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Online Vectorized HD Map Construction using Geometry
Supplementary Material

This supplementary material is organized as follows:
– More details on the method design (§ A).
– Further quantitative experimental results (§ B).
– Additional visualization results under three weather conditions (§ C).

A Additional Details

A.1 Objective Functions

Objective Configurations. Our method employs two distinct objective func-
tions. The full objective function is defined as follows:

L = λ · LEuc + β1 · Lcls + β2 · Lpts

+ β3 · Ldir + β4 · Lseg + β5 · Ldep

(1)

and the simpler one which excludes dense prediction losses is:

L′ = λ · LEuc + β1 · Lcls + β2 · Lpts + β3 · Ldir. (2)

Point Order Agnostic Matching. In accordance with the methodology pro-
posed by MapTR [22], we employ point order-agnostic matching between the
prediction and ground truth. In the subsequent formulations, we assume that
the prediction and ground truth have already been paired.
Classification Loss. To enhance the model’s comprehension of semantics as-
sociated with various map instance types, we incorporate the classification task.
Let p̂ ∈ RN×C denote the predicted probabilities, where C is the number of
instance categories. Here, p̂ic represents the predicted probability of instance i
belonging to category c. With ground truth labels y ∈ {1, ..., C}N , the objective
function based on focal loss is defined as follows:

Lcls = −
N∑
i=1

C∑
c=1

δ[yi = c] · αc(1− p̂ic)
γ log p̂ic , (3)

where δ[q] = 1 if proposition q is true and δ[q] = 0 otherwise.
Point Loss. For the perception of instance positions, we employ a point loss
that evaluates L1 distances between predicted points and ground truth points,
which is specified as:

Lpts =

N∑
i=1

Nv∑
j=1

∥L̂i
j −Li

j∥1. (4)

Edge Direction Loss. To obtain more precise displacement vectors, which are
crucial in our G-Representation, we incorporate an edge direction loss. This loss
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quantifies the cosine similarity between predicted displacement vectors and their
corresponding ground truth vectors. Specifically, the loss is defined as:

Ldir = −
N∑
i=1

Nv∑
j=1

(v̂i
j)

⊤vi
j

∥v̂i
j∥2 · ∥vi

j∥2
. (5)

Segmentation Loss. The auxiliary binary segmentation task is valuable for
assisting the model in the coarse perception of shape geometry. We integrate a
convolutional neural network-based BEV segmentation head with BEV features.
Let P̂bev ∈ RH′×W ′

represent the probability of each grid belonging to the in-
stance area, and Ybev ∈ {0, 1}H′×W ′

denote the ground truth. The corresponding
objective function is defined as:

Lbev = Lbce(P̂bev,Ybev) , (6)

where the binary cross entropy loss Lbce is:

Lbce(p̂, y) =− δ[y = 1] · log p̂
− δ[y = 0] · log(1− p̂).

(7)

We also introduce the auxiliary PV segmentation task, incorporating a shared
convolutional neural network head for all views. The ground truth is projected
back to the PV space to form the binary mask. Let P̂ k

pv ∈ RH×W denote the seg-
mentation results for view k with corresponding ground truth Y k

pv ∈ {0, 1}H×W ,
then the objective function can be expressed as:

Lpv =

K∑
k=1

Lbce(P̂
k
pv,Y

k
pv). (8)

Finally, we obtain the segmentation loss as follows:

Lseg = βbev · Lbev + βpv · Lpv. (9)

Depth Estimation Loss. To enhance depth perception, we adopt an auxil-
iary depth estimation task. Let P̂ k

dep ∈ RH×W×D represent the depth distri-
bution of each grid estimated by LSS [35] in the PV space of view k, where
D represents the number of quantified depth buckets. Given the ground truth
Y k
dep ∈ {1, ..., D}H×W×D, the depth estimation loss is defined as:

Ldep = −
K∑

k=1

D∑
d=1

δ[Y k
dep = d] · log P̂ k

dep. (10)

A.2 Hyperparameter Settings

In the default optimization setting, we set the dropout rate to 0.1 and weight
decay to 0.03. The first 500 iterations involve a linear warm-up, starting from 1/3
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of the maximum learning rate. In the Cosine Annealing scheduler, the minimum
learning rate is set to 0.001 of the maximum. Unless explicitly stated otherwise,
we train our model for 110 epochs on nuScenes and 24 epochs on Argoverse 2.
For the simplified objective configuration, we set the maximum learning rate to
6 × 10−4 with a batch size of 4. When LiDAR input is utilized, the batch size
is reduced to 3. In the full objective configuration, varied hyperparameters are
detailed in Table A2. Also, the default hyperparameter settings for objective
functions are presented in Table A1.

Table A1: Hyperparameters of objective functions.

Parameter αc γ λ β1 β2

Value 0.25 2 0.005 2 5

Parameter β3 β4 β5 βbev βpv

Value 0.005 1 3 1 2

Table A2: Hyperparameters under different vision backbones.

Backbone Max Learning Rate Batchsize

R50 6× 10−4 4
V2-99 6× 10−4 3
Swin-T 4× 10−4 3

Moreover, we set the number of instance queries as N = 50 and the number
of point queries as Nv = 20. We employ a single layer of encoder in GKT
and incorporate 6 attention blocks in the Geometry-Decoupled Decoder. In the
context of LSS transformation, the depth spans from 1 to 35 meters, quantified
at intervals of 0.5 meters, resulting in D = 68.

B More Experimental Results

In this section, we present additional ablation studies and hyperparameter ex-
periment results. In all of these experiments, the model is trained for 24 epochs
on nuScenes using the simplified objective function. Unless otherwise specified,
we employ the default settings outlined in § A.2.

B.1 Impact of the Decoder Block Number

We evaluate the impact of decoder block numbers on the model performance,
as presented in Table A3. When increasing the number of blocks from 1 to 6,
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the mAP increases by +20.8%. However, naively adding more blocks might be
detrimental to model performance. For example, mAP decreases by −4.7% when
increasing the number of blocks from 6 to 12.

Table A3: Impact of the decoder block number. The default setting utilized in our
experiments is highlighted in gray.

# Block APdiv(↑) APped(↑) APbnd(↑) mAP(↑)

1 33.5 24.7 37.3 31.8
2 42.1 38.9 48.2 43.1
4 51.1 43.5 53.9 49.5
6 53.6 49.2 54.8 52.6
8 54.5 46.4 53.4 51.4
10 52.4 45.7 53.5 50.5
12 49.6 45.1 48.9 47.9

B.2 Impact of the Query Number

We also evaluate the influence of query numbers on model performance, as de-
tailed in Table A4 for instance queries and Table A5 for point queries.
Instance Queries. As depicted in Table A4, augmenting the number of instance
queries could be advantageous for the model’s performance. More specifically,
the mAP exhibits an increment of +27.8% when the query number is elevated
from 10 to 50. This observation aligns with intuition, as a higher number of
instance queries implies a broader pool of diverse candidates.
Point Queries. It is observed from Table A5 that an excess or insufficient num-
ber of point queries has an adverse impact on the model performance. Notably,
an interesting finding is that the optimal query number varies according to dif-
ferent instance categories. For example, lane dividers exhibit better performance
with Nv = 10, while pedestrian crossings and road boundaries show optimal
results with Nv = 20. This discrepancy is attributed to the straight shape of
lane dividers, whereas pedestrian crossings and road boundaries, characterized
by more intricate shapes, benefit from a relatively larger point query number.
Hence, the results suggest that adapting point query numbers based on the
complexity of instance geometry could further enhance the model performance,
which is a topic left for future investigation.

C More Visualization Results

We present additional visualization cases under varied weather conditions, as
illustrated in Figure A1 to Figure A3. Our method is trained with a ResNet50
backbone using the simplified objective function.

As illustrated in Figure A1, in challenging rainy conditions, our method
demonstrates more robust results. Particularly in scenario (d) of Figure A1,
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Table A4: Impact of the instance query number.

N APdiv(↑) APped(↑) APbnd(↑) mAP(↑)

10 30.2 12.3 31.9 24.8
30 50.6 43.4 50.5 48.2
40 51.0 47.5 53.1 50.5
50 53.6 49.2 54.8 52.6
60 52.6 49.0 55.6 52.4

Table A5: Impact of the point query number.

Nv APdiv(↑) APped(↑) APbnd(↑) mAP(↑)

5 49.7 31.4 41.8 41.0
10 53.7 45.9 52.5 50.7
20 53.6 49.2 54.8 52.6
30 50.9 48.3 54.7 51.3
40 50.2 47.9 54.6 50.9

where the front road boundary and lane divider are heavily occluded by water
on the front windshield, our method can still recover the entire instance accu-
rately from observed parts. This showcases the potential of proposed geometric
designs.
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Fig.A1: Visualization results under challenging rainy weather conditions. Even with
noisy reflections on the road and map instances occluded by water drops, our method
still provides robust predictions.
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Fig.A2: Visualization results under sunny weather conditions.



7

MapTR Ours GTMapTRv2 PivotNet BeMapNetSurrounding Camera Images

(a)

(b)

(d)

(c)

Fig.A3: Visualization results under cloudy weather conditions.


