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Abstract. Acquiring complete point clouds for real-world scenarios is
labor-intensive, making it impractical for conventional learning-based
approaches. Numerous methods have been proposed to overcome this
limitation by leveraging synthetic complete point clouds. While access
to complete point clouds offers a notable advantage, they often strug-
gle to bridge domain gaps, leading to sub-optimal performance. As a
remedy, we propose a novel part-based framework for synthetic-to-real
domain adaptation in point cloud completion. Our approach starts on
the observation that domain gaps inherent in part information are rel-
atively small, as parts are shared properties across categories regard-
less of domains. To employ part-based approach to point cloud comple-
tion, we introduce Part-Based Decomposition (PBD) module to generate
part input point clouds. Subsequently, we design a Part-Aware Comple-
tion (PAC) module, which operates in a part-wise manner to produce
complete point clouds. Within PAC, we devise a novel part-aware trans-
former to learn relationships between parts and utilize this information
to infer missing parts in incomplete point clouds. Extensive experiments
demonstrate that our part-based framework significantly outperforms ex-
isting studies on real-world point cloud datasets. The code is available
at https://github.com/yun-seo/PPCC
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1 Introduction

Point cloud completion aims to reconstruct the original shape from the incom-
plete point cloud. Most learning-based methods [4, 7, 11, 14, 15, 17, 23, 28, 33, 37,
41–43,45–47,49–51] are conducted under synthetic data, such as 3D CAD mod-
els [2,40] to learn point cloud completion in a fully supervised manner. Although
these studies have shown promising results, there are limitations in application
for real-world scans. Direct employment of a completion model trained on syn-
thetic data produces low-quality results due to data distribution discrepancy.
Furthermore, the training procedure of the conventional supervised learning
method cannot be executed in real-world scans since acquiring complete point
clouds corresponding to incomplete point clouds is challenging.
⋆ Equal contribution.
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Fig. 1: Illustration of our main ideas. (a) We train point cloud completion on the
synthetic domain and evaluate them on the real domain. (b) We train part segmentation
on the synthetic domain and evaluate them on the real domain. (c) We decompose the
point cloud as parts, complete them, and integrate them to generate a complete point
cloud both on synthetic and real domains.

Several methods [6, 9, 10, 13] have been proposed to address the above lim-
itations. They alleviate the limitation in real-world scans by imposing self-
supervised training procedures or introducing alternative data as supervision
instead. Nevertheless, completion results of these approaches still show low qual-
ity in some cases since their methods cannot access complete point clouds.

Other studies [3, 8, 12, 19, 20, 36, 38, 39, 48] have proposed the point cloud
completion of real-world scans by incorporating synthetic datasets as additional
training resources. This approach offers an apparent advantage: it enables the
network to access complete point clouds while retaining practical applicability
to real-world scans. To address the issue posed by the domain gap, they rely
solely on adversarial learning processes by incorporating discriminator-like mod-
ules. However, this approach is insufficient in bridging the domain gap between
synthetic and real point clouds, leading to sub-optimal performance.

In this light, a crucial question arises: what is the key factor for bridging
domain gaps in point clouds? Parts, which represent semantic and geometrical
divisions within an object, are shared information across categories regardless
of the domain. Therefore, we hypothesize that the domain gap inherent in part
information might be relatively smaller than that in point cloud completion. To
test this hypothesis, we have conducted a toy experiment. We have trained a
network for both point cloud completion and part segmentation on synthetic
data and then used these models to perform inference on real data. Remarkably,
while part segmentation is consistently performed across both domains, point
cloud completion shows inconsistent results, as illustrated in Fig. 1 (a) and (b).

Building on this finding, we propose a novel point cloud completion frame-
work grounded in a part-based approach under a synthetic-to-real domain
adaptation setting as shown in Fig. 1 (c). Since part information shows domain
invariance, we hypothesize that part-wise processing could effectively address
the domain gap. Additionally, considering the perspective of completion, miss-
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ing regions in incomplete point clouds can be inferred by utilizing relationships
between parts. Accordingly, we introduce the Part-Based Decomposition (PBD)
module, designed to decompose point clouds for both synthetic and real domains
to implement part-wise completion. In the synthetic domain, where part labels
are available, point clouds are decomposed into part input sets using these la-
bels. However, in the real domain, where part labels are not provided, we employ
a pre-trained part segmentation network to obtain part predictions. Leveraging
the findings illustrated in Fig. 1, we consistently decompose input point clouds
from the real domain into part input sets based on these part predictions.

Following this, we introduce the Part-Aware Completion (PAC) module, de-
signed to process part input sets and execute completion tasks. PAC starts with
an encoder, shared across all part inputs, that extracts part features. Part fea-
tures from each part input encapsulate essential part information, including ge-
ometry and semantics. To foster an understanding of the relationships between
parts crucial for completion, we propose a novel part-aware transformer. This
component facilitates the acquisition of part-aware features, enabling the model
to infer missing parts based on existing parts. A shared decoder, employed across
all parts, then generates completed point clouds for each part. Note that these
processes are conducted in a part-wise manner, which is advantageous for ad-
dressing domain gaps. The resultant part point clouds are integrated to construct
a complete point cloud corresponding to the input. Furthermore, we introduce
a refinement module to enhance the quality of shapes, especially in regions with
boundaries between adjacent parts.

Our main novelty lies in leveraging part information to narrow the domain
gap between synthetic and real data to perform point cloud completion on
real-world datasets successfully. We validate the effectiveness of our approach
through extensive experiments and comparisons with existing methods. Our
method achieves state-of-the-art (SOTA) results on USSPA dataset [19], sur-
passing the previous point cloud completion methods. Furthermore, we conduct
experiments without part labels in synthetic datasets and still achieve the best
performance, which demonstrates the practicality of our methods.

In summary, our key contributions are as follows:

– We find that exploiting part information is beneficial for bridging the domain
gaps in point cloud completion task.

– We propose a novel part-based framework for synthetic-to-real domain adap-
tation in point cloud completion.

– We extensively conduct experiments on real-world datasets to demonstrate
the superiority of our method over existing approaches.

2 Related Works

Point cloud completion Point cloud completion has been studied for the
purpose of reconstructing complete point clouds from incomplete point clouds.
Starting with PCN [47], various architectures such as folding-based [17,25], voxel-
based [5, 32, 43], and transformer-based [4, 15, 42, 46, 50] show promising results,
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conducted in a fully supervised manner. Nevertheless, directly utilizing the above
methods on real-world datasets leads to low quality on complete point clouds.
In addition to that, we cannot apply supervised methods on real-world datasets
since complete point clouds do not exist in most cases. Recognizing the limita-
tions of a fully supervised setting, several methods have emerged. For instance,
[3,12,36,38,48] propose methods in an unpaired setting, where incomplete point
clouds and unpaired complete point clouds of the same category are used. Typ-
ically, these approaches leverage pre-trained networks on complete point cloud
sets. However, their effectiveness diminishes when confronted with unconven-
tional shapes, resulting in limited performance.

Point cloud completion in real-world scans In most cases, synthetic point
cloud datasets consist of complete point clouds, while real-world datasets typ-
ically include only incomplete point clouds. In response to this, several stud-
ies [6,9,10,13] employ incomplete point clouds only as input and supervision for
self-training or introducing alternative data as supervision instead. Despite these
efforts, a prevailing limitation that detailed shapes are not generated remains.
To address this issue, some studies that leverage the advantage of accessing both
the distribution of incomplete and complete point clouds have been proposed.
OptDE [8] introduces an architecture that utilizes viewpoints as a key factor
to bridge synthetic and real-world point clouds. UGAAN [20] combines an au-
toencoding network with a GAN architecture and extracts clean shape features
by eliminating noise from real-world scans through a discriminator. SCoDA [39]
proposed a cross-domain feature fusion module that combines global and local
features, and volume consistency self-training that adjusts viewpoints to produce
incompleteness to different extents. USSPA [19] proposes an architecture that
capitalizes on the inherent symmetry found in most objects in real-world scans.
Even though many works have achieved substantial improvements on real-world
datasets, they still have issues bridging domain gaps, which hinders point cloud
completion in real-world point clouds.

Part-based shape analysis Objects in the same category can be decom-
posed into parts with similar semantics and geometries. Taking advantage of
these attributes, part-based shape analysis has been extensively explored in var-
ious fields such as part retrieval, shape abstraction, generation, and reconstruc-
tion [16,22,29,29,31,44]. The utilization of part information facilitated detailed
shape manipulation by leveraging relationships among individual components,
thereby enhancing the overall performance of the previous research. Most stud-
ies learn part representation using densely annotated labels [21] to build part
latent space. Even without part labels, it is possible to obtain part-level spatial
relationships through research such as co-segmentation [24, 27] and primitive
estimation [18, 26]. Additionally, some studies [1, 35] mitigate domain shifts by
exploiting the part representation that is more likely to be shared across distinct
domains, thereby enhancing generalizability to variations in geometry. Building
upon these research trends, we propose the part-based point cloud completion
framework to narrow the domain gap between synthetic and real-world datasets.
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Fig. 2: Visualization of our part-based point cloud completion framework. Our frame-
work is composed of Part-Based Decomposition (PBD) module and Part-Aware Com-
pletion (PAC) module. Initially, incomplete point clouds from both synthetic and real
domains (Xs,r

i ) are decomposed into part input sets (P s,r
i ) via the PBD. These part

input sets are then processed by the PAC, which is shared across both synthetic and
real datasets, to generate complete point clouds. The process involves an encoder to ob-
tain part feature sets (F s,r

i ), a part-aware transformer to learn relationships between
parts and get part-aware features (Zs,r

i ), and a decoder to produce completed part
point clouds. These completed part point clouds are integrated to form one complete
point cloud (P̂ s,r

c ). Additionally, a refinement module is introduced to improve P̂ s,r
c ,

resulting in the final results (X̂s,r
c ). For optimization, we use Lcomp, Lself and Ldisc.

3 Method

3.1 Overview

In this paper, we represent a point cloud as X ∈ RN×3 where N denotes the num-
ber of points. Part labels are represented as L = {l1, ..., lN} where li ∈ {1, ..., n}
and n is the number of parts. Accordingly, we define the synthetic domain set as
Ds = {Xs

i , X
s
c , L

s}, where each represents the incomplete point cloud, complete
point cloud, and semantic label of the synthetic dataset, respectively. Similarly,
we define the real domain set as Dr = {Xr

i }, where Xr
i represents the incom-

plete point cloud of the real dataset. Our objective is to achieve point cloud
completion in  D^r , where no complete point clouds are given, by utilizing both
 D^s  and  D^r  in the training step.

As shown in Fig. 2, our method begins by inputting incomplete point clouds
Xs

i and Xr
i into a Part-Based Decomposition (PBD) module. Part input sets of

n parts, P s
i = {psk}nk=1 and P r

i = {prk}nk=1, are obtained from the PBD which
will be explained in Sec. 3.2. Subsequently, the obtained part input sets P s

i

and P r
i are entered into the Part-Aware Completion (PAC) module to generate

the resultant complete point clouds X̂s
c and X̂r

c , which will be explained in
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Sec. 3.3. Here, networks in the PAC module are shared for both synthetic and
real domains. It is noteworthy that our method operates without utilizing any
complete point clouds from Dr, which is the main objective domain.

3.2 Part-Based Decomposition

We start with decomposing the input point clouds to implement a part-wise
completion procedure. To decompose input point clouds, the segmentation (Seg.)
process should be accomplished first. Part segment labels are provided for in-
complete point clouds in the synthetic domain, enabling decomposition based on
these labels. In contrast, point clouds from the real domain lack part segment
labels, necessitating the incorporation of other methods. To mitigate this, we em-
ploy a pre-trained part segmentation network trained on synthetic datasets for
the acquisition of real-world part labels. Since the domain gap in part segmen-
tation is low, obtained real-world part segmentation predictions are consistent
with part labels in synthetic domain. It is worth noting that this process does
not require any training or fine-tuning.

Real-world point clouds often contain noisy points due to the acquisition
process or sensor limitations. These points are ambiguous for assigning part
segments, and utilizing them can cause negative effects on afterward procedures.
Therefore, we define a margin-based reliability metric to filter out noisy points.
This metric is measured by finding the maximum and second maximum values of
the segmentation logits and calculating the difference between them. Noisy and
ambiguous points can be deleted from the filtering (Filt.) process of points with
low ri. The filtering process is implemented by removing a certain proportion of
points. Through the above processes, part-based decomposed point clouds are
acquired for both domains. Details are explained in Sec. 1.1 of Supp.

3.3 Part-Aware Completion

To obtain part information such as geometry or semantics from part sets, we
begin by using an encoder Enc, shared among part input sets to extract part
feature sets for n parts, denoted as F s,r = {fs,r

k }nk=1. For parts not existing in
the input point cloud, we represent their part features using a zero vector since
part features cannot be extracted for these unseen parts.

The extracted part feature sets are fed into a part-aware transformer to gen-
erate part-aware feature sets Zs,r = {zs,rk }nk=1, which encompass both the part
information itself and the relationships between each part. To ensure the part-
awareness of our transformer, we introduce learnable part tokens for the n parts,
denoted as T = {tk}nk=1. By leveraging these part tokens, it also becomes feasi-
ble to deduce information about parts that were absent in the input point cloud
from other parts. We employ a multi-head self-attention block as the transformer
block, with query Q, key K, and value V defined as:

  Q = W_Q[\{f_k^s+t_k\}^n_{k=1}]^T,\, K = W_K[\{f_k^s+t_k\}^n_{k=1}]^T,\, V = W_V[\{f_k^s+t_k\}^n_{k=1}]^T, 


    


    


  (1)
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where WQ,WK ,WV are learnable matrices. Utilizing these terms, attention A is
calculated using the scaled-dot attention metric as:

  A = softmax(\frac {QK^T}{\sqrt {d_k}})V, 





 (2)

where dk is a scale factor, and the part-aware feature sets are computed using a
feed-forward network composed with MLPs.

To generate complete point clouds, we put the part-aware features into a
shared decoder, denoted as Dec. This decoder generates n individual part point
clouds, {p̂s,rk }nk=1 from the part-aware features. Then, we integrate these part
point clouds to produce the complete point clouds, denoted as P̂ s,r

c . Through the
part-wise decoding process, each part point cloud contains more detailed shape
compared to decoding the entire shape in a single step. However, one drawback
is that the boundaries between adjacent parts are not smoothly generated solely
by generating and integrating each part point cloud. To address this issue, we
introduce a refinement module composed of MLPs to improve P̂ s,r

c , resulting in
a final refined prediction, X̂s,r

c . Details are shown in Sec. 1.2 of Supp.

3.4 Optimization for Domain Adaptive Point Cloud Completion

Our goal is to perform point cloud completion in real domain successfully by
leveraging the merit of synthetic domain that both complete and incomplete
point clouds exist. To accomplish this, incomplete point clouds from both syn-
thetic and real domain are utilized with three loss functions during training.

First of all, the network needs to learn how to generate a complete point cloud
from an incomplete one. In this regard, we define the completion loss Lcomp in
the synthetic domain as follows:

  \label {eq: comp} \mathcal {L}_{comp} = \lambda _1\sum _{k=1}^{n}\mathcal {L}_{CD}(\hat {p}_k^{s}, p_k^{*}) + \lambda _2\mathcal {L}_{CD}(\hat {X}_c^s, X_c^s)  






  

 

  (3)

where λ1 and λ2 are weight parameters for each term, n is number of parts and
p∗k denotes the ground truth (GT) part point cloud generated from Xs

c and Ls.
Here, LCD denotes the Chamfer Distance (CD), formulated as:

  \mathcal {L}_{CD}(P_1, P_2) = \frac {1}{|P_1|} \underset {\mathbf {x} \in P_1}{\sum }\min _{\mathbf {y} \in P_2}\Vert \mathbf {x}-\mathbf {y}\Vert + \frac {1}{|P_2|} \underset {\mathbf {x} \in P_2}{\sum }\min _{\mathbf {y} \in P_1}\Vert \mathbf {x}-\mathbf {y}\Vert  









 








  (4)

where P1 and P2 refer to any point clouds. As shown in first term of Eq. (3),
we apply CD for each part point clouds with GT part point clouds to generate
complete parts. Subsequently, we apply CD between the refined complete point
cloud and the complete GT to facilitate the learning process of the refinement
module.

For real domain, we define the self-supervised loss Lself by utilizing the input
real point cloud as follows:

  \mathcal {L}_{self} = \lambda _3\mathcal {L}_{UCD}(\hat {X}_c^r, X_i^r)   
 


  (5)
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where λ3 is weight parameter for the self-supervised loss. In contrast to Lcomp,
applying CD with the input real point clouds leads to generating incomplete
point clouds. Therefore, we introduce LUCD, formulated as:

  \mathcal {L}_{UCD}(P_1, P_2) = \frac {1}{|P_2|} \underset {\mathbf {x} \in P_2}{\sum }\min _{\mathbf {y} \in P_1}\Vert \mathbf {x}-\mathbf {y}\Vert  









  (6)

where P1 and P2 refer to any point clouds. By applying the self-supervised
loss, we ensure that our network generates complete point clouds containing the
shapes of the input point clouds in the real domain.

According to previous studies [3, 8, 12, 19,20, 36,38,39, 48], the discriminator
module has commonly been employed as a typical solution to mitigate domain
gaps. In line with this, we additionally incorporate the discriminator module
into our framework to provide supplementary support in bridging domain gaps.
We employ discriminators D for each part and train them within our entire
framework. Discriminator loss, Ldisc, is define as:

  \mathcal {L}_{disc} = -\lambda _4\overset {n}{\underset {k=1}{\sum }} \log D(z_k^s) - \lambda _5\overset {n}{\underset {k=1}{\sum }} [\log D(z_k^r) + \log (1-D(z_k^r))]  









   (7)

where λ4 and λ5 are weight parameters for each term. By applying Ldisc, part-
aware features can be induced toward a domain-invariant direction, thus provid-
ing additional support in reducing domain gaps.

In summary, we train our framework by using Lcomp, Lself and Ldisc. The
total loss function Ltotal is defined as follows:

  \mathcal {L}_{total}=\mathcal {L}_{comp} + \mathcal {L}_{self} + \mathcal {L}_{disc}.        (8)

4 Experiments

4.1 Datasets

We conduct experiments using ShapeNet [2] as the synthetic dataset and the
USSPA dataset [19] as the real-world dataset. Part labels for synthetic point
clouds are acquired from PartNet [21], which is also generated from ShapeNet [2].
Incomplete point clouds for synthetic domains are generated by randomly delet-
ing certain regions from complete point clouds. Specifically, one point is ran-
domly selected from the complete point cloud, and a certain amount of adjacent
points are dropped to get an incomplete point cloud. The USSPA dataset [19]
comprises scans from real scenes and their corresponding complete point clouds.
The complete point clouds in the USSPA dataset [19] are selected from the syn-
thetic dataset and closely resemble their corresponding real point clouds. Our
framework is primarily evaluated on the USSPA dataset [19] as it provides GT
for comparison.
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Table 1: Quantitative results on USSPA dataset [19]. [CD↓/F1-score↑] are taken as
the metric to evaluate the performance where CD is scaled with ×102. Best results are
indicated as bold.

Setting Method Chair Table Bed Lamp Average

Supervised PoinTr [46] 7.73/75.9 7.99/78.9 9.21/67.3 6.90/77.4 7.96/74.9
Snowflake [42] 8.56/73.5 8.70/77.0 8.06/76.3 7.05/75.5 8.09/75.6

Syn-to-real

ShapeInv. [48] 9.36/66.2 13.67/53.4 9.29/68.0 11.33/57.8 10.91/61.4
OptDE [8] 13.42/52.9 21.28/23.0 11.60/55.9 17.14/38.6 15.86/42.6
USSPA [19] 8.00/74.7 7.46/81.8 8.78/72.4 11.80/52.5 9.01/70.3
Ours 7.63/76.6 6.54/83.8 6.98/82.2 6.80/79.2 6.99/80.5

Table 2: Quantitative results on USSPA dataset [19]. [EMD↓/MMD↓] are taken as
teh metric to evaluate the performance where EMD is scaled with ×10, and MMD is
scaled with ×102. Best results are indicated as bold.

Method Chair Table Bed Lamp Average
ShapeInv. [48] 14.69/15.39 19.74/13.89 14.77/18.54 19.79/12.17 17.25/15.00
OptDE [8] 26.64/14.40 29.87/10.48 21.86/21.56 34.65/12.15 28.26/14.65
USSPA [19] 13.08/15.67 12.92/18.54 14.81/20.88 22.58/11.90 15.85/16.75
Ours 12.27/12.69 12.56/15.18 16.77/17.27 15.87/9.54 14.37/13.67

4.2 Implementation Details

Our framework is implemented on the PyTorch. The number N of input point
clouds is 2048. We employ the pre-trained part segmentation network introduced
in [34]. We conduct experiments on shared categories between the PartNet [21]
and USSPA datasets [19] which are chair, table, bed, and lamp. Parts are merged
from each category into {armrest, legs, seats, back}, {top, base}, {sleep area,
frame, ladder}, and {body, base, unit}, respectively. To calculate the confidence
score, we set the threshold in a range of 5% to 10% of the total points, ensuring
a controlled dropping. More details are introduced in Supp. The weights λ1∼5

of training losses are set to 104, 104, 103, 1 and 1, respectively. The batch size
is 32, and the maximum epoch is 200 for chair and table and 500 for lamp and
bed. We use AdamW optimizer, whose learning rate is 1.0× 10−3 for training.

4.3 Comparison with State-of-The-Art.

We compare our method against previous works to validate the efficacy of our
network. Supervised setting refers to methods that are trained on only synthetic
datasets and evaluated on real datasets. Syn-to-real setting methods utilize both
synthetic and real datasets during training. To ensure a fair comparison, we train
and evaluate all methods using official codes.
Quantitative Results. We evaluate the performance of various completion
methods in terms of Chamfer Distance (CD) and F1-score, following previous
works [19, 46] as shown in Tab. 1. Our method exhibits significantly enhanced
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Input PoinTr [46] ShapeInv. [48] USSPA [19] Ours-Part Ours GT

Fig. 3: Qualitative results on USSPA [19] dataset. From left to right: Input, PoinTr [46],
ShapeInv. [48], USSPA [19], Ours-Part, Ours, and GT.

performance across all categories compared to previous methods. Specifically,
our method achieves an average CD that is 2.02 lower and an average F1-score
that is 10.17 higher than USSPA [19], which is state-of-the-art (SOTA) under
the same setting. Additionally, we evaluate using Earth Mover Distance (EMD)
and Minimal Matching Distance (MMD), following previous works [46, 48] as
demonstrated in Tab. 2. Similarly, our method surpasses most categories and
achieves a higher average score for each metric. These results demonstrate the
superiority of our method over previous state-of-the-art approaches.

Qualitative Results We conduct a qualitative comparison of point cloud com-
pletion results using the USSPA dataset [19]. Figure 3 illustrates the results
obtained from existing methods and our proposed method. The ‘Ours-Part’ re-
sults represent integrated part point clouds from the decoder, while the ‘Ours’
results depict the final complete point clouds from the refinement module. Ac-
cording to the ‘Ours-Part’ results, our method effectively completes each part.
Subsequently, noisy regions are successfully improved, as shown in the ‘Ours’
results. Compared to other methods, our method demonstrates superior perfor-
mance in point cloud completion, reflecting shape details from the input. For
instance, in the second row of Fig. 3, other methods fail to complete missing
regions or wrongly complete them. Conversely, our method successfully restores
missing parts reflecting the input shape details. In summary, the qualitative re-
sults support that our method achieves substantial improvements in point cloud
completion for real-world data.
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Table 3: Effectiveness of the proposed modules.
The numbers shown are [CD ↓/ F1-score ↑], where
CD is scaled with ×102. Best results are indicated
as bold.

Baseline Disc. Refine. CD F1-score
✓ 9.43 67.4
✓ ✓ 8.96 69.2
✓ ✓ 7.38 78.3
✓ ✓ ✓ 6.99 80.4

Table 4: Effectiveness of the fil-
tering process. The numbers shown
are [CD ↓/ F1-score ↑], where CD
is scaled with ×102. Best results
are indicated as bold.

Filter CD F1-score
8.65 72.0

✓ 7.51 77.0

Table 5: Quantitative results on USSPA dataset [19] for categories with cluster-based
part labels. [CD↓/F1-score↑] are taken as the metric to evaluate the performance where
CD is scaled with ×102. Best results are indicated as bold.

Setting Method Trash bin TV Cabinet Bookshelf Sofa Tub Average

Supervised PoinTr [46] 9.20/67.2 6.90/81.9 10.97/64.6 8.13/73.8 7.22/79.4 6.17/86.5 8.10/77.2
Snowflake [42] 9.43/67.8 7.63/79.0 12.13/57.7 7.24/79.8 7.38/76.8 6.82/82.9 8.44/75.2

Syn-to-real

ShapeInv. [48] 9.92/64.4 8.21/77.5 11.75/60.7 7.90/75.8 7.39/81.6 6.82/83.3 8.66/75.8
OptDE [8] 10.36/63.7 6.65/83.5 17.69/54.2 7.44/78.9 8.40/72.3 5.75/87.2 9.38/75.2
USSPA [19] 10.67/56.9 7.66/77.7 10.74/67.4 7.86/77.6 6.50/88.0 6.74/82.0 8.36/78.6
Ours 8.49/71.7 5.73/88.3 14.03/52.0 6.57/83.8 7.15/80.2 5.20/92.5 7.86/79.4

4.4 Ablation Studies

Effectiveness of proposed modules We conduct ablation studies to assess
the effectiveness of each module introduced in our framework. Table 3 shows
the performance changes computed by Chamfer Distance (CD) and F1-score
from chair, table, bed, and lamp categories. The baseline framework comprises
the Part-Based Decomposition (PBD) module, encoder Enc, part-aware trans-
former, and decoder Dec. Incorporating only the refinement module to the base-
line results in a decrease of 2.05 in CD and an increase of 10.9 in F1-score. The
addition of the discriminator module to the baseline framework leads to a de-
crease of 0.47 in CD and an increase of 1.8 in F1-score. As shown in the last row,
the framework with all modules achieves the best performance in both CD and
F1-score metrics. These results confirm the effectiveness of all proposed modules
in point cloud completion for real-world scans. Furthermore, we can conclude
that refinement module is more effective than discriminator.
Effectiveness of filtering in real point clouds To verify the effectiveness of
the filtering process introduced in Sec. 3.2, we evaluate the performance with
and without filtering, as shown in Tab. 4. Except for the filtering process in the
real domain, we employ the same framework proposed in this paper. We evaluate
the CD and F1-score for the chair, table, bed, and lamp categories and compare
the average values. With the filtering process, CD decreases by 1.14 on average
while F1-score increases by 5.0 on average compared to our framework without
the filtering process. This result demonstrates the effectiveness of the filtering
process for preventing negative effects from noisy points.
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Input PoinTr [46] ShapeInv. [48] USSPA [19] Ours GT

Fig. 4: Qualitative results on USSPA [19] dataset for categories without part labels.
From left to right: Input, PoinTr [46], ShapeInv. [48], USSPA [19], Ours, and GT.

4.5 Additional Analysis

Analysis of part-based framework While verifying the effectiveness of mod-
ules as shown in Sec. 4.4, we have observed notable results from Tab. 3. Meth-
ods in first and third row of Tab. 3 do not contain any discriminator module.
In other words, only the part-based framework alone serves as the key element
in bridging the domain gap. Nevertheless, results from the baseline are compa-
rable to USSPA [19], and results from the baseline with the refinement module
outperform all methods. This suggests that our proposed part-based framework
effectively bridges the domain gap without getting help from discriminator mod-
ules which are commonly used. Therefore, we can conclude that our main idea
effectively facilitates domain adaptation in the task of point cloud completion.
Categories without part labels Some categories lack part labels even in the
synthetic domain, which limits the practical applicability of our methods. To
address this challenge, we employ a cluster-based co-segmentation approach,
similar to previous works such as [24, 27], which can be utilized for categories
lacking part labels. Through the cluster-based co-segmentation approach, we de-
compose the remaining categories in the USSPA [19] and ShapeNet [2] datasets.
Further details on the co-segmentation process are provided in the Supp.

We train and evaluate our method on the trash bin, TV, cabinet, book-
shelf, sofa, and tub categories. Table 5 shows the quantitative results, including
comparisons with other methods using Chamfer Distance (CD) and F1-score
metrics. Across the experimented categories, our method outperforms existing
methods for both metrics. Additionally, our method still demonstrates state-of-
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Fig. 5: Visualization of part manipulation experiments. Point clouds on the left side
are reference, and the upper side are point clouds for feature swapping. Used parts are
highlighted with dashed boxes. Predicted point clouds after feature manipulation are
located in the sky-blue region. The color of each part is depicted on the bottom side.

the-art (SOTA) results in terms of average CD and F1-score. Figure 4 illustrates
qualitative results for the bookshelf, trash bin, tub, and TV categories. Our
method successfully produces complete point clouds corresponding to the input,
effectively reconstructing missing regions with high quality compared to other
methods. These results suggest the robustness and applicability of our method
even in cases where part labels are not available.
Part feature manipulation As explained in Sec. 3.3, we design the part fea-
tures, {fr

k}nk=1, to encapsulate the semantic and geometric information of each
shape, while the part-aware features, {zrk}nk=1, capture part relationships for in-
ferring missing regions. To verify whether PAC is trained following our intention,
we experiment with manipulating part features. We first select one incomplete
point cloud as a reference and extract part features from incomplete point clouds,
including the reference point cloud. Then, we replace certain part feature of ref-
erence point cloud with corresponding part feature from another point cloud and
then generate complete point cloud. If our framework is trained as intended, each
shape from the utilized part should be reflected while missing parts are restored.

Figure 5 illustrates the used incomplete point clouds and the predicted com-
plete point clouds. The left side shows the reference point cloud, while the upper
side shows the point clouds for swapping part features, indicated by dashed
boxes. The completed point clouds, located in sky-blue region, show shapes re-
flecting utilized parts following our expectations. Based on this, we conclude that
our framework has successfully learned the concept of part as our intention.
Qualitative results on ScanObjectNN We additionally conduct an experi-
ment using the ScanObjectNN dataset [30], which is also derived from real-world
scans. As this dataset lacks complete point clouds corresponding to each real-
world point cloud, direct evaluation with ground truth is not possible. Instead,
we conduct a qualitative analysis by visualizing our predictions in Fig. 6. The
‘Ours-Part’ results represent integrated part-wise predictions, while the ‘Ours’
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Input

Ours-Part

Ours

Fig. 6: Qualitative results on ScanObjectNN dataset [30] for chairs and tables. From
up to bottom: Input, Ours-Part, and Ours.

results depict the final refined predictions. We observe that our method generates
part-wise predictions with detailed shapes from incomplete inputs. Furthermore,
the refined predictions show improvement by addressing noise present in the
part-wise predictions. These results illustrate the applicability and effectiveness
of our method across various real-world datasets.

5 Conclusion

We propose a novel framework that harnesses parts as a pivotal element for
synthetic-to-real point cloud completion. Our method employs a Part-Based
Decomposition (PBD) module, facilitating consistent point cloud decomposi-
tion across both synthetic and real domains. Subsequently, we introduce a Part-
Aware Completion (PAC) module designed to address completion tasks in both
domains. To facilitate the learning of part relationships crucial for completion,
our PAC module incorporates a novel part-aware transformer. Furthermore, we
incorporate a refinement module aimed at enhancing noisy shapes within the
completed point cloud. Our experimental results demonstrate the state-of-the-
art performance of the proposed method across various metrics when applied to
real-world data. Moreover, we conduct experiments on categories lacking part
labels to show the practicality of our approach. We believe that our framework
showcases the effectiveness of the "part" which proves to be highly effective in
the syn-to-real point cloud completion.
Limitation We have observed errors in the synthetic dataset, such as the ob-
jects appeared inconsistent with their respective categories. Furthermore, both
synthetic and real-world datasets are limited in their capacity for point cloud
completion. We believe that our method could yield improved performance given
access to larger, error-free datasets.
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