We can think of the
operation as the “backtracking” dis-
cussed in §1. A key feature of Cat-
egory Theory, useful for clarity, is
the graphical representation of the
concepts, see Fig. 2.
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Why Category Theory? Category Theory is used in formal methods for reasoning about
types and structure [20]. With functional programming approaches gaining prominence
in deep learning, practical uses of category theory, can become feasible. A category
theory based formulation streamlines the creation of compositional constructs. Ongoing
efforts in formulating deep learning concepts via category theory, while nascent, are
yielding interesting new algorithms [11, 12, 19, 23, 24, 56]. Since our focus here is to
provide a general treatment of compositional learning (as will become clear shortly),
we find that Category Theory is an ideal fit. It allows cleaner and more general results,
while maintaining the mathematical correctness and rigor desired.

3 Proof of concept: Compositional Zero-shot Learning

Fig. 3: Left: the typical formulation of CZSL, in Category Theory terms. The opaque pairs cor-
respond to implausible pairs that are not considered under the Closed-World setting, resulting in
a smaller space. Right: an alternative formulation that allows for a direct generalization to the
multi-attribute setting, by morphisms’ composition.

To test drive the concepts above, we start with a simple problem setting. Single-
attribute Compositional Zero-shot learning [38, 46] is defined as follows. Assume a
labeled (image) dataset of the form T =

{(
x, (a, p)

)
|x ∈ X , (a, p) ∈ Yt

}
where each

image’s label has two parts; a ∈ A is an attribute (e.g., small) and p ∈ P is a primitive
(e.g., car). Using T, CZSL seeks to accurately characterize unseen images whose labels
are novel pairs of attributes and primitives.

3.1 The “product” formulation and its limitations

Fig. 3(left) restates a common formulation in CZSL, represented as a category-theoretic
diagram. The approach roughly involves: (a) Dealing with attribute-primitive pairs in
CZSL, expressed as a discrete Product Category (A ttr × Prim). (b) Transitioning
from words and pairs using various design choices (mostly involving pretrained word
embeddings such as GloVe [48]), modeled as a single Functor (Wv : A ttr×Prim →
Emb) in the embedding space Category Emb. (c) Associating each image with a label
of the form (attribute, primitive), represented as a discrete Category of Images (Img)
with a "prediction" Functor Pred : Img → A ttr × Prim. (d) Closing the circuit
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by training CZSL methods to learn representative image embeddings, modeled as a
Functor Enc : Img → Rn which encodes each image into the same embedding
space, ensuring commutative operations,

Enc = Wv ◦ Pred (1)

Applicable to LLMs? Although at a high level, this formulation may look too
simple to capture what is going on in larger models, this is not the case. Consider each
input sentence as a multi-product of words (or more accurately tokens). We indeed
learn a mapping of this product to an embedding space, using training tasks such as
next-word prediction or masked predictions [15, 52]. Of course, images are missing in
this description but we can check that CLIP [51] closely follows the formulation of Fig.
3(left) by aligning a multi-word string (caption) to an image.

No interactions. The “product” formulation is direct and intuitive, but by re-casting
everything in Category Theory language, we recognize a key shortcoming; all Cate-
gories are missing a critical component: Morphisms. No interaction is assumed between
the different (attribute, primitive) pairs or the embedding vectors, e.g., the Objects small
car and red car have no relationship. The result in [46] recognized this issue and used
a graph between all primitives, attributes, and pairs. Incorporating this missing compo-
nent, obvious from our category-theoretic reinterpretation, led to state-of-the-art results
in [46]. This hints at the potential benefits of the general categorical approach.

3.2 The Categorical Composer

Building on the observations of §3.1, we present a simple reformulation, which over-
comes the issues identified above. In Fig. 3(right), we present an alternative model; we
call it the “morphism” formulation (as opposed to the “product” formulation in §3.1).

The “morphism” formulation. Similar to §3.1, we will use Fig. 3(right) as a guide,
and walk through the main components, step by step. (a) We assume that each attribute
is a Morphism, instead of an Object. Each attribute “acts” upon an Object and changes it
in a well-defined way. According to this view, different concepts are intrinsically related
and not disjoint from each other (similar to the real world).

Interestingly, we can define all multi-attribute concepts (e.g., red sports car) in this way
simply as the composition of Morphisms. There is no need to define a new Category
(for a multi-Product of attributes and primitives). (b) Based on this view, we define the
S tring Category. Its Objects are all strings of zero or more attributes together with a
primitive (e.g., car, sports car, red sports car). (c) Since each attribute is a Morphism,
there is a (directed) arrow from each string that does not include this attribute to a
string that does include it (e.g., τred : sports car red−→red sports car). (d) Similar to the
“product” formulation, we define the Functor Wv : S tring → Emb that maps this
structure to Category Emb that corresponds to an embedding space. We can assume
that Emb is the commonly used S et Category where each Object is a set of one or



6 S. P. Chytas, H. J. Kim, and V. Singh

more vectors in Rn and each Morphism is a function τ : Rn → Rn. The mapping
of the attributes to these functions is what allows traversing the embedding space and
perform multi-attribute composition (not possible with the “product” formulation where
both attributes and primitives are Objects, i.e., there are no Morphisms). (e) Finally,
we define the Category of images (Img) along with the Functors Pred : Img →
S tring and Enc : Img → E , in a similar way. However, notice that the label can
easily be a multi-attribute string such as big red sports car.

What is the embedding of a multi-word string? Embedding multiple words of-
ten relies on heuristics like concatenation or addition of word embeddings. Even with
language models, the use of heuristics such as the mean of output word embeddings to
define the entire string’s embedding is common. Consider a simple example: small cute
dog. In both cases, determining Wv(small cute dog) is important. The "morphism" for-
mulation indirectly defines it, using the commutative property of Functors (Def. 1). So,

Wv(small cute dog) = τsmall ◦ τcute ◦Wv(dog), (2)

simplifies the learning process to focus on primitives’ embeddings and one morphism
for each attribute.

Use of Special Variables. Each S tring Object representing a primitive (e.g., dog)
is a Limit Object, signifying it as the purest representation of all Objects corresponding
to that primitive paired with one or more attributes. Assuming attribute order insignif-
icance, each attribute pair forms a Pushout, and with existing inverse morphisms (e.g.,
cute−1, small−1), it becomes a Pullback. Assuming inverse morphisms in our S tring
Category (as in [38]), Objects for the same primitive, irrespective of attributes, are Iso-
morphic. This embodies the notion that attributes preserve the "essence" of a primitive.

Fig. 4: CatCom overview. Slightly different from
Self-Attention [57], the Query vector is derived
from another input (the attribute). The entire archi-
tecture is trainable, using a contrastive loss.

Implementation details. Here, we
provide high-level details of a spe-
cific instantiation of our formula-
tion (denoted CatCom) by model-
ing each concept with a neural net-
work module. Similarly to existing
works, we use a pre-trained (on Im-
ageNet [14]) ResNet model [26] to-
gether with a trainable feedforward
network on top, as the Enc Func-
tor and pretrained word embeddings
(transformed through an MLP) as inputs to the morphisms (Fig. 4).

We use Cross-Attention, used successfully in other scenarios (e.g., Stable Diffu-
sion [54]), to merge the information of a primitive and an attribute (i.e., act as our
morphisms). Using the attention mechanism, we obtain a vector that encapsulates the
information of both inputs. This architecture allows us to optimize our model end-to-
end, similar to CGE [46] and OADis [55], by maximizing the cosine similarity for the
correct pair while minimizing the similarity with all other pairs, using the cross-entropy
loss. We choose cosine similarity over ℓ2-loss (also permissible in our model) because
the ℓ2-loss implies that all images with the same label must also have exactly the same
embedding. The choice of ℓ2-loss in [38] may be due to the use of group actions.
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3.3 Experimental results

Fig. 5: Qualitative results for C-GQA. In black, we give the true label and below the top-3 pre-
dictions. Even from this small sample of images, the difficulty of the CSZL task is apparent. In
many cases, our model makes a prediction that is accurate but not the exact ground truth label.
Interestingly, we observe that in many cases our model predicts a pair that is more suitable than
the actual label (e.g., in the case of the sitting bear).

In this section, we test our method to both single (CW and OW) and multi-attribute
CZSL. We follow the evaluation protocols of existing works [38, 46] and test against
the current state-of-the-art methods in all cases.

Baselines. We evaluate our method against strong baselines, including: (a) SymNet
[38]: Handles both single and multi-attribute cases. (b) CompCos [42]: Operates in
the OW setting, regularizing all possible combinations by assessing similarity between
attributes and primitives. (c) CGE [46]: Utilizes a GNN for composition embeddings,
excelling in the CW single-composition case with a trainable backbone. (d) OADis
[55]: Implements a triplet loss, works well for CW single-composition by fine-tuning
the last ResNet [26] layers. Our baselines, as well as our CatCom, are all based on
ImageNet-trained vision models, in contrast to more recent works (e.g., [47]) that use
larger models (e.g., CLIP [51]) which may violate the zero-shot nature of the problem.

Method
MIT-States UT-Zappos C-GQA

Best Best Best
AUC HM Seen Unseen AUC HM Seen Unseen AUC HM Seen Unseen

“C
lo

se
d-

W
or

ld
”

“p
ro

du
ct

” CompCos [42] 4.5 16.6 25.8 24.1 19.8 35.2 58.9 42.7 2.6 12.5 28.9 10.8
CGE [46] 5.1 17.2 28.0 25.2 24.7 38.9 58.8 61.0 2.5 11.9 27.5 11.7
OADist [55] 5.9 18.9 28.9 25.0 30.0 44.4 59.5 65.5 3.5 14.8 31.0 13.7
CGEt [46] 6.5 21.4 31.6 27.5 33.0 47.3 61.8 66.3 3.6 14.5 31.4 14.0

“m
or

ph
” SymNet [38] 4.1 16.3 26.2 23.1 27.7 42.5 58.8 61.0 1.8 9.8 25.2 9.2

CatCom 5.7 18.5 30.8 26.4 29.2 43.0 60.2 64.4 3.5 14.3 31.6 14.2
CatComt 6.3 19.5 32.1 27.5 35.3 48.8 64.7 70.1 4.3 15.8 34.1 16.0

“O
pe

n-
W

or
ld

”
“p

ro
du

ct
” CompCos [42] 1.5 8.4 25.4 10.0 17.8 32.9 56.1 44.6 0.2 1.0 18.0 0.9

CGE [46] 1.4 8.0 26.2 8.1 15.4 30.9 58.6 35.9 0.3 1.9 26.8 1.5
OADist [55] 2.1 10.3 29.6 11.6 21.5 37.4 56.0 50.6 0.5 3.6 29.9 2.9
CGEt [46] 2.2 10.6 31.6 10.4 16.0 30.3 60.0 37.5 0.6 3.2 30.0 2.7

“m
or

ph
” SymNet [38] 0.8 5.8 21.4 7.0 20.2 36.8 54.7 44.7 0.2 0.8 14.7 1.7

CatCom 1.9 9.5 28.8 10.4 17.7 33.0 55.6 43.8 0.7 4.0 28.8 3.1
CatComt 2.2 10.6 31.1 12.1 22.1 37.4 62.6 48.0 0.8 4.6 31.6 3.1

Table 1: Results for Closed and Open World. The subscript t stands for a trainable backbone.
Even our frozen version (denoted CatCom) achieves results comparable to the state of the art
methods (with a trainable backbone) and it is better than other methods that use a frozen back-
bone. When we also train the backbone (denoted CatComt) then we get a performance similar to
CGEt which is the state-of-art-method. In C-GQA specifically, the most challenging dataset, the
simplicity of our method results in much better results than all other methods.
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For multi-composition tasks, we consider: (a) GALM [10]: Performs multi-label
classification across all attributes, with an automated architecture-building procedure.
(b) FMT [40]: Similar to GALM, automatically designs a multi-task network for multi-
attribute classification. (c) AMT [25]: Designs a multi-task network, considering cor-
relations between attributes (dark and black). Note that these methods predict attribute
sets through multi-label classifiers, a task simpler than CZSL.

Metrics. We use the same evaluation protocol used in all baselines [46]. We use the
same bias scheme in our predictions, so we report (i) the Area Under the Curve (AUC),
(ii) The best Seen and Unseen Accuracy, and (iii) the Harmonic Mean (HM) between
the Seen and the Unseen values. We refer to [46] for more details of the evaluation pro-
tocol. In the multi-composition case, since the above metrics are not directly applicable,
we consider mAUC so that we are consistent with existing works for this problem.

Method mAUC
aPU SUN

AMT [25] 84.5 82.5
FMT [40] 70.5 75.5

GALM [10] 84.2 86.5
SymNets [38] 79.9 86.7
SymNetm [38] 83.4 88.4

CatCom 84.7 87.9

Table 2: Results for multi-
attribute composition. CatCom
is comparable to SymNetm
despite our simple evaluation
scheme. SymNets underper-
forms in both cases.

Datasets. We evaluate using three prominent datasets
for single attributes: (i) MIT-States [29]: The oldest
dataset with 245 primitives, 115 attributes, and 28K
pairs (only 1262 seen). (ii) UT-Zappos [60]: Focuses on
shoe images, featuring 192 pairs in total. (iii) C-GQA
[28, 46]: Recent larger dataset with over 200K pairs de-
rived from GQA [28]. In all datasets, we use the General-
ized CZSL splits from prior works [46, 50]. For multi-
attribute, we use: (i) aPY [18]:A dataset with 64 at-
tributes and 32 primitives, created from PASCAL VOC
2008 [17]. (ii) SUN [58]: A larger multi-attribute dataset
(102 attributes, 700 primitives).

Main results/observations. Our results are in Tab. 1
and Tab. 2 while qualitative results are depicted in Fig. 5.

4 Compositionality in Language Models

With a general recipe for thinking in a “compositional manner” in hand, we examine
if compositionality exists in contemporary large models. This analysis, possible be-
cause of the general nature of our formulation, allows us to provide a mechanism to
better understand and interpret LLMs, a relevant but underdeveloped topic. We know
that models such as BERT [15] and CLIP [51] have been trained with “simpler” loss
functions, enabled by huge training datasets. The question then is: “Are these models
able to shape their latent space in a way that resembles what a compositional learning
algorithm would provide out of the box?”

Quantifying the performance of diversely-trained LLMs remains an active topic of
research, with metrics such as the hallucination index [3]. Here, we consider multiple
large-foundation models and examine what insights, if any, our structured modeling of
the latent space can provide. The reader will notice that at a minimum, our formulation
can yield a “compositionality index” and we can check whether large violations are
indicative of anything at all.

Dataset, Models and Setup. Using the same terminology as before, we define
our Forms to correspond to common everyday primitives (the full set of classes of
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ImageNet-1K [14] and CIFAR100 [33]). To assess structure in the latent space, we
consider the four most common attributes that will act upon the Form alone (e.g., for
images, it does not affect the background): size (e.g., small), color (e.g., green), texture
(e.g., shiny), and age (e.g., old), and we examine the latent space of multiple widely
used models: (i) BERT [15] (ii) Albert [34] (iii) Roberta [39] (iv) Deberta [27]
(v) CLIP [51] (vi) GPT2 [52] Following existing works [59], in all models we use
the average of all the output embeddings (i.e., one per input token) to form a single
embedding for the given prompt.

A note on model selection. We chose the above models since these are some of the
most widely used text encoders in practice, for multiple and diverse text-based applica-
tions. In fact, our experiments will offer some guidance on why these models are widely
used and why, in some cases can be a suitable choice (relative to models like Mistral
LLM/Zephyr). To highlight the differences between the two classes of models, we also
consider the following three LLMs: (i) Phi-2 [4] (ii) Zephyr [1] (iii) Mistral [30] .

In all our experiments, we find the difference vector between the following two
quantities: (i) plain embedding which corresponds to the embedding of the expres-
sion “an image of a(n) ⟨object⟩”, and (ii) attributed embedding which corresponds to
the embedding of the expression “an image of a(n) ⟨attribute1⟩, · · · , and ⟨attributen⟩
⟨object⟩”. The plain embeddings correspond to the Forms (the Limits of our String Cat-
egory) and the differences between the two embeddings correspond to our morphisms,
the τ arrows (or functions). We will use the same notation here: the difference will be
τ object

attr1&···&attrn .
What are we looking for? Notice that τ object

attr are exactly the morphisms in §3.2,
and τ object

attr1&···&attrn is exactly the composition of these morphisms (i.e., τ object
attr1&···&attrn =

τ object
attrn ◦ · · · ◦ τ object

attr1 ). Based on this observation, we define compositionality to reflect
the property that the composition of multiple atomic attributes is equivalent to a compli-
cated expression that includes all of them. LLMs may be operating in one of the three
following regimes, (i) (extreme 1) LLMs have no internal notion of compositionality
(i.e., they are “pure” black boxes) and we cannot link them back to our world’s struc-
ture, (ii) (extreme 2) LLMs are able to perfectly pick the compositionality of our world,
based on its extensive training data, or (iii) (middle) Contemporary training procedures
offer a partial “understanding” of compositionality and different training schemes lead
to models that align more or less with this view.

Scope of experiments. We will use our formulation to ask the following questions
for the three models. How similar are the morphisms for different Forms? What about
morphisms for different attributes? How well do multiple morphisms compose?

Remark 1. Different attribute types affect plain embeddings with different magnitudes.

Consider a primitive, say, a car (either in text or joint image+text), and assume two
variations are available: in the first, it is larger and the second, shows it in a different
color. In the latent space, which is more similar to the original? All models concur that
the change in size is less significant than the change in color.

Remarkably, all models share the same attribute order (of how much “work” τ
does), despite being trained on diverse data and objectives. We find that “size” is unan-
imously the attribute with the smallest magnitude, while “color”, “texture”, and “age”
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have similar magnitudes (although usually “age” is slightly smaller). This relation-
ship can be seen in Fig. 6 (top) also, where we project the embeddings to the two-
dimensional space using T-SNE. Besides the intra-attribute ordering, the models show
an inter-attribute ordering that is consistent with our world-view. In Fig. 6 (bottom),
we show the angle between τnormal and τattr for all other size attributes, for GPT2
and BERT. Both models are able to understand the relative relationships between the
different size attributes.

Fig. 6: (Top) T-SNE plot of the clusters
that different attributes form, for all ob-
jects. Even in this lossy projection, we can
observe that color (yellow cluster) leads
to a cluster further from the black cluster
(plain embeddings) compared to age, size,
and texture. (Bottom) the relationship be-
tween all the size morphisms reflects how
we would also arrange them in real life.

Morphism outliers. From our analysis,
we observed the existence of some outliers,
for each type of attributes. These outliers cor-
respond to pairs of (atttibute, primitives) that
are rare, or even unlikely to ever occur. For in-
stance, some of the pairs are (knitted, bowl),
(magenta, baby), and (appicot, woman). This
is expected to happen – during training, there
is no categorical structure embedded in their
latent space, any unknown compositions will
be arbitrary and will not behave well.

Besides the primitive-specific magnitude,
we observe that, on average, simple and
common attributes such as “old”, “young”,
“rough”, “cracked”, “big”, and “little” appear
to have, on average, a smaller magnitude than
more rare/exotic attributes such as “gigantic”,
“childlike”, “embossed”, and “time-worn”.

Remark 2. The Yoneda perspective reveals
clusters of similar models.

The Yoneda perspective states that an ob-
ject is completely characterized by its “neigh-
bors” and the morphisms by which they are connected. A similar characterization has
recently occurred in [45]. There, the authors calculate the characteristic embeddings
using the so-called “anchor points”, leading to a construction that has been formally
defined in Category Theory as Yoneda Embeddings.

To this end, we construct the Yoneda embeddings [8]. The Yoneda embedding can
be thought of as a succinct representation of all neighbors of an object. In our case, we
form the vector whose elements are the magnitudes of each morphism (i.e., ∥τobjectattr ∥).
We would expect these vectors to be similar enough for different models, since all of
them were trained on data that resemble the real world. Indeed, when we consider the
Pearson Correlation [21] we can observe that all of them are sufficiently similar to each
other. In Fig. 7 (top) we can observe the pairwise Correlation between all models. All
models have a high, positive correlation, confirming our hypothesis that these models
are, in a way, isomorphic views of the same world.

Several intriguing patterns emerge from the analysis. First, the formation of two dis-
tinct clusters is evident: Bert aligns closely with Albert, while Roberta exhibits strong
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alignment with GPT2 and all three LLMs. This suggests a degree of similarity in their
embedding spaces. Surprisingly, Roberta’s embedding space appears almost isomorphic
to that of GPT2, indicating its efficacy in practice. This finding corroborates Roberta’s
widespread adoption in practical applications, e.g., as a popular choice in Kaggle com-
petitions on text-data.

Fig. 7: (Top) The pairwise correlation of the
Yoneda embeddings between all models. On the
left, we show how we form the Yoneda embed-
ding for each model. The correlation map re-
veals that Bert and Albert are clustered together,
as well as that Roberta, GPT2, and the three
LLMs have a high-to-absolute correlation. (Bot-
tom) The latent space of the models is clustered
into distinct regions that correspond to each at-
tribute while the homogeneity of each attribute
(colored lines) is apparent.

The observation regarding Deberta is
interesting. Despite its effectiveness, De-
berta stands out as an outlier, display-
ing a significantly lower correlation with
other models. This distinctiveness also
aligns with its use in practice, where De-
berta is often utilized as a complemen-
tary component in ensemble solutions
due to its unique properties. This char-
acteristic was particularly evident in the
recent Kaggle competition titled “LLM -
Detect AI Generated Text” [2] where De-
berta featured prominently in all of the
top solutions. Overall, these insights pro-
vide a nuanced understanding, enabled
by our categorical casting, of the rela-
tionships between various language mod-
els, shedding light on their comparative
performance and potential synergies in
practical applications.

Remark 3. Models are homogeneous w.r.t.
how the same attribute affects different
objects and homogeneity (i.e., the sim-
ilarity of an attribute’s embedding across
different objects) is a unique property
that cannot be estimated by the dataset
size, the model size, as well as the train-
ing type alone.

One major assumption of our frame-
work is the fact that an attribute (e.g.,

small) acts the same way on each primitive (hence the knowledge sharing we exploit in
CZSL). For LLMs, this would imply that the morphisms (τ vectors) would be (almost)
the same for a specific attribute across all different objects. To this end, we examine the
cosine similarity across different objects for the same attribute (Fig. 8 (right)). While
all models have relatively high homogeneity, the value differs in a way that no clear
correlation exists with the model’s size, its training type, or even the release date. This
indicates that homogeneity is a unique property that can provide an alternative view of
the models. This will become apparent in Remark 5, in which we consider positional
attributes also. In Fig. 7 (bottom) we can also observe the 2D projection of 6 attributes.
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Even when we “squeeze” the high-dimensional embeddings into two dimensions, the
homogeneity of the attributes is preserved.

Fig. 8: Compositionality (left) and Homogeneity (right) of each text encoder. The models are
arranged in chronological order, based on their release date. We observe that all models have
the same profile with respect to both metrics, and that compositionality/homogeneity can not be
explained solely by the model’s size, or the training type.

Object-specific attributes. An interesting observation emerges from the range of
color attributes considered. Our list encompasses a broad spectrum, including less com-
mon colors like “pear”, “salmon” and “lemon”. However, these colors are also used as
food nouns. Consequently, when paired with the primitive “can”, all models tend to in-
terpret the prompt as referencing a can of lemons, salmon, etc., rather than a can of that
specific color. This discrepancy affects the calculation of τ can

attr , rendering them dissimilar
to the τ vectors of other primitives. Additionally, we noticed variations in size-related
attributes, particularly with “medium” hinting at its broader usage beyond indicating
object size (overloaded).

Remark 4. Compositionality is mostly preserved and can be predicted by attribute ho-
mogeneity. Its violation indicates regimes where training data were scarce.

After single-attributed prompts, we turn our focus to multi-attribute prompts. One
of the basic questions, and a major thrust of our formulation, is that compositions must
be preserved and their violation can be checked. In the two-attribute case, this implies
that: τX

attr1&attr2 = τX
attr1 + τX

attr2 , ∀ object X. In Fig. 8 (left), we show how well each
model preserved our compositionality constraint, as a function of model size, training
type, as well as release date. Interestingly, all models show a good compositional be-
havior on average, although many outliers hint that compositionality is not universally
respected in these models. A striking observation is the fact that compositionality can
be accurately estimated by attribute homogeneity (Fig. 8). While the values may differ,
the ordering between the models is the same across the two metrics. In practice, this
means that compositionality can be easily estimated quickly since it does not require
the quadratic complexity of compositions.

When does compositionality fail? Our evaluation of the constraint violation sug-
gests that compositionality does not hold for either specific, rare attributes or for far-
fetched compositions. For instance, an attribute that led to a consistently low composi-
tionality score was the color “puce”, no matter the type of the other attribute. Another
such attribute was the size-related attribute “mini”. As is also apparent from Fig. 6 (bot-
tom), τmini is quite different than the other size attributes. For CLIP specifically, we
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believe this is due to the fact that most of the “mini” images correspond to images that
depict the car Mini Cooper and not a mini version of a typical object. Similarly, for
“puce”, it is very likely that images (or even texts) linked to “puce” correspond to the
Franco-Belgian comic “Zig et Puce” [5] and not the color “puce”. Finally, odd compo-
sitions such as young, bumpy otter and youthful, pear bear lead, as perhaps expected
from Remark 1, to a low compositionality score.

Remark 5. LLMs have an in-built understanding of viewpoint invariance, but their la-
tent spaces are fundamentally different.

Fig. 9: How viewpoint invariance manifests to
different models. In Deberta (top) there are clear
clusters for each position, hinting at a latent
space in which different object embeddings have
a small angle with each other, while different
viewpoints lead to embeddings with the same di-
rection but with big differences in the norm. This
leads to this type of clustering when we consider
a 2D projection. On the contrary, in Mistral (bot-
tom) each object’s viewpoints are clustered to-
gether, hinting at a latent space in which each
object occupies a very different area.

So far, we considered “external” at-
tributes, such as size and color. How-
ever, we can also consider attributes that
do not really change the essence of the
primitive. One such category of attributes
is the positional attributes that leads to
expressions such as “an image of a car
from the front” or “an image of a dog
from above”. Invariance with respect to
3D rotations is an active topic of re-
search and remains an open question. We
consider a list of 13 positional attributes
and we compute the embedding for each
combination of object and position, us-
ing the prompt “a photo of a ⟨object⟩
from ⟨position⟩”. If we denote each em-
bedding as ϵobject

position, we can estimate the
viewpoint invariance of each model by
calculating the cosine similarity between
all the embeddings ϵobject

position1
and ϵobject

position2
for all combinations of positions and ob-
jects.

While we observe that the average
cosine similarity is very high (more than
0.95), this does not imply that all mod-
els are the same. In Fig. 9 we depict the latent space (T-SNE 2D plot) of two of the
models under consideration: the smaller, widely used text-encoder Deberta [27], and a
popular more recent LLM Mistral [30]. We can observe an interesting behavior. While
Deberta’s latent space is such that (while it achieves viewpoint invariance) the embed-
dings of each positional attribute are clustered together, this is not the case for Mistral.
In Mistral, the different viewpoints are clustered together for each object, leading to
this “spotted” view of the latent space, which may not be that useful in practice. We be-
lieve that this is one of the properties that make Deberta a widely used text encoder in
contrast to LLMs (such as Mistral) that, although show strong performance on multiple
NLP tasks, are not a default choice as a text encoder in vision-language tasks.
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4.1 Compositionality in Large Language Models

Our main focus so far was in language models that are widely used in multiple applica-
tions, such as Deberta, GPT2, and Roberta. However, recently, we have witnessed the
emergence of LLMs; billion-parameter models that are dominating multiple, diverse
benchmarks. While the LLMs are capable of performing NLP tasks in which smaller
models (such as the ones we consider here) fail, this does not imply that they are univer-
sally more useful for all types of text-based applications (although this is being actively
studied [7,36]). According to the Yoneda perspective (Remark 2), LLMs such as Zephyr
(3B) and Mistral (7B) do not differ significantly from smaller models such as GPT2 and
Roberta (1̃00M). This implies that, at least for certain applications, it may be beneficial
to use a smaller model compared to a larger one, or, alternatively, the use of a larger
model may offer minimal improvements.

Additionally, the viewpoint invariance (Remark 5) reveals that, while all models
have an in-built notion of viewpoint invariance, their latent space is not equally “useful”.
As we observe in Fig. 9, Mistral’s latent space is formed in a way that may not be ideal
for a text encoder. This statement agrees with what has been observed in practice too,
where Deberta is one of the main choices for a text encoding model, in contrast to
larger LLMs. Of course, our experiments do not intend to understate the improvements
that various LLMs have achieved, but rather provide a more critical and informed view
that shows that huge models are not necessarily well-suited for all applications. The
Yoneda perspective as well as compositionality/homogeneity can serve as guidance for
selecting models appropriate for the task at hand. Here, we considered a generic set of
attributes (age, color, size, texture, as well as positions) but for a specific application, it
is straightforward how the categorical view can be applied to a different set of attributes
and provide a quick proxy of a model’s performance.

5 Conclusions

We showed how compositional learning can be reinterpreted in Category Theory terms.
This perspective allows us to identify strategies to concurrently improve as well as sim-
plify existing formulations. The experimental results suggest that our CatCom model
yields a performance profile comparable to the state of the art for Compositional Zero-
Shot Learning. The same core ideas offer a mechanism to dig deeper into the latent
space of LLMs, from a categorical perspective. Our tests allow us to evaluate less well-
studied properties of LLMs, and the potential role the Yoneda perspective and the com-
positionality index may offer. These metrics can provide insights into how the model is
trained and what extra training examples can help. Our multi-level analysis of multiple
contemporary LLMs revealed multiple anecdotes that hold in the community of NLP
practitioners. Our categorical view, along with the specific metrics we presented, can
be used for text-based applications and provide a “ranking” of the candidate models.
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