
Agent Attention: On the Integration of Softmax
and Linear Attention

Dongchen Han1⋆ , Tianzhu Ye1⋆ , Yizeng Han1 , Zhuofan Xia1 , Siyuan
Pan2 , Pengfei Wan2 , Shiji Song1 , and Gao Huang1⋆⋆

1 Department of Automation, Tsinghua University
2 Kuaishou Technology

Abstract. The attention module is the key component in Transformers.
While the global attention mechanism offers high expressiveness, its ex-
cessive computational cost restricts its applicability in various scenarios.
In this paper, we propose a novel attention paradigm, Agent Attention,
to strike a favorable balance between computational efficiency and repre-
sentation power. Specifically, the Agent Attention, denoted as a quadru-
ple (Q,A,K, V ), introduces an additional set of agent tokens A into the
conventional attention module. The agent tokens first act as the agent
for the query tokens Q to aggregate information from K and V , and then
broadcast the information back to Q. Given the number of agent tokens
can be designed to be much smaller than the number of query tokens,
agent attention is significantly more efficient than the widely adopted
Softmax attention, while preserving global context modelling capability.
Interestingly, we show that the proposed agent attention is equivalent to
a generalized form of linear attention. Therefore, agent attention seam-
lessly integrates the powerful Softmax attention and the highly efficient
linear attention. Extensive experiments demonstrate the effectiveness of
agent attention with various vision Transformers and across diverse vi-
sion tasks, including image classification, object detection, semantic seg-
mentation and image generation. Notably, agent attention has shown
remarkable performance in high-resolution scenarios, owning to its lin-
ear attention nature. For instance, when applied to Stable Diffusion, our
agent attention accelerates generation and substantially enhances image
generation quality without any additional training. Code is available at
https://github.com/LeapLabTHU/Agent-Attention.
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1 Introduction

Originating from natural language processing, Transformer models have rapidly
gained prominence in the field of computer vision in recent years, achieving
significant success in image classification [10, 12, 15, 35], object detection [5, 37],
semantic segmentation [6, 43], and multimodal tasks [27,28,40].
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Fig. 1: An illustration of the motivation of our agent attention. (a) In Softmax
attention, each query aggregates information from all features, incurring quadratic
complexity. (b) Leveraging the redundancy between attention weights, agent attention
uses a small number of agent tokens to act as the “agent” for queries, capturing diverse
semantic information from all features, and then presenting it to each query. The
attention weights are derived from DeiT-T and Agent-DeiT-T.

Nevertheless, incorporating Transformers and self-attention into the visual
domain presents formidable challenges. Modern Transformer models commonly
employ Softmax attention [36], which computes the similarity between each
query-key pair, resulting in quadratic computation complexity with respect to
the number of tokens. As a result, directly applying Softmax attention with
global receptive fields to the visual tasks can lead to unmanageable compu-
tational demands. To tackle this issue, existing works [13, 14, 16, 24, 37, 41, 50]
attempt to reduce computation complexity by designing efficient attention pat-
terns. As two representatives, Swin Transformer [24] reduces the receptive field
and confines self-attention calculations to local windows. PVT [37] employs a
sparse attention pattern to alleviate the computational burden by reducing the
number of keys and values. Despite their effectiveness, these methods inevitably
compromise the capability to model long-range relationships, and are still infe-
rior to global self-attention mechanism.

In this paper, in contrast to restricting receptive field or introducing sparsity,
we propose a novel quadruplet attention paradigm (Q,A,K, V ), dubbed Agent
Attention, which exploits redundancy between attention weights to achieve
both high model expressiveness and low computation complexity. As shown in
Fig. 1, in Softmax attention, each query aggregates information from all features,
incurring quadratic complexity. In fact, many queries, such as those denoting sky
in Fig. 1a, require similar information. Therefore, our motivation is to eliminate
the direct contact between each query and key, and instead use a small number
of agent tokens A to act as the “agent” for queries, capturing diverse semantic
information from all features, and then presenting it to each query. As illus-
trated in Fig. 1b and Fig. 2c, the resulting agent attention is composed of two
conventional Softmax attention operations. The first Softmax attention treats
agent tokens A as queries to aggregate agent features VA from all values V , and
the second utilizes agent tokens A as keys, broadcasting the global information
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Fig. 2: Difference between Softmax attention, Linear attention and Agent
attention. (a) Softmax attention computes the similarities between all query-key pairs,
resulting in quadratic complexity. (b) Linear attention applies mapping function ϕ(·)
to Q and K respectively to change the computation order, reducing complexity but
suffering from insufficient expressive capability. (c) Our Agent attention employs a
small group of agent tokens to aggregate and broadcast global information, leading
to an elegant integration of Softmax and linear attention and naturally enjoying the
advantages of both high expressiveness and low computation complexity.

from agent features VA to each query and forming the final output. Intuitively,
the newly introduced tokens A serve as “agent” for the query tokens Q, as they
directly collect information from K and V , and then deliver the result to Q.

Due to the intrinsic redundancy in global self-attention, the number of agent
tokens can be designed to be much smaller than the number of query tokens. This
property endows agent attention with high efficiency, reducing the quadratic
complexity of Softmax attention to linear complexity while preserving global
context modelling capability. Interestingly, as illustrated in Fig. 2, the proposed
agent attention practically forms an elegant integration of Softmax and linear
attention, which explains how it achieves both high efficiency and high expres-
siveness from a novel perspective.

We empirically verify the effectiveness of our model across diverse vision
tasks, including image classification, object detection, semantic segmentation
and image generation. Our method yields substantial improvements in various
tasks, particularly in high-resolution scenarios. Noteworthy, our agent attention
can be directly plugged into pre-trained large diffusion models, and without
any additional training, it not only accelerates the generation process, but also
notably improves the generation quality.

2 Related Works

Vision Transformer. Since the inception of Vision Transformer [10], self-
attention has made notable strides in the realm of computer vision. However, the
quadratic complexity of the prevalent Softmax attention [36] poses a challenge in
applying self-attention to visual tasks. Previous works proposed various remedies
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for this computational challenge. PVT [37] introduces sparse global attention,
curbing computation cost by reducing the resolution of K and V . Swin Trans-
former [24] restricts self-attention computations to local windows and employs
shifted windows to model the entire image. NAT [16] emulates convolutional
operations and calculates attention within the neighborhood of each feature.
DAT [41] designs a deformable attention module to achieve a data-dependent
attention pattern. BiFormer [50] uses bi-level routing attention to dynamically
determine areas of interest for each query. GRL [21] employs a mixture of an-
chored stripe attention, window attention, and channel attention to achieve ef-
ficient image restoration. However, these approaches inherently limit the global
receptive field of self-attention or are vulnerable to specifically designed attention
patterns, hindering their plug-and-play adaptability for general purposes.
Linear Attention. In contrast to the idea of restricting receptive fields, linear
attention directly addresses the computational challenge by reducing compu-
tation complexity. The pioneer work [18] discards the Softmax function and
replaces it with a mapping function ϕ applied to Q and K, thereby reduc-
ing the computation complexity to O(N). However, such approximations led
to substantial performance degradation. To tackle this problem, Efficient Atten-
tion [33] applies the Softmax function to both Q and K. SOFT [26] and Nys-
trömformer [44] employ matrix decomposition to further approximate Softmax
operation. Castling-ViT [47] uses Softmax attention as an auxiliary training tool
and fully employs linear attention during inference. FLatten Transformer [11]
proposes focused function and adopts depthwise convolution to preserve feature
diversity. While these methods are effective, they continue to struggle with the
limited expressive power of linear attention. In the paper, rather than enhancing
Softmax or linear attention, we propose agent attention which integrates these
two attention types, achieving superior performance in various tasks.

3 Preliminaries

In this section, we first review the general form of self-attention in vision Trans-
formers and briefly analyze the pros and cons of Softmax and linear attention.

3.1 General Form of Self-Attention

With an input of N tokens represented as x ∈ RN×C , self-attention can be
formulated as follows in each head:

Q = xWQ,K = xWK , V = xWV , Oi =

N∑
j=1

Sim(Qi,Kj)∑N
j=1 Sim(Qi,Kj)

Vj , (1)

where WQ/K/V ∈RC×d are projection matrices, C and d are the channel dimen-
sion of module and each head, and Sim(·, ·) denotes the similarity function.
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Fig. 3: An illustration of our agent attention and agent attention module.
(a) Agent attention uses agent tokens to aggregate global information and distribute
it to individual image tokens, resulting in a practical integration of Softmax and linear
attention. σ(·) represents Softmax function. In (b), we depict the information flow
of agent attention module. As a showcase, we acquire agent tokens through pooling.
Subsequently, agent tokens are utilized to aggregate information from V , and Q queries
features from the agent features. In addition, agent bias and DWC are adopted to add
positional information and maintain feature diversity.

3.2 Softmax Attention and Linear Attention

When using Sim (Q,K) = exp(QKT /
√
d) in Eq. (1), it becomes Softmax at-

tention [36], which has been highly successful in modern vision Transformer
designs. However, Softmax attention compels to compute the similarity between
all query-key pairs, resulting in O(N2) complexity. Consequently, using Soft-
max attention with a global receptive field leads to overwhelming computation
complexity. To tackle this problem, previous works attempted to reduce the
number of tokens N by designing sparse global attention [37, 38] or window at-
tention [9,24] patterns. While effective, these strategies unavoidably compromise
the self-attention’s capability for long-range modeling.

Comparably, linear attention [18] efficiently addresses the computation chal-
lenge with a linear complexity of O(N). Specifically, carefully designed mapping
functions are applied to Q and K respectively, i.e., Sim (Q,K) = ϕ(Q)ϕ(K)T .
This gives us the opportunity to change the computation order from (ϕ(Q)ϕ(K)T )V
to ϕ(Q)(ϕ(K)TV ) based on the associative property of matrix multiplication. As
illustrated in Fig. 2, by doing so, the computation complexity with respect to
token number is reduced to O(N). However, designing effective mapping func-
tion ϕ(·) proves to be a nontrivial task. Simple functions [33] such as ReLU lead
to significant performance drop, whereas more intricate designs [7] or matrix
decomposition methods [26, 44] may introduce extra computation overhead. In
general, current linear attention approaches are still inferior to Softmax atten-
tion, limiting their practical application.

4 Agent Transformer

As discussed in Sec. 3, Softmax and linear attention suffer from either excessive
computation complexity or insufficient model expressiveness. Previous research
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commonly treated these two attention paradigms as distinct approaches and at-
tempted to either reduce the computation cost of Softmax attention or enhance
the performance of linear attention. In this section, we propose a new atten-
tion paradigm named Agent Attention, which practically forms an elegant
integration of Softmax and linear attention, enjoying benefits from both linear
complexity and high expressiveness.

4.1 Agent Attention

To simplify, we abbreviate Softmax and linear attention as:

OS=σ(QKT )V ≜ AttnS(Q,K, V ), Oϕ=ϕ(Q)ϕ(K)TV ≜ Attnϕ(Q,K, V ), (2)

where Q,K, V ∈ RN×C denote query, key and value matrices and σ(·) represents
Softmax function. Then our agent attention can be written as:

OA = AttnS(Q,A,AttnS(A,K, V )︸ ︷︷ ︸
Agent Aggregation

)

︸ ︷︷ ︸
Agent Broadcast

.

(3)

It is equivalent to:

OA = σ(QAT ) σ(AKT ) V = ϕq(Q)ϕk(K)TV = Attnϕq/k(Q,K, V )︸ ︷︷ ︸
Generalized Linear Attn

,
(4)

where A ∈ Rn×C is our newly defined agent tokens.
As shown in Eq. (3) and Fig. 3a, our agent attention consists of two Softmax

attention operations, namely agent aggregation and agent broadcast. Specifically,
we initially treat agent tokens A as queries and perform attention calculations
between A, K, and V to aggregate agent features VA from all values. Subse-
quently, we utilize A as keys and VA as values in the second attention calcula-
tion with the query matrix Q, broadcasting the global information from agent
features to every query token and obtaining the final output O. In this way, we
avoid the computation of pairwise similarities between Q and K while preserving
information exchange between each query-key pair through agent tokens.

The newly defined agent tokens A essentially serve as the agent for Q, ag-
gregating global information from K and V , and subsequently broadcasting it
back to Q. Practically, we set the number of agent tokens n as a small hyper-
parameter, achieving a linear complexity of O(Nnd) relative to the number of
input features N while maintaining global context modeling capability. Inter-
estingly, as shown in Eq. (4) and Fig. 3a, we practically integrate the powerful
Softmax attention and efficient linear attention, establishing a generalized lin-
ear attention paradigm by employing two Softmax attention operations, with the
equivalent mapping function defined as ϕq(Q) = σ(QAT ), ϕk(K) =

(
σ(AKT )

)T .
In practice, agent tokens can be acquired through different methods, such as

simply setting as a set of learnable parameters or extracting from input features
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through pooling or convolution. It is worth noticing that more advanced tech-
niques like deformed points [41] or token merging [1] can also be used to obtain
agent tokens. In the default setting, we employ the simple pooling strategy to
obtain agent tokens, which already works surprisingly well.

4.2 Agent Attention Module

Agent attention inherits the merits of both Softmax and linear attention. In
practical use, we further make two improvements to maximize its potential.
Agent Bias. In order to better utilize positional information, we present a
carefully designed Agent Bias for our agent attention. Specifically, inspired by
RPB [32], we introduce agent bias within the attention calculation, i.e.,

OA= σ(QAT+B2) σ(AKT+B1) V, (5)

where B1 ∈ Rn×N , B2 ∈ RN×n are our agent biases. For parameter efficiency,
we construct each agent bias using three bias components rather than directly
setting B1, B2 as learnable parameters (see Appendix). Agent bias augments the
vanilla agent attention with spatial information, helping different agent tokens
to focus on diverse regions. As shown in Tab. 6, significant improvements can be
observed upon the introduction of our agent bias terms.
Diversity Restoration Module. Although agent attention benefits from both
low computation cost and high expressiveness, as generalized linear attention, it
also suffers from insufficient feature diversity [11]. As a remedy, we follow [11]
and adopt a depthwise convolution (DWC) module to preserve feature diversity.
Agent Attention Module. Building upon these designs, we propose a novel
attention module named Agent Attention Module. As illustrated in Fig. 3(b),
our module is composed of three parts, namely pure agent attention, agent bias
and the DWC module. Our module can be formulated as:

O = σ(QAT+B2) σ(AKT+B1) V +DWC(V ), (6)

where Q,K, V ∈ RN×C , A∈Rn×C , B1 ∈Rn×N and B2 ∈RN×n. In the default
setting, agent tokens A is obtained through pooling, i.e., A = Pooling(Q). The
overall module complexity is expressed as:

Ω = 4NC2︸ ︷︷ ︸
Proj

+ NC︸︷︷︸
Get Agents

+ 2nNC + 2NnC︸ ︷︷ ︸
Agent Attention

+ k2NC︸ ︷︷ ︸
DWC

,
(7)

where N,n are the number of input features and agent tokens, and k = 3 is the
kernel size of DWC. Notably, our model exhibits linear complexity for N .

Combining the merits of Softmax and linear attention, our module offers the
following advantages:

(1) Efficient computation and high expressive capability. Previous
work usually viewed Softmax attention and linear attention as two different
attention paradigms, aiming to address their respective limitations. As a seamless
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Table 1: ImageNet-1K classification results. The default input resolution is 2242,
except ↑384 denotes results on 3842 resolution. Check the Appendix for full results.

Method #Params FLOPs Top-1 Acc.

DeiT-T [35] 5.7M 1.2G 72.2
Agent-DeiT-T 6.0M 1.2G 74.9 (+2.7)

DeiT-S 22.1M 4.6G 79.8
Agent-DeiT-S 22.7M 4.4G 80.5 (+0.7)

PVT-T [37] 13.2M 1.9G 75.1
Agent-PVT-T 11.6M 2.0G 78.4 (+3.3)

PVT-S 24.5M 3.8G 79.8
Agent-PVT-S 20.6M 4.0G 82.2 (+2.4)

PVT-L 61.4M 9.8G 81.7
Agent-PVT-L 48.7M 10.4G 83.7 (+2.0)

Method #Params FLOPs Top-1 Acc.

Swin-T [24] 29M 4.5G 81.3
Agent-Swin-T 29M 4.5G 82.6 (+1.3)

Swin-S 50M 8.7G 83.0
Agent-Swin-S 50M 8.7G 83.7 (+0.7)

Swin-B 88M 15.4G 83.5
Agent-Swin-B 88M 15.4G 84.0 (+0.5)

CSwin-B [9] 78M 15.0G 84.2
Agent-CSwin-B 73M 14.9G 84.7 (+0.5)

CSwin-B↑384 78M 47.0G 85.4
Agent-CSwin-B↑384 73M 46.3G 85.8 (+0.4)

                  
         

  

  

  

 
 
 
 
  

 
 
  
 
 

           

          

            

           

              

                  

      
         

  
  
  
  
  
  
  
  
  
  
  
  

 
 
 
 
  

 
 
  
 
 

           

             

        

         

                

                     
         

  

  

  

  

 
 
 
 
  

 
 
  
 
 

          

               

        

            

                 

Fig. 4: Comparison with SOTA models [20,25,29,35,38,39,45,46,48] on ImageNet-1K.

integration of these two attention forms, our agent attention naturally inherits
the merits of the two, enjoying both low computation complexity and high model
expression ability at the same time.

(2) Large receptive field. Our module can adopt a large receptive field
while maintaining the same amount of computation. Modern vision Transformer
models typically resort to sparse attention [37, 38] or window attention [9, 24]
to mitigate the computation burden of Softmax attention. Benefited from linear
complexity, our model can enjoy the advantages of a large, even global receptive
field while maintaining the same computation.

4.3 Implementation

Our agent attention module can serve as a plug-in module and can be easily
adopted on a variety of modern vision Transformer architectures. As a showcase,
we empirically apply our method to four advanced and representative Trans-
former models including DeiT [35], PVT [37], Swin [24] and CSwin [9]. We also
apply agent attention to Stable Diffusion [30] to accelerate image generation.
Detailed model architectures are shown in Appendix.

5 Experiments

To verify the effectiveness of our method, we conduct experiments on ImageNet-
1K classification [8], ADE20K semantic segmentation [49], and COCO object
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Table 2: Results on COCO dataset. The FLOPs are computed over backbone, FPN
and detection head with an input resolution of 1280×800. See full results in Appendix.

(a) Mask R-CNN Object Detection
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

PVT-T 240G 1x 36.7 59.2 39.3 35.1 56.7 37.3
Agent-PVT-T 230G 1x 41.4 64.1 45.2 38.7 61.3 41.6
PVT-M 392G 1x 42.0 64.4 45.6 39.0 61.6 42.1
Agent-PVT-M 400G 1x 45.9 67.8 50.4 42.0 65.0 45.4
PVT-L 494G 1x 42.9 65.0 46.6 39.5 61.9 42.5
Agent-PVT-L 510G 1x 46.9 69.2 51.4 42.8 66.2 46.2
Swin-S 358G 1x 45.7 67.9 50.4 41.1 64.9 44.2
Agent-Swin-S 364G 1x 47.2 69.6 52.3 42.7 66.6 45.8

(b) Cascade Mask R-CNN Object Detection
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

Swin-T 745G 1x 48.1 67.1 52.2 41.7 64.4 45.0
Agent-Swin-T 755G 1x 49.2 68.6 53.2 42.7 65.6 45.9
Swin-T 745G 3x 50.4 69.2 54.7 43.7 66.6 47.3
Agent-Swin-T 755G 3x 51.4 70.2 55.9 44.5 67.6 48.4
Swin-S 837G 3x 51.9 70.7 56.3 45.0 68.2 48.8
Agent-Swin-S 843G 3x 52.6 71.3 57.1 45.5 68.9 49.2
Swin-B 981G 3x 51.9 70.5 56.4 45.0 68.1 48.9
Agent-Swin-B 990G 3x 52.6 71.1 57.1 45.3 68.6 49.2
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Fig. 5: Accuracy-Runtime curve on ImageNet. Runtime is tested with resolution 2242.

detection [23]. Additionally, we integrate agent attention into the state-of-the-
art generation model, Stable Diffusion [30]. Furthermore, we construct high-
resolution models with large receptive fields to maximize the benefits of agent
attention. In addition, sufficient ablation experiments are conducted to show the
effectiveness of each design.

5.1 ImageNet-1K Classification

ImageNet [8] comprises 1000 classes, with 1.2 million training images and 50,000
validation images. We implement our module on four representative vision Trans-
formers and compare the top-1 accuracy on the validation split with state-of-
the-art models. See Appendix for training settings.
Results. As depicted in Tab. 1, substituting Softmax attention with agent at-
tention in various models results in significant performance improvements. For
instance, Agent-PVT-S surpasses PVT-L while using just 30% of the parameters
and 40% of the FLOPs. Additionally, we provide a comprehensive comparison
with various state-of-the-art methods in Fig. 4. Our models clearly achieve a bet-
ter trade-off between computation cost and model performance. These results
unequivocally prove that our approach has robust advantages and is adaptable
to diverse architectures.
Inference Time. We further conduct real speed measurements by deploying
the models on various devices. As Fig. 5 illustrates, our models attain inference
speeds 1.7 to 2.1 times faster on the CPU while simultaneously improving per-
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Table 3: Results of semantic segmentation on ADE20K. The FLOPs are computed
over encoders and decoders with an input image at the resolution of 512×2048.

SemanticFPN Semantic Segmentation
Backbone Method FLOPs #Params mIoU mAcc
PVT-T S-FPN 158G 17M 36.57 46.72
Agent-PVT-T S-FPN 147G 15M 40.18 51.76
PVT-S S-FPN 225G 28M 41.95 53.02
Agent-PVT-S S-FPN 211G 24M 44.18 56.17
PVT-L S-FPN 420G 65M 43.49 54.62
Agent-PVT-L S-FPN 434G 52M 46.52 58.50

UperNet Semantic Segmentation
Backbone Method FLOPs #Params mIoU mAcc
Swin-T UperNet 945G 60M 44.51 55.61
Agent-Swin-T UperNet 954G 61M 46.68 58.53
Swin-S UperNet 1038G 81M 47.64 58.78
Agent-Swin-S UperNet 1043G 81M 48.08 59.78
Swin-B UperNet 1188G 121M 48.13 59.13
Agent-Swin-B UperNet 1196G 121M 48.73 60.01

formance. On RTX3090 GPU and A100 GPU, our models also achieve 1.4x to
1.7x faster inference speeds.

5.2 Object Detection

COCO [23] object detection and instance segmentation dataset has 118K train-
ing and 5K validation images. We apply our model to RetinaNet [22], Mask
R-CNN [17] and Cascade Mask R-CNN [4] frameworks to evaluate the perfor-
mance of our method. A series of experiments are conducted utilizing both 1x
and 3x schedules with different detection heads. As depicted in Tab. 2, our model
exhibits consistent enhancements across all configurations. Agent-PVT outper-
forms PVT models with an increase in box AP ranging from +3.9 to +4.7,
while Agent-Swin surpasses Swin models by up to +1.5 box AP. These substan-
tial improvements can be attributed to the large receptive field brought by our
design, proving the effectiveness of agent attention in high-resolution scenarios.

5.3 Semantic Segmentation

ADE20K [49] is a well-established benchmark for semantic segmentation which
encompasses 20K training images and 2K validation images. We apply our model
to two exemplary segmentation models, namely SemanticFPN [19] and Uper-
Net [42]. The results are presented in Tab. 3. Remarkably, our Agent-PVT-T
and Agent-Swin-T achieve +3.61 and +2.17 higher mIoU than their counter-
parts. The results show that our model is compatible with various segmentation
backbones and consistently achieves improvements.

5.4 Agent Attention for Stable Diffusion

The advent of diffusion models makes it possible to generate high-resolution and
high-quality images. However, current diffusion models mainly use the original
Softmax attention with a global receptive field, resulting in huge computation
cost and slow generation speed. In the light of this, we apply our agent attention
to Stable Diffusion [30], hoping to improve the generation speed of the model.
Surprisingly, after simple adjustments, the Stable Diffusion model using agent
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Fig. 6: (a) Quantitative Results of Stable Diffusion (SD), ToMeSD and our AgentSD.
For ToMeSD, we take the merging ratios {0.1, 0.2, 0.3, 0.4, 0.5} to construct five differ-
ent models. Furthermore, we apply agent attention to each ToMeSD model to obtain
the corresponding AgentSD model. (b) Samples generated by SD, ToMeSD (r = 40%)
and AgentSD (r = 40%). The prompt is “A high quality photograph of a {cls}.”.

attention, dubbed AgentSD, shows a significant improvement in generation
speed and produces even better image quality without any extra training.
Applying agent attention to Stable Diffusion. We practically apply agent
attention to ToMeSD model [3]. ToMeSD reduces the number of tokens before
attention calculation in Stable Diffusion, enhancing generation speed. Nonethe-
less, the post-merge token count remains considerable, resulting in continued
complexity and latency. Hence, we replace the Softmax attention employed in
ToMeSD model with our agent attention to further enhance speed. We experi-
mentally find that when producing agent tokens through token merging [1], our
agent attention can be directly applied to Stable Diffusion and ToMeSD model
without any extra training. However, we are unable to apply the agent bias and
DWC in this way. As a remedy, we make two simple adjustments to the agent
attention, which are described in detail in Appendix. In addition, we get a signif-
icant boost by applying agent attention during early diffusion generation steps
and keeping the later steps unchanged.
Quantitative Results. We follow [3] and quantitatively compare AgentSD with
Stable Diffusion and ToMeSD. As displayed in Fig. 6a, ToMeSD accelerates Sta-
ble Diffusion while maintaining similar image quality. AgentSD not only fur-
ther accelerates ToMeSD but also significantly enhances image generation qual-
ity. Specifically, while maintaining superior image generation quality, AgentSD
achieves 1.84x and 1.69x faster generation speeds compared to Stable Diffusion
and ToMeSD, respectively. At an equivalent generation speed, AgentSD produces
samples with a 0.9 lower FID score compared to ToMeSD. See the experimental
details and full comparison table in Appendix.
Visualization. We present some visualizations in Fig. 6b. AgentSD noticeably
reduces ambiguity and generation errors in comparison to Stable Diffusion and
ToMeSD. For instance, in the first column, Stable Diffusion and ToMeSD pro-
duce birds with one leg and two tails, while AgentSD’s sample does not exhibit
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Table 4: Ablation on window size based on Agent-Swin-T.

Window FLOPs #Param Acc. Diff.

Agent-Swin-T

72 4.5G 29M 82.0 -0.6
142 4.5G 29M 82.2 -0.4
282 4.5G 29M 82.4 -0.2
562 4.5G 29M 82.6 Ours

Swin-T 72 4.5G 29M 81.3 -1.3

        
         

    

    

    

 
 
 
 
  

 
 
  
 
 

      

      

            

       
           

 

 

 

 

 

 

 
 
 
 
 
  
 
 

      

            

    

    

             
          

 

  

  

  

  

   

 
 
 
 
 
  
 
 

      

            

    

    

(a) (b) (c) 

Fig. 7: (a) Comparison of FLOPs between Swin and our Agent-Swin as window size
increases. (b) FLOPs comparison between DeiT and our Agent-DeiT in high-resolution
scenarios. (c) Increasing resolution to {2562, 2882, 3202, 3522, 3842}. All these models
are finetuned for 30 epochs from the corresponding 2242 resolution models.

this issue. In the third column, when provided with the prompt “A high quality
photo of a mitten.”, Stable Diffusion and ToMeSD erroneously generate a cat,
whereas AgentSD produces the correct image.
AgentSD for finetuning. We apply agent attention to SD-based Dreambooth
[31] to verify its performance under finetuning. When finetuned, agent attention
can be integrated into all diffusion steps, reaching 2.2x acceleration in generation
speed compared to the original Dreambooth. Refer to Appendix for details.

5.5 Large Receptive Field and High Resolution

Large Receptive Field. Modern vision Transformers often confine self-attention
calculation to local windows to reduce computation complexity, such as Swin [24].
In Tab. 4, we gradually enlarge the window size of Agent-Swin-T, ranging from
72 to 562. Clearly, as the receptive field expands, the model’s performance con-
sistently improves. This indicates that while the window attention pattern is
effective, it inevitably compromises the long-range modeling capability of self-
attention and remains inferior to global attention. As shown in Fig. 7a, unlike
the quadratic complexity of Softmax attention, the linear complexity of agent
attention enables us to benefit from a global receptive field while preserving
identical computation complexity.
High Resolution. Limited by the quadratic complexity of Softmax attention,
current vision Transformer models usually scale up by increasing model depth
and width. Building on insights from [34], we discover that enhancing resolution
might be a more effective approach for scaling vision Transformers, particularly
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Table 5: Scaling up by increasing resolution. All these models are trained from scratch.

Method Reso #Params Flops Top-1

DeiT-B [35] 2242 86.6M 17.6G 81.8
DeiT-S 4162 22.2M 18.8G 82.9 (+1.1)

Agent-DeiT-B 2242 87.2M 17.6G 82.0 (+0.2)

Agent-DeiT-S 4482 23.1M 17.7G 83.1 (+1.3)

Method Reso #Params Flops Top-1

PVT-L [37] 2242 61.4M 9.8G 81.7
PVT-M 2562 44.3M 8.8G 82.2 (+0.5)

Agent-PVT-L 2242 48.7M 10.4G 83.7 (+2.0)

Agent-PVT-M 2562 36.1M 9.2G 83.8 (+2.1)

Table 6: Ablation on each module of agent attention.

FLOPs #Param Acc. Diff.
Vanilla Linear Attention 4.5G 29M 77.8 -4.8
Agent Attention 4.5G 29M 79.0 -3.6

+ Agent Bias 4.5G 29M 81.1 -1.5
+ DWC 4.5G 29M 82.6 Ours

Swin-T w/o PE 4.5G 29M 80.1 -2.5
+ RPE 4.5G 29M 81.3 -1.3
+ DWC 4.5G 29M 81.6 -1.0

those employing agent attention with global receptive fields. As shown in Tab. 5,
Agent-DeiT-B achieves a 0.2 accuracy gain compared to DeiT-B, whereas Agent-
DeiT-S at 4482 resolution attains an accuracy of 83.1 with only a quarter of the
parameters. We observed analogous trends when scaling the resolution of Agent-
PVT-M and Agent-Swin-S (see Appendix). Fig. 7b shows the FLOPs comparison
between Agent-DeiT and DeiT, with Agent-DeiT saving 75% of FLOPs for 10242
resolution images. In Fig. 7c, we progressively increase the resolution of Agent-
Swin-S, Swin-S, and Swin-B. It is evident that in high-resolution scenarios, our
model consistently delivers notably superior outcomes.

5.6 Ablation Study

In this section, we ablate the key components in our agent attention module to
verify the effectiveness of these designs. We report the results on ImageNet-1K
classification based on Agent-Swin-T.
Ablation on key designs. We substitute Softmax attention in Swin-T with
vanilla linear attention, followed by a gradual introduction of agent attention,
agent bias, and DWC to create Agent-Swin-T. The results are depicted in Tab. 6.
Three key findings emerge: (1) Agent attention boosts accuracy by 1.2, proving
its effectiveness. (2) Agent bias serves as an effective position embedding for
agent attention, similar to RPE in Swin. (3) DWC is a crucial complement
to unlock the capabilities of agent attention. When applying DWC to Swin-T,
a modest gain of 0.3 is observed. In contrast, with DWC preserving feature
diversity, agent attention delivers a much better result (+1.5).
Ablation on number of agent tokens. The model’s computation complexity
can be modulated by varying the number of agent tokens. As shown in Tab. 7,
shallower layers of the model have simple semantics, and judiciously decreasing
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Table 7: Ablation on the number of agent tokens.

#Num of Agent Tokens FLOPS #Param Acc. Diff.
Stage1 Stage2 Stage3 Stage4

49 49 49 49 4.7G 29M 82.6 -0.0
9 16 49 49 4.5G 29M 82.6 Ours
9 16 25 49 4.5G 29M 82.2 -0.4
4 9 49 49 4.5G 29M 82.4 -0.2

Swin-T 4.5G 29M 81.3 -1.3

Table 8: Comparison of different linear attention designs on DeiT-Tiny and Swin-Tiny.

DeiT-T Setting
Linear Attention FLOPs #Param Acc.
Hydra Attn [2] 1.1G 5.7M 68.3

Efficient Attn [33] 1.1G 5.7M 70.2
Linear Angular Attn [47] 1.1G 5.7M 70.8
Focused Linear Attn [11] 1.1G 6.1M 74.1

Ours 1.2G 6.0M 74.9

Swin-T Setting
Linear Attention FLOPs #Param Acc.
Hydra Attn [2] 4.5G 29M 80.7

Efficient Attn [33] 4.5G 29M 81.0
Linear Angular Attn [47] 4.5G 29M 79.4
Focused Linear Attn [11] 4.5G 29M 82.1

Ours 4.5G 29M 82.6

the number of agent tokens in these layers does not adversely affect performance.
In contrast, deeper layers have rich semantics, and reducing agent tokens in
these layers leads to performance degradation. Hence, our design principle is
using fewer agent tokens in the model’s shallow layers to reduce computation
complexity and more agent tokens in the deep layers to better represent rich
semantics. This aligns with the stripe width design principle in CSwin [9].
Comparison with Other Linear Attention. We conduct a comparison of our
agent attention with other linear attention methods using DeiT-T and Swin-T.
As depicted in Tab. 8, substituting the Softmax attention employed by DeiT-
T and Swin-T with various linear attention methods usually results in notable
performance degradation. Remarkably, our models outperform all other methods
as well as the Softmax baseline.

6 Conclusion

This paper presents a new attention paradigm dubbed Agent Attention, which is
applicable across a variety of vision Transformer models. As an elegant integra-
tion of Softmax and linear attention, agent attention enjoys both high expressive
power and low computation complexity. Extensive experiments on image classi-
fication, semantic segmentation, and object detection unequivocally confirm the
effectiveness of our approach, particularly in high-resolution scenarios. When in-
tegrated with Stable Diffusion, agent attention accelerates image generation and
substantially enhances image quality without any extra training. Due to its linear
complexity with respect to the number of tokens and its strong representation
power, agent attention may pave the way for challenging tasks with super long
token sequences, such as video modelling and multi-modal foundation models.
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