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The content of the supplementary material involves:

— More details of camera transition module in Sec. A.

— More details of Lipschitz regularization item in Sec. B.

— More details of synthetic and real-world datasets in Sec. C.
— More visual results of ZoomGS in Sec. D.

— More visual results of FI models in Sec. E.

— Limitation in Sec. F.

A More Details of Camera Transition Module

The architecture of MLP in Camera Transition (CamTrans) module is provided
in Fig. A. It stacks three FC blocks as the main branch, where each block consists
of an FC layer followed by an LeakyReLU operation. Then we deploy two heads
to predict position offsets Ax and color offsets Ac, respectively.

B More Details of Lipschitz Regularization Item

Lipschitz Continuous. A neural network fy with parameter 6 is called Lips-
chitz continuous if there exist a constant ¢ > 0 such that

1fo(e0) = foler)llp < g |leo —ellp (A)

change in the output change in the input

for all possible inputs ey and e; under a p-norm choice. The parameter ¢ is called
the Lipschitz constant. In the CamTrans module, we hope a smooth change of
camera encoding leads to a smooth change of 3D models, thus, we introduce
the Lipschitz regularization item [7] to encourage it to be a Lipschitz continuous
mapping.

Lipschitz Regularization Item. Denote Li;pschit- by the Lipschitz regulariza-
tion item. Following previous work [7], we impose an Lipschitz weight normaliza-
tion (WN) in each MLP layer of CamTrans module, as shown in Algorithm A.
Then, we introduce Li;pschit. on per-layer Lipschitz bounds in WN, i.e.,
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Fig. A: Illustration of MLP in CamTrans module.

Algorithm A Pseudo code about Lipschitz weight normalization (WN)

Require: W,: weight of d-th MLP layer,
ga: trainable bound.
1: Wg = ZCC:”{ [W§| > Cin: input channel number of d-th MLP layer
2: s =min(Softplus(qq) © v‘v%,v 1.0)
3: return s © Wy

qq is a trainable bound for d-th WN layer, Softplus is the softplus activation
function, Softplus(gy) is the Lipschitz bound for d-th WN layer. D is the num-
ber of MLP layers.

C DMore Details of Synthetic and Real-World Datasets

Synthetic dataset. We generate 155 synthetic zoom sequences for DCSZ from
78 scenes, including 48 indoor ones captured in classrooms, dining halls, and
shopping malls, and 30 outdoor ones collected in campuses and companies. Some
examples of the synthetic dataset are shown in Fig. B. 127 sequences from 64
randomly sampled scenes are used for training, and the remaining 28 sequences
from 14 scenes are used for testing.

Real-World dataset. We additionally capture dual camera images from 100
scenes that are non-overlapped with the synthetic dataset to evaluate FI model in
the real world. It includes diverse scenes, like desks, chairs, debris piles, billboards,

buildings, vegetation, etc. Some examples of the real-world dataset are shown in
Fig. C.

D More Visual Results of ZoomGS

We provide the visual comparison results between 3DGS [4] and the proposed
ZoomGS in Fig. D. First, when applying a 3DGS model trained with one camera
data to the other camera, the rendered dual camera images keep the imaging
characteristics of the trained camera, as shown in Fig. D(a) and (b). Second,
when naively mixing dual-camera data to train a 3DGS model, it easily produces
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Fig. C: Some examples from real-world datasets.

some visual artifacts, as shown in Fig. D(c). Third, by constructing 3D models
for each camera, ZoomGS renders dual images that are more consistent with the
GT, as shown in Fig. D(d). Besides, we provide some examples of zoom sequences
rendered from ZoomGS at the https://dualcamerasmoothzoom.github.io.

E More Visual Results of FI models

We provide more visual comparisons of FI models on the synthetic and real-
world datasets, as shown in Fig. E and Fig. F respectively. The fine-tuned FI
models produce more photo-realistic details and fewer visual artifacts on both
datasets. It indicates the effectiveness of the proposed data factory.

F Limitation

This work is still limited in the FI model generalization between two mobile
devices (e.g., apply a model trained with images from an Xiaomi mobile phone
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(a) 3DGS (UW) (b)3DGS(W)  (c) 3DGS (UW & W) (d) ZoomGS (¢) GT

Fig. D: Visual comparisons between 3DGS [4] and the proposed ZommGS. (a) Images
rendered from a 3DGS model trained with ultra-wide-angle (UW) images. (b) Images
rendered from a 3DGS model trained with wide-angle (W) images. (¢) Images rendered
from a 3DGS model trained with UW and W images. (d) Images rendered from a
ZoomGS model. (e) GT images.

to an OPPO mobile phone). When the relative positions of the dual cameras
on two mobile phones are greatly different, the model trained with one mobile
phone data may not generalize well to the other one. It may need to fine-tune
the FI model with the data from the other mobile phone.
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Fig. E: Visual comparisons on the synthetic dataset. The FI models synthesize the
intermediate geometry content between dual cameras, as indicated with yellow arrows.
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Fig. F: Visual comparisons on the real-world dataset. The FI models still synthesize
the intermediate geometry content in the real world, as indicated with yellow arrows.
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