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0.1 About the Scalability.

To verify the effectiveness of RayDN when further scaling up the backbone and
image size, we conduct experiments with ViT-L on nuScenes test set. Models
are trained for 24 epochs. As shown in Table 1, RayDN outperforms the Stream-
PETR [10] by 1.1% mAP and 1.0 % NDS. demonstrating the scalability and
effectiveness of Ray Denoising, i.e., RayDN.

Table 1: Comparison on the nuScenes test set.

Methods Backbone Image Size mAP NDS

BEVDepth [4] ConvNext-B 640×1600 52.0 60.9
AeDet [2] ConvNext-B 640×1600 53.1 62.0
PETRv2 [6] RevCol-L 640×1600 51.2 59.2
SOLOFusion [7] ConvNeXt-B 640×1600 54.0 61.9
BEVFormerv2 [11] InternImage-XL 640×1600 55.6 63.4
BEVDet4D-Gamma [3] Swin-B 900×1600 58.6 66.4
StreamPETR [10] ViT-L 800×1600 62.0 67.6
RayDN (Ours) ViT-L 800×1600 63.1 68.6

0.2 About the Generalization Ability to Other Model.

We conduct experiments with more models to verify the generalization ability
of RayDN. We adopt ResNet50 pre-trained on nuImages [1] as the backbone
and the image size is 256 × 704. Models are trained for 24 epochs. As shown
in Table 2, RayDN obtains 1.9% mAP and 1.2% mAP against PETR [5] and
FocalPETR [9] separately, demonstrating the generalization ability of RayDN.
⋆ Work was done during internship at Mach Drive. † Corresponding Author.
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Table 2: Ablation studies on the generalization ability of RayDN.

Method Backbone Image Size mAP NDS

PETR [5] ResNet50 256×704 33.3 36.4
+ RayDN (Ours) ResNet50 256×704 35.2 37.3
FocalPETR [9] ResNet50 256×704 34.9 38.7
+ RayDN (Ours) ResNet50 256×704 36.1 39.9

Table 3: Ablation studies on the training time and inference speed.

Method backbone Image Size Training Time FPS

SOTA Baseline [10] ResNet50 704×256 7 h 10.4
+ 3DPPE [8] ResNet50 704×256 8.5 h 9.9
+ RayDN (Ours) ResNet50 704×256 7.5h 10.4

Cost of Ray Denoising. We analyze the computational overhead of Ray De-
noising by comparing training times and inference speeds, as detailed in Table 3.
Training time is benchmarked across 8 GeForce RTX 2080 Ti GPUs, while in-
ference speed is measured on a single GeForce RTX 2080 Ti GPU. Our setup
utilizes a ResNet50 backbone with an input resolution of 256×704. Ray Denois-
ing introduces a modest increase in training time—just a 7% rise compared to
StreamPETR—while 3DPPE raises it by 21%. Inference speed remains on par
with StreamPETR, as Ray Denoising is only used in the training phase.

0.3 More Visualization of Detection Results.

We visualize more detection results in Figure 1. As can be seen, RayDN works
well in both daytime and night.
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Fig. 1: Visualization of the detection results. RayDN works well under different lighting
conditions (daytime, night) to suppress duplicate false positives while maintaining the
ability to detect highly occluded objects on the same ray. Best viewed by zooming on
the screen.
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