

ProtoComp: Diverse Point Cloud Completion 001 ⁰⁰² with Controllable Prototype ⁰⁰²

Anonymous ECCV 2024 Submission ⁰⁰³

004 **Paper ID** $\#6685$ 004 004

$\overline{\text{005}}$ **A.** Implementation Details $\overline{\text{005}}$

 Basic HyperParameters: We follow the foundational framework of vanilla ⁰⁰⁶ Point-E, leveraging lightweight 40M pretrained weights designed specifically for ⁰⁰⁷ text-only prompting. For both the frozen branch and the control branch, we ⁰⁰⁸ deploy 12 layers of self-attention and integrate the output from the final 6 ⁰⁰⁹ layers of the control branch into corresponding layers within the frozen back- ⁰¹⁰ bone. Our approach incorporates a multi-layer graph-based convolution to ex- ⁰¹¹ 012 tract high-level semantics while downsampling the input to $N = 256$ central 012 013 points and we set k of kNN operation to $K = 16$. The detailed configura- 013 014 tion for multi-layer graph-based convolution is: Linear $(C_{in} = 3, C_{out} = 8) \rightarrow 014$ 015 Graph $\phi(C_{in} = 8, C_{out} = 32, K = 16, N_{out} = 2048) \rightarrow$ Graph $\phi(C_{in} = 32, C_{out} = 0.015)$ 016 64, $K = 16$, $N_{out} = 512$) \rightarrow Graph ϕ ($C_{in} = 64$, $C_{out} = 64$, $K = 16$, $N_{out} = 512$) 016 \to Graph $\phi(C_{in} = 64, C_{out} = 128, K = 16, N_{out} = 256)$. Here, C_{in} and C_{out} 017 018 represent the input and output channels, respectively, while N_{out} denotes the 018 number of points after downsampling. Regarding the Geometric block, we use ⁰¹⁹ the same encoder architecture mentioned earlier, which is a same multi-layer ⁰²⁰ graph-based convolution. We set the momentum for the momentum encoder to ⁰²¹ 0.999. The features encoded from prototypes and partials are projected into 384 ⁰²² channels, and we employ a two-layer cross-attention with 384 channels to merge ⁰²³ these features. The cross-attention has 6 heads. We train our model with a batch ⁰²⁴ size of 48 across 100 epochs on PCN dataset. For the ablation experiment, we ⁰²⁵ train our model on a reduced subset of ShapeNet55. This subset encompasses ⁰²⁶ 8 categories, all of which are also present in the PCN dataset. Specifically, we ⁰²⁷ intercept the initial 100 samples for each category, yielding a total of 800 sam- ⁰²⁸ $\frac{1}{2029}$ ples. We train on this subset with a batch size of 48 and across only about 20000 029 iterations. For all experiments, we employ the AdamW optimizer with an initial ⁰³⁰ learning rate set at 0.0001 and a weight decay of 0.001. During inference stage, ⁰³¹ we set the guidance scale to 1.3 for empty text prompt, 3.0 for non-empty text ⁰³² prompt, and we always use the simple text, devoid of directional information, as ⁰³³ the input prompt. ⁰³⁴

 Augmentation: During the training stage, we augment the partial input by in- ⁰³⁵ troducing random rotations at degrees of 0°, 90°, 180°, or 270°. Simultaneously, ⁰³⁶ we enhance the contextual information associated with the text prompt by ap- ⁰³⁷ pending the phrases "Facing West," "Facing North," "Facing East," and "Facing ⁰³⁸ South" to both the beginning and end of the simple text input in accordance ⁰³⁹

Fig. 1: The category distribution for Real-Sensors Benchmark. It encompasses a data distribution that includes 30 categories, with approximately 1200 samples available for evaluating real-world scan completion.

⁰⁴⁰ with the corresponding rotation angle. To illustrate, if a chair undergoes a 90° ⁰⁴⁰ ⁰⁴¹ rotation and the text prompt is not randomly set to be empty, the comprehensive ⁰⁴¹ ⁰⁴² prompt for it will become "Facing North. A chair. Facing North." ⁰⁴²

⁰⁴³ B. Real-Sensors Benchmark **643 B.** Real-Sensors Benchmark

 In order to assess the model's capabilities in real-world scenarios, we have devel- ⁰⁴⁴ oped the Real-Sensors Benchmark. This benchmark comprises 30 distinct object ⁰⁴⁵ categories, totaling 1251 samples. Among them, 29 categories are sourced from ⁰⁴⁶ indoor scenes in the ScanNet200 dataset, while the remaining single category ⁰⁴⁷ pertains to the 'cars' from the KITTI dataset. We set an upper limit of 50 for ⁰⁴⁸ each category to limit the number of common objects. Importantly, all these cate- ⁰⁴⁹ 050 gories coexist in the ModelNet40 dataset, enabling the utilization of PointNet $++$ 050 pre-trained on this dataset for classification purpose. The detailed distribution ⁰⁵¹ of sample categories can be observed in Figure. [1](#page-1-0) ⁰⁵²

⁰⁵³ C. More Experiments ⁰⁵³

 To further evaluate the impact of varying degrees of incompleteness on our ⁰⁵⁴ model, we conduct experiments on Real-Sensors with different mask ratios and ⁰⁵⁵ report the results in Table. [1.](#page-2-0) We follow the same cropping masking scheme ⁰⁵⁶ proposed in [AdaPoinTr, TPAMI 2023]. It is observed that as the proportion ⁰⁵⁷ of masked ratio increases, the model's GD declines. However, it is noteworthy ⁰⁵⁸

						Mask Ratio GD _C GD _I Mask Ratio GD _C GD _I Mask Ratio GD _C GD _I		
0%	40.8 43.6		20%	40.4 43.3		40%	39.8 42.0	
10\%		40.5 43.5	30\%		39.8 42.2	50%	39.4 41.8	

Table 1: Different Mask Ratios on Real-Sensors Benchmark.

 that even under mild masking conditions (10%, 20%), the model still achieves ⁰⁵⁹ favorable results, indicating a certain level of robustness to the degree of input ⁰⁶⁰ 062 incompleteness. 062 062

D. More Visualization Results ⁰⁶³

 In Figure. [2,](#page-3-0) we present additional visualization results showcasing the efficacy of ⁰⁶⁴ our model at the object level within the Scannet200 dataset. Notably, our model, ⁰⁶⁵ trained on the same PCN dataset, exhibits superior performance in object com- ⁰⁶⁶ pletion tasks within indoor open scenes, giving more semantic consistency and ⁰⁶⁷ realism than other state-of-the-art point cloud completion models. Figure. [3](#page-4-0) ex- ⁰⁶⁸ tends our analysis to encompass more complex and realistic scenarios, offering ⁰⁶⁹ more comprehensive presentation of whole scene recovery ability within open en- ⁰⁷⁰ 071 vironments. Rows (a)–(b) and (c)–(d) specifically show the scene recovery capa- 071 bilities on Scannet200 and KITTI datasets, respectively. In addition, employing ⁰⁷² the settings of Model E in our ablation experiments, we conducted experiments ⁰⁷³ with varying proportions of masking on four different categories of objects (where ⁰⁷⁴ trash bin and mailbox are not included in the training set), as illustrated in Fig- ⁰⁷⁵ 076 ure. [4.](#page-4-1) It is observed that even under very high masking proportions $(80\%, 90\%)$, 076 our model is capable of imaginatively and reasonably completing the incomplete ⁰⁷⁷ point clouds. As the masking proportion decreases, the incomplete point clouds ⁰⁷⁸ exert a greater influence on the model, leading to completion results that are ⁰⁷⁹ 080 closer to the ground truth labels. 080 080 closer to the ground truth labels.

Fig. 2: More visualization results. We show the completion results with identity objects cropped from ScanNet200.

Fig. 3: More visualization results. We showcase the completion results using entire scenes from KITTI and ScanNet200.

Fig. 4: More visualization results.We present visualization results showcasing the completion outcomes generated by our model across various mask ratios. The visual representations depict three distinct components: the ground truth object depicted in blue, our model's prediction illustrated in yellow, and the partial input displayed in grey. The partial input exhibits different mask ratios, specifically 20%, 50%, and 80%, arranged from left to right in ascending order.